Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 139
Filtrar
1.
Cells ; 13(12)2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38920665

RESUMO

Pleural mesothelioma (PM) is a highly aggressive tumor that is caused by asbestos exposure and lacks effective therapeutic regimens. Current procedures for PM diagnosis are invasive and can take a long time to reach a definitive result. Small extracellular vesicles (sEVs) have been identified as important communicators between tumor cells and their microenvironment via their cargo including circular RNAs (circRNAs). CircRNAs are thermodynamically stable, highly conserved, and have been found to be dysregulated in cancer. This study aimed to identify potential biomarkers for PM diagnosis by investigating the expression of specific circRNA gene pattern (hsa_circ_0007386) in cells and sEVs using digital polymerase chain reaction (dPCR). For this reason, 5 PM, 14 non-PM, and one normal mesothelial cell line were cultured. The sEV was isolated from the cells using the gold standard ultracentrifuge method. The RNA was extracted from both cells and sEVs, cDNA was synthesized, and dPCR was run. Results showed that hsa_circ_0007386 was significantly overexpressed in PM cell lines and sEVs compared to non-PM and normal mesothelial cell lines (p < 0.0001). The upregulation of hsa_circ_0007386 in PM highlights its potential as a diagnostic biomarker. This study underscores the importance and potential of circRNAs and sEVs as cancer diagnostic tools.


Assuntos
Biomarcadores Tumorais , Vesículas Extracelulares , Mesotelioma , RNA Circular , Humanos , RNA Circular/genética , RNA Circular/metabolismo , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/genética , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Mesotelioma/genética , Mesotelioma/diagnóstico , Linhagem Celular Tumoral , Neoplasias Pleurais/genética , Neoplasias Pleurais/diagnóstico , Regulação Neoplásica da Expressão Gênica , Mesotelioma Maligno/genética , Mesotelioma Maligno/diagnóstico
2.
Pathol Res Pract ; 259: 155350, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38781764

RESUMO

Fluoroedenite-induced pleural mesothelioma (FE-induced-PM) is a rare and small subset of PM that shares with its asbestos-induced counterpart the same aggressive biological behavior and poor prognosis, but that differs from it from a pathogenetic point of view as it is associated with exposure to fluoroedenite, a carcinogenic agent that shows similarities with tremolite amphibolic asbestos fibers. Although it has been demonstrated that asbestos-induced PMs frequently harbor CDKN2A homozygous deletion and that the immunohistochemical loss of MTAP may represent a cheap and reliable surrogate marker for this molecular alteration, little is known about the molecular landscape and the reliability of MTAP immunohistochemistry in this peculiar subset of PM. The study herein presented investigated the prevalence of CDKN2A homozygous deletion and its concordance with MTAP immunohistochemical status on a cohort of 10 cases of FE-induced-PM from patients with environmental exposure to FE fibers, who were residents in the small town of Biancavilla (Sicily, Italy) or nearby areas. CDKN2A homozygous deletions were found in 3 out of 10 cases (30%) and all these cases showed concomitant cytoplasmic loss of MTAP with a concordance rate of 100%. Despite the relatively low number of cases included in our series, MTAP immunohistochemistry seemed to represent a reliable immunohistochemical surrogate marker of CDKNA homozygous deletion even in this subset of PMs.


Assuntos
Inibidor p16 de Quinase Dependente de Ciclina , Imuno-Histoquímica , Mesotelioma , Neoplasias Pleurais , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Amiantos Anfibólicos , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/análise , Biomarcadores Tumorais/metabolismo , Inibidor p16 de Quinase Dependente de Ciclina/genética , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Deleção de Genes , Homozigoto , Mesotelioma/genética , Mesotelioma/patologia , Mesotelioma/induzido quimicamente , Mesotelioma/metabolismo , Mesotelioma Maligno/patologia , Mesotelioma Maligno/genética , Neoplasias Pleurais/genética , Neoplasias Pleurais/patologia , Neoplasias Pleurais/induzido quimicamente , Neoplasias Pleurais/metabolismo , Purina-Núcleosídeo Fosforilase/genética
3.
Cancer Lett ; 592: 216950, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38729555

RESUMO

Malignant pleural mesothelioma is a rare and lethal cancer caused by exposure to asbestos. The highly inflammatory environment caused by fibers accumulation forces cells to undergo profound adaptation to gain survival advantages. Prioritizing the synthesis of essential transcripts is an efficient mechanism coordinated by multiple molecules, including long non-coding RNAs. Enhancing the knowledge about these mechanisms is an essential weapon in combating mesothelioma. Linc00941 correlates to bad prognosis in various cancers, but it is reported to partake in distinct and apparently irreconcilable processes. In this work, we report that linc00941 supports the survival and aggressiveness of mesothelioma cells by influencing protein synthesis and ribosome biogenesis. Linc00941 binds to the translation initiation factor eIF4G, promoting the selective protein synthesis of cMYC, which, in turn, enhances the expression of key genes involved in translation. We analyzed a retrospective cohort of 97 mesothelioma patients' samples from our institution, revealing that linc00941 expression strongly correlates with reduced survival probability. This discovery clarifies linc00941's role in mesothelioma and proposes a unified mechanism of action for this lncRNA involving the selective translation of essential oncogenes, reconciling the discrepancies about its function.


Assuntos
Fator de Iniciação Eucariótico 4G , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares , Mesotelioma Maligno , Mesotelioma , Biossíntese de Proteínas , Proteínas Proto-Oncogênicas c-myc , RNA Longo não Codificante , Humanos , Mesotelioma Maligno/genética , Mesotelioma Maligno/patologia , Mesotelioma Maligno/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Fator de Iniciação Eucariótico 4G/genética , Fator de Iniciação Eucariótico 4G/metabolismo , Mesotelioma/genética , Mesotelioma/patologia , Mesotelioma/metabolismo , Linhagem Celular Tumoral , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Neoplasias Pleurais/genética , Neoplasias Pleurais/patologia , Neoplasias Pleurais/metabolismo , Ribossomos/metabolismo , Ribossomos/genética , Estudos Retrospectivos , Prognóstico , Proliferação de Células
4.
Am J Pathol ; 194(7): 1294-1305, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38657836

RESUMO

Mesothelial cells with reactive hyperplasia are difficult to distinguish from malignant mesothelioma cells based on cell morphology. This study aimed to identify and validate potential biomarkers that distinguish mesothelial cells from mesothelioma cells through machine learning combined with immunohistochemistry. It integrated the gene expression matrix from three Gene Expression Omnibus data sets (GSE2549, GSE12345, and GSE51024) to analyze the differently expressed genes between normal and mesothelioma tissues. Then, three machine learning algorithms, least absolute shrinkage and selection operator, support vector machine recursive feature elimination, and random forest were used to screen and obtain four shared candidate markers, including ACADL, EMP2, GPD1L, and HMMR. The receiver operating characteristic curve analysis showed that the area under the curve for distinguishing normal mesothelial cells from mesothelioma was 0.976, 0.943, 0.962, and 0.956, respectively. The expression and diagnostic performance of these candidate genes were validated in two additional independent data sets (GSE42977 and GSE112154), indicating that the performances of ACADL, GPD1L, and HMMR were consistent between the training and validation data sets. Finally, the optimal candidate marker ACADL was verified by immunohistochemistry assay. Acyl-CoA dehydrogenase long chain (ACADL) was stained strongly in mesothelial cells, especially for reactive hyperplasic mesothelial cells, but was negative in malignant mesothelioma cells. Therefore, ACADL has the potential to be used as a specific marker of reactive hyperplasic mesothelial cells in the differential diagnosis of mesothelioma.


Assuntos
Biomarcadores Tumorais , Biologia Computacional , Aprendizado de Máquina , Mesotelioma Maligno , Mesotelioma , Humanos , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Mesotelioma/genética , Mesotelioma/patologia , Mesotelioma/diagnóstico , Mesotelioma/metabolismo , Biologia Computacional/métodos , Mesotelioma Maligno/genética , Mesotelioma Maligno/patologia , Mesotelioma Maligno/metabolismo , Mesotelioma Maligno/diagnóstico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/diagnóstico , Epitélio/metabolismo , Epitélio/patologia
5.
Genet Test Mol Biomarkers ; 28(5): 189-198, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38634609

RESUMO

Background: In Dayao County, Chuxiong Yi Autonomous Prefecture, Yunnan Province, Southwest China, 5% of the surface is scattered with blue asbestos, which has a high incidence of pleural mesothelioma (PMe). Simian virus 40 (SV40) is a small circular double-stranded DNA polyomavirus that can cause malignant transformation of normal cells of various human and animal tissue types and promote tumor growth. In this study, we investigate whether oncogenic SV40 is associated with the occurrence of PMe in the crocidolite-contaminated area of Dayao County, Yunnan Province, Southwest China. Methods: Tumor tissues from 51 patients with PMe (40 of whom had a history of asbestos exposure) and pleural tissues from 12 non-PMe patients (including diseases such as pulmonary maculopathy and pulmonary tuberculosis) were collected. Three pairs of low-contamination risk primers (SVINT, SVfor2, and SVTA1) were used to detect the gene fragment of SV40 large T antigen (T-Ag) by polymerase chain reaction (PCR). The presence of SV40 T-Ag in PMe tumor tissues and PMe cell lines was detected by Western blotting and immunohistochemical staining with SV40-related antibodies (PAb 101 and PAb 416). Results: PCR, Western blotting, and immunohistochemical staining results showed that the Met5A cell line was positive for SV40 and contained the SV40 T-Ag gene and protein. In contrast, the various PMe cell lines NCI-H28, NCI-H2052, and NCI-H2452 were negative for SV40. PCR was negative for all three sets of low-contamination risk primers in 12 non-PMe tissues and 51 PMe tissues. SV40 T-Ag was not detected in 12 non-PMe tissues or 51 PMe tissues by immunohistochemical staining. Conclusion: Our data suggest that the occurrence of PMe in the crocidolite-contaminated area of Yunnan Province may not be related to SV40 infection and that crocidolite exposure may be the main cause of PMe. The Clinical Trial Registration number: 2020-YXLL20.


Assuntos
Asbesto Crocidolita , Neoplasias Pleurais , Vírus 40 dos Símios , Humanos , Vírus 40 dos Símios/genética , China/epidemiologia , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Neoplasias Pleurais/epidemiologia , Neoplasias Pleurais/virologia , Neoplasias Pleurais/genética , Mesotelioma/virologia , Mesotelioma/epidemiologia , Mesotelioma/genética , Infecções por Polyomavirus/epidemiologia , Infecções Tumorais por Vírus/epidemiologia , Linhagem Celular Tumoral , Mesotelioma Maligno/genética , Neoplasias Pulmonares/virologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/epidemiologia , Adulto
7.
Gene ; 919: 148498, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38670397

RESUMO

Mesothelioma, an uncommon yet highly aggressive malignant neoplasm, presents challenges in the effectiveness of current therapeutic approaches. Ferroptosis, a non-apoptotic mechanism of cellular demise, exhibits a substantial association with the progression of diverse cancer forms. It is important to acknowledge that there exists a significant association between ferroptosis and the advancement of various forms of cancer. Nevertheless, the precise role of ferroptosis regulatory factors within the context of mesothelioma remains enigmatic. In our investigation, we initially scrutinized the prognostic significance of 24 ferroptosis regulatory factors in the realm of mesothelioma. Our observations unveiled that heightened expression levels of CARS1, CDKN1A, TFRC, FANCD2, FDFT1, HSPB1, SLC1A5, SLC7A11, coupled with reduced DPP4 expression, were indicative of an unfavorable prognosis. Built upon the nine previously discussed prognostic genes, the ferroptosis prognostic model offers a reliable means to forecast mesothelioma patients' survival with a substantial degree of precision. Furthermore, a notable correlation emerged between these prognostic ferroptosis regulators and parameters such as immune cell infiltration, tumor mutation burden, microsatellite instability, and PD-L1 expression in the context of mesothelioma. Within this cadre of nine ferroptosis regulatory factors with prognostic relevance, FANCD2 exhibited the most pronounced prognostic influence, as elucidated by our analyses. Subsequently, we executed a validation process employing clinical specimens sourced from our institution, thus confirming that heightened FANCD2 expression is a discernible harbinger of an adverse prognosis in the context of mesothelioma. In vitro experiments revealed that knocking down FANCD2 markedly suppressed the proliferation, migration, and ability of mesothelioma cells to attract immune cells. Furthermore, our findings also showed that reducing FANCD2 levels heightened the vulnerability of mesothelioma cells to inducers of ferroptosis. Furthermore, an extensive pan-cancer analysis uncovered a robust association between FANCD2 and the gene expression linked to immune checkpoints, thereby signifying an adverse prognosis across a broad spectrum of cancer types. Additional research is warranted to validate these findings.


Assuntos
Ferroptose , Regulação Neoplásica da Expressão Gênica , Mesotelioma , Ferroptose/genética , Humanos , Prognóstico , Mesotelioma/genética , Mesotelioma/patologia , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/genética , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/metabolismo , Linhagem Celular Tumoral , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Mesotelioma Maligno/genética , Mesotelioma Maligno/patologia , Sistema y+ de Transporte de Aminoácidos
8.
Artigo em Chinês | MEDLINE | ID: mdl-38677988

RESUMO

Objective: To explore the expression of KAP1 (KRAB-associated protein 1, KAP1) in Malignant pleural mesothelioma (MPM) based on the cancer genome atlas (TCGA) and clinical trials. And elucidate the correlation between the expression of KAP1 and the clinical pathological parameters of patients with MPM and its prognosis. Methods: In April 2022, Based on the second generation KAP1mRNA sequencing data and clinicopathological data of MPM patients downloaded from TCGA database, the correlation between KAP1mRNA expression and clinical parameters was analyzed, and the correlation between KAP1 protein expression and clinicopathological parameters and its prognostic value were analyzed based on Chuxiong data set cohort clinical samples. The expression of KAP1 mRNA in MPM samples and matched normal tumor adjacent tissues was detected by qRT-PCR, and the expression of KAP1 protein in MPM and normal pleural tissues was detected by immunohistochemistry and Westernblotting. To construct a Kaplan-Meier model to explore the effect of KAP1 expression on the prognosis of MPM patients, and to analyze the prognostic factors of MPM patients by Cox regression. Results: qRT-PCR and Western blotting detection showed that the expression levels of KAP1 gene in four different MPM cells (NCI-H28, NCI-H2052, NCI-H2452, and MTSO-211H) were significantly higher than those in normal pleural mesothelial cells Met-5A. qRT-PCR, Western blotting and IHC results demonstrated that the mRNA and protein expression levels of KAP1 in MPM tissues was significantly higher than that in matching normal mesothelial tissues, and the expression level of KAP1 protein was correlated with TP 53 protein expression levels and serum CEA levels (P<0.05) . The mRNA expression level was significantly correlated with the prognosis, The overall survival time of mesothelioma patients with high KAP1mRNA expression was significantly shorter (HR=3.7, Logrank P<0.001) . Tumor type, age and the mRNA expression were related to the prognosis of MPM patients (P<0.05) . Multivariate analysis showed that tumor type and KAP1 mRNA expression level were independent prognostic factors of MPM patients (P<0.05) . Conclusion: In this study, TCGA database and Chuxiong cohort experiment samples were used to collect the relevant information of KAP1 expression in malignant melanoma tissues. It was confirmed that KAP1 is highly expressed in MPM tissues. The mRNA expression level and pathological type are correlated with the prognosis of patients.


Assuntos
Mesotelioma Maligno , Neoplasias Pleurais , Proteína 28 com Motivo Tripartido , Humanos , Proteína 28 com Motivo Tripartido/metabolismo , Proteína 28 com Motivo Tripartido/genética , Prognóstico , Mesotelioma Maligno/metabolismo , Mesotelioma Maligno/genética , Neoplasias Pleurais/genética , Neoplasias Pleurais/metabolismo , Masculino , Feminino , Linhagem Celular Tumoral , Mesotelioma/genética , Mesotelioma/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Pessoa de Meia-Idade , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia
9.
J Environ Pathol Toxicol Oncol ; 43(2): 13-27, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38505910

RESUMO

Malignant pleural mesothelioma (MPM) is a rare type of cancer, and its main risk factor is exposure to asbestos. Accordingly, our knowledge of the genomic structure of an MPM tumor is limited when compared to other cancers. In this study, we aimed to characterize complex genomic rearrangement patterns and variations to better understand the genomics of MPM tumors. We comparatively scanned 3 MPM tumor genomes by Whole-Genome Sequencing and High-Resolution SNP array. We also used various computational algorithms to detect both CNAs and complex chromosomal rearrangements. Genomic data obtained from each bioinformatics tool are interpreted comparatively to better understand CNAs and cancer-related Nucleotide variations in MPM tumors. In patients 1 and 2, we found pathogenic nucleotide variants of BAP1, RB1, and TP53. These two MPM genomes exhibited a highly rearranged chromosomal rearrangement pattern resembling Chromomanagesis particularly in the form of Chromoanasynthesis. In patient 3, we found nucleotide variants of important cancer-related genes, including TGFBR1, KMT2C, and PALLD, to have lower chromosomal rearrangement complexity compared with patients 1 and 2. We also detected several actionable nucleotide variants including XRCC1, ERCC2. We also discovered the SKA3-DDX10 fusion in two MPM genomes, which is a novel finding for MPM. We found that MPM genomes are very complex, suggesting that this highly rearranged pattern is strongly related to driver mutational status like BAP1, TP53 and RB1.


Assuntos
Amianto , Neoplasias Pulmonares , Mesotelioma Maligno , Mesotelioma , Humanos , Mesotelioma Maligno/genética , Mesotelioma Maligno/complicações , Mesotelioma/induzido quimicamente , Mesotelioma/genética , Neoplasias Pulmonares/induzido quimicamente , Neoplasias Pulmonares/genética , Amianto/toxicidade , Genômica , Nucleotídeos , Proteína Grupo D do Xeroderma Pigmentoso , Proteína 1 Complementadora Cruzada de Reparo de Raio-X , RNA Helicases DEAD-box
10.
Int J Mol Sci ; 25(4)2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38396947

RESUMO

Malignant pleural mesothelioma (MPM) develops primarily from asbestos exposures and has a poor prognosis. In this study, The Cancer Genome Atlas was used to perform a comprehensive survival analysis, which identified the CHST4 gene as a potential predictor of favorable overall survival for patients with MPM. An enrichment analysis of favorable prognostic genes, including CHST4, showed immune-related ontological terms, whereas an analysis of unfavorable prognostic genes indicated cell-cycle-related terms. CHST4 mRNA expression in MPM was significantly correlated with Bindea immune-gene signatures. To validate the relationship between CHST4 expression and prognosis, we performed an immunohistochemical analysis of CHST4 protein expression in 23 surgical specimens from surgically treated patients with MPM who achieved macroscopic complete resection. The score calculated from the proportion and intensity staining was used to compare the intensity of CHST4 gene expression, which showed that CHST4 expression was stronger in patients with a better postoperative prognosis. The median overall postoperative survival was 107.8 months in the high-expression-score group and 38.0 months in the low-score group (p = 0.044, log-rank test). Survival after recurrence was also significantly improved by CHST4 expression. These results suggest that CHST4 is useful as a prognostic biomarker in MPM.


Assuntos
Amianto , Mesotelioma Maligno , Humanos , Amianto/toxicidade , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Mesotelioma Maligno/diagnóstico , Mesotelioma Maligno/genética , Análise de Sobrevida
11.
Part Fibre Toxicol ; 21(1): 3, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38297314

RESUMO

BACKGROUND: Malignant mesothelioma is an aggressive cancer that often originates in the pleural and peritoneal mesothelium. Exposure to asbestos is a frequent cause. However, studies in rodents have shown that certain multiwalled carbon nanotubes (MWCNTs) can also induce malignant mesothelioma. The exact mechanisms are still unclear. To gain further insights into molecular pathways leading to carcinogenesis, we analyzed tumors in Wistar rats induced by intraperitoneal application of MWCNTs and amosite asbestos. Using transcriptomic and epigenetic approaches, we compared the tumors by inducer (MWCNTs or amosite asbestos) or by tumor type (sarcomatoid, epithelioid, or biphasic). RESULTS: Genome-wide transcriptome datasets, whether grouped by inducer or tumor type, showed a high number of significant differentially expressed genes (DEGs) relative to control peritoneal tissues. Bioinformatic evaluations using Ingenuity Pathway Analysis (IPA) revealed that while the transcriptome datasets shared commonalities, they also showed differences in DEGs, regulated canonical pathways, and affected molecular functions. In all datasets, among highly- scoring predicted canonical pathways were Phagosome Formation, IL8 Signaling, Integrin Signaling, RAC Signaling, and TREM1 Signaling. Top-scoring activated molecular functions included cell movement, invasion of cells, migration of cells, cell transformation, and metastasis. Notably, we found many genes associated with malignant mesothelioma in humans, which showed similar expression changes in the rat tumor transcriptome datasets. Furthermore, RT-qPCR revealed downregulation of Hrasls, Nr4a1, Fgfr4, and Ret or upregulation of Rnd3 and Gadd45b in all or most of the 36 tumors analyzed. Bisulfite sequencing of Hrasls, Nr4a1, Fgfr4, and Ret revealed heterogeneity in DNA methylation of promoter regions. However, higher methylation percentages were observed in some tumors compared to control tissues. Lastly, global 5mC DNA, m6A RNA and 5mC RNA methylation levels were also higher in tumors than in control tissues. CONCLUSIONS: Our findings may help better understand how exposure to MWCNTs can lead to carcinogenesis. This information is valuable for risk assessment and in the development of safe-by-design strategies.


Assuntos
Amianto , Neoplasias Pulmonares , Mesotelioma Maligno , Mesotelioma , Nanotubos de Carbono , Humanos , Ratos , Animais , Mesotelioma Maligno/complicações , Mesotelioma Maligno/genética , Amianto Amosita/toxicidade , Nanotubos de Carbono/toxicidade , Mesotelioma/induzido quimicamente , Mesotelioma/genética , Transcriptoma , Ratos Wistar , Amianto/toxicidade , Carcinogênese/induzido quimicamente , Carcinogênese/genética , Metilação de DNA , Epigênese Genética , Neoplasias Pulmonares/induzido quimicamente , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Proteínas GADD45 , Antígenos de Diferenciação/toxicidade
12.
Arch Pathol Lab Med ; 148(5): e77-e89, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38190277

RESUMO

CONTEXT.­: Molecular testing has increasingly been utilized in the evaluation of mesothelioma. Diffuse mesothelioma comprises multiple distinct genetic subgroups. While most diffuse mesotheliomas lack oncogenic kinase mutations and instead harbor alterations involving tumor suppressors and chromatin regulators, a minor subset of tumors is characterized by uncommon alterations such as germline mutations, genomic near-haploidization, ALK rearrangement, ATF1 rearrangement, or EWSR1::YY1 fusion. OBJECTIVE.­: To provide updates on the salient molecular features of diffuse mesothelioma, mesothelioma in situ, and other mesothelial lesions: well-differentiated papillary mesothelial tumor, adenomatoid tumor, peritoneal inclusion cyst, and others. We consider the diagnostic, prognostic, and predictive utility of molecular testing in mesothelial lesions. DATA SOURCES.­: We performed a literature review of recently described genetic features, molecular approaches, and immunohistochemical tools, including BAP1, MTAP, and merlin in mesothelioma and other mesothelial lesions. CONCLUSIONS.­: Our evolving understanding of the molecular diversity of diffuse mesothelioma and other mesothelial lesions has led to considerable changes in pathology diagnostic practice, including the application of immunohistochemical markers such as BAP1, MTAP, and merlin (NF2), which are surrogates of mutation status. In young patients and/or those without significant asbestos exposure, unusual mesothelioma genetics such as germline mutations, ALK rearrangement, and ATF1 rearrangement should be considered.


Assuntos
Biomarcadores Tumorais , Imuno-Histoquímica , Mesotelioma , Proteínas Supressoras de Tumor , Ubiquitina Tiolesterase , Humanos , Mesotelioma/diagnóstico , Mesotelioma/genética , Mesotelioma/metabolismo , Mesotelioma/patologia , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/análise , Neoplasias Mesoteliais/diagnóstico , Neoplasias Mesoteliais/genética , Neoplasias Mesoteliais/metabolismo , Neoplasias Mesoteliais/patologia , Mesotelioma Maligno/diagnóstico , Mesotelioma Maligno/genética , Mesotelioma Maligno/patologia , Mesotelioma Maligno/metabolismo , Mutação
13.
Diagn Cytopathol ; 52(4): 211-216, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38243885

RESUMO

BACKGROUND: Mesothelioma is a malignant neoplasm with a poor survival rate. We aimed to investigate the importance of BAP1, MTAP (IHC), and p16/CDKN2A homozygous deletion (FISH) in cytologic material obtained from pleural effusion sampling, which is a less invasive procedure in the diagnosis of mesothelioma. METHODS: Our study discussed pleural cytology samples of cases with histopathologically proven mesothelioma diagnoses between 2017 and 2022. As the control group, materials that had pleural effusion sampling for other reasons and reactive mesothelial hyperplasia were included in the study. Cell blocks prepared from these materials were subjected to fluorescent in situ hybridization for p16/CDKN2A homozygous deletion and immunohistochemistry for BAP1 and MTAP. RESULTS: The specificity of the P16/CDKN2A homozygous deletion in diagnosing mesothelioma is 100%. Its sensitivity is 68.75%. The specificity of BAP1 immunohistochemical nuclear expression loss is 95%, while the sensitivity is 60%. Loss of nuclear expression of MTAP alone has the lowest specificity and sensitivity, with a specificity of 86% and a sensitivity of 43%. The highest sensitivity is reached when BAP1 loss and p16/CDKN2A homozygous deletion are evaluated together, increasing to 81%. The specificity is 95%. CONCLUSION: It has been determined that any marker alone cannot be used for a definitive mesothelioma diagnosis in pleural effusion cytological specimens; however, sensitivity increases in some combinations. The combination of BAP1 immunohistochemistry and p16/CDKN2A homozygous deletion detected by FISH, which has a higher specificity and sensitivity, can be routinely used in the diagnosis of mesothelioma under the guidance of clinical and radiologic information.


Assuntos
Mesotelioma Maligno , Mesotelioma , Neoplasias Mesoteliais , Derrame Pleural , Humanos , Citologia , Homozigoto , Hibridização in Situ Fluorescente , Deleção de Sequência , Mesotelioma/diagnóstico , Mesotelioma/genética , Mesotelioma Maligno/genética , Inibidor p16 de Quinase Dependente de Ciclina/genética , Proteínas Supressoras de Tumor/genética , Ubiquitina Tiolesterase/genética
14.
Mod Pathol ; 37(3): 100420, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38185249

RESUMO

9p21 deletions involving MTAP/CDKN2A genes are detected in diffuse pleural mesotheliomas (DPM) but are absent in benign mesothelial proliferations. Loss of MTAP expression by immunohistochemistry (IHC) is well accepted as a surrogate for 9p21 deletion to support a diagnosis of DPM. Accurate interpretation can be critical in the diagnosis of DPM, but variations in antibody performance may impact interpretation. The objectives of this study were to compare the performance of MTAP monoclonal antibodies (mAbs) EPR6893 and 1813 and to compare MTAP expression by IHC with 9p21 copy number status in DPM. Cytoplasmic expression of MTAP IHC with mAbs EPR6893 (ab126770; Abcam) and 1813 (NBP2-75730, Novus Biologicals) was evaluated in 56 DPM (47 epithelioid, 7 biphasic, and 2 sarcomatoid) profiled by targeted next-generation sequencing. 9p21 Copy number status was assessed by Fraction and Allele-Specific Copy Number Estimates from Tumor Sequencing (FACETS) analysis and also by CDKN2A fluorescence in situ hybridization in discrepant cases when material was available. MTAP mAb 1813 showed stronger immunoreactivity, more specific staining, and no equivocal interpretations compared to mAb EPR6893 which showed equivocal staining in 19 (34%) of cases due to weak or heterogenous immunoreactivity, lack of definitive internal positive control, and/or nonspecific background staining. MTAP expression with mAb 1813 showed near perfect agreement with 9p21 copy number by combined FACETS/fluorescence in situ hybridization calls (κ = 0.85; 95% CI, 0.71-0.99; P < .001). MTAP IHC with mAb 1813 was 96% sensitive, 86% specific, and 93% accurate for 9p21 homozygous deletion. The findings of this study suggest that interpretation of MTAP IHC is improved with mAb 1813 because mAb EPR6893 was often limited by equivocal interpretations. We show that MTAP IHC and molecular assays are complementary in detecting 9p21 homozygous deletion. MTAP IHC may be particularly useful for low tumor purity samples and in low-resource settings.


Assuntos
Mesotelioma Maligno , Mesotelioma , Neoplasias Pleurais , Humanos , Biomarcadores Tumorais/análise , Inibidor p16 de Quinase Dependente de Ciclina/genética , Sequenciamento de Nucleotídeos em Larga Escala , Homozigoto , Imuno-Histoquímica , Hibridização in Situ Fluorescente , Mesotelioma/diagnóstico , Mesotelioma/genética , Mesotelioma/patologia , Mesotelioma Maligno/genética , Neoplasias Pleurais/diagnóstico , Neoplasias Pleurais/genética , Neoplasias Pleurais/patologia , Deleção de Sequência , Ubiquitina Tiolesterase/genética
15.
Genes Chromosomes Cancer ; 63(1): e23189, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37421230

RESUMO

Malignant pleural mesothelioma (MPM), a rare cancer a long latency period (up to 40 years) between asbestos exposure and disease presentation. The mechanisms coupling asbestos to recurrent somatic alterations are poorly defined. Gene fusions arising through genomic instability may create novel drivers during early MPM evolution. We explored the gene fusions that occurred early in the evolutionary history of the tumor. We conducted multiregional whole exome sequencing (WES) of 106 samples from 20 patients undergoing pleurectomy decortication and identified 24 clonal nonrecurrent gene fusions, three of which were novel (FMO9P-OR2W5, GBA3, and SP9). The number of early gene fusion events detected varied from zero to eight per tumor, and presence of gene fusions was associated with clonal losses involving the Hippo pathway genes and homologous recombination DNA repair genes. Fusions involved known tumor suppressors BAP1, MTAP, and LRP1B, and a clonal oncogenic fusion involving CACNA1D-ERC2, PARD3B-NT5DC2, and STAB2-NT5DC2 fusions were also identified as clonal fusions. Gene fusions events occur early during MPM evolution. Individual fusions are rare as no recurrent truncal fusions event were found. This suggests the importance of early disruption of these pathways in generating genomic rearrangements resulting in potentially oncogenic gene fusions.


Assuntos
Amianto , Neoplasias Pulmonares , Mesotelioma Maligno , Mesotelioma , Humanos , Mesotelioma Maligno/genética , Via de Sinalização Hippo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Mesotelioma/genética , Reparo do DNA/genética , Fusão Gênica
16.
J Thorac Oncol ; 19(4): 551-564, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38000500

RESUMO

Despite efforts to ban asbestos mining and manufacturing, mesothelioma deaths in the United States have remained stable at approximately 2500 cases annually. This trend is not unique to the United States but is also a global phenomenon, associated with increased aging of populations worldwide. Although geoeconomic factors such as lack of regulations and continued asbestos manufacturing in resource-poor countries play a role, it is essential to consider biological factors such as immune senescence and increased genetic instability associated with aging. Recognizing that mesothelioma shares genetic instability and immune system effects with other age-related cancers is crucial because the impact of aging on mesothelioma is frequently assessed in the context of disease latency after asbestos exposure. Nevertheless, the long latency period, often cited as a reason for mesothelioma's elderly predominance, should not overshadow the shared mechanisms. This communication focuses on the role of immune surveillance in mesothelioma, particularly exploring the impact of immune escape resulting from altered TSG function during aging, contributing to the phylogenetic development of gene mutations and mesothelioma oncogenesis. The interplay between the immune system, TSGs, and aging not only shapes the immune landscape in mesothelioma but also contributes to the development of heterogeneous tumor microenvironments, significantly influencing responses to immunotherapy approaches and survival rates. By understanding the complex interplay between aging, TSG decline, and immune senescence, health care professionals can pave the way for more effective and personalized immunotherapies, ultimately offering hope for better outcomes in the fight against mesothelioma.


Assuntos
Amianto , Neoplasias Pulmonares , Mesotelioma Maligno , Mesotelioma , Humanos , Estados Unidos , Idoso , Filogenia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/terapia , Mesotelioma/genética , Mesotelioma/terapia , Mesotelioma Maligno/genética , Genes Supressores de Tumor , Microambiente Tumoral
17.
Radiol Oncol ; 57(4): 473-486, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-38038422

RESUMO

BACKGROUND: Asbestos exposure is associated with different asbestos-related diseases, including malignant mesothelioma (MM). MM diagnosis is confirmed with immunohistochemical analysis of several markers, including calretinin. Increased circulating calretinin was also observed in MM. The aim of the study was to determine if CALB2 polymorphisms or polymorphisms in genes that can regulate calretinin expression are associated with serum calretinin levels or MM susceptibility. SUBJECTS AND METHODS: The study included 288 MM patients and 616 occupationally asbestos-exposed subjects without MM (153 with asbestosis, 380 with pleural plaques and 83 without asbestos-related disease). Subjects were genotyped for seven polymorphisms in CALB2, E2F2, MIR335, NRF1 and SEPTIN7 genes using competitive allele-specific polymerase chain reaction (PCR). Serum calretinin was determined with ELISA in 545 subjects. Nonparametric tests, logistic regression and receiver operating characteristic (ROC) curve analysis were used for statistical analysis. RESULTS: Carriers of at least one polymorphic CALB2 rs889704 allele had lower calretinin levels (P = 0.036). Carriers of two polymorphic MIR335 rs3807348 alleles had higher calretinin (P = 0.027), while carriers of at least one polymorphic NRF1 rs13241028 allele had lower calretinin levels (P = 0.034) in subjects without MM. Carriers of two polymorphic E2F2 rs2075995 alleles were less likely to develop MM (odds ratio [OR] = 0.64, 95% confidence interval [CI] = 0.43-0.96, P = 0.032), but the association was no longer significant after adjustment for age (P = 0.093). Optimal serum calretinin cut-off values differentiating MM patients from other subjects differed according to CALB2, NRF1, E2F2, and MIR335 genotypes. CONCLUSIONS: The results of presented study suggest that genetic variability could influence serum calretinin levels. These findings could contribute to a better understanding of calretinin regulation and potentially to earlier MM diagnosis.


Assuntos
Amianto , Asbestose , Calbindina 2 , Mesotelioma Maligno , Humanos , Amianto/efeitos adversos , Asbestose/genética , Calbindina 2/sangue , Mesotelioma Maligno/genética
18.
Biomolecules ; 13(7)2023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-37509139

RESUMO

The SPARC gene plays multiple roles in extracellular matrix synthesis and cell shaping, associated with tumor cell migration, invasion, and metastasis. The SPARC gene is also involved in the epithelial-mesenchymal transition (EMT) process, which is a critical phenomenon leading to a more aggressive cancer cell phenotype. SPARC gene overexpression has shown to be associated with poor survival in the mesothelioma (MESO) cohort from the TCGA database, indicating that this gene may be a powerful prognostic factor in MESO. Its overexpression is correlated with the immunosuppressive tumor microenvironment. Here, we summarize the omics advances of the SPARC gene, including the summary of SPARC gene expression associated with prognosis in pancancer and MESO, the immunosuppressive microenvironment, and cancer cell stemness. In addition, SPARC might be targeted by microRNAs. Notably, despite the controversial functions on angiogenesis, SPARC may directly or indirectly contribute to tumor angiogenesis in MESO. In conclusion, SPARC is involved in tumor invasion, metastasis, immunosuppression, cancer cell stemness, and tumor angiogenesis, eventually impacting patient survival. Strategies targeting this gene may provide novel therapeutic approaches to the treatment of MESO.


Assuntos
Mesotelioma Maligno , Mesotelioma , MicroRNAs , Humanos , Linhagem Celular Tumoral , Mesotelioma/genética , MicroRNAs/genética , Mesotelioma Maligno/genética , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica , Microambiente Tumoral/genética , Osteonectina/genética , Osteonectina/metabolismo
19.
J Cancer Res Clin Oncol ; 149(13): 12089-12102, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37421452

RESUMO

INTRODUCTION: Malignant pleural mesothelioma (MPM) is an aggressive, treatment-resistant tumor. Anoikis is a particular type of programmed apoptosis brought on by the separation of cell-cell or extracellular matrix (ECM). Anoikis has been recognized as a crucial element in the development of tumors. However, few studies have comprehensively examined the role of anoikis-related genes (ARGs) in malignant mesothelioma. METHODS: ARGs were gathered from the GeneCard database and the Harmonizome portals. We obtained differentially expressed genes (DEGs) using the GEO database. Univariate Cox regression analysis, and the least absolute shrinkage and selection operator (LASSO) algorithm were utilized to select ARGs associated with the prognosis of MPM. We then developed a risk model, and time-dependent receiver operating characteristic (ROC) analysis and calibration curves were employed to confirm the ability of the model. The patients were divided into various subgroups using consensus clustering analysis. Based on the median risk score, patients were divided into low- and high-risk groups. Functional analysis and immune cell infiltration analysis were conducted to estimate molecular mechanisms and the immune infiltration landscape of patients. Finally, drug sensitivity analysis and tumor microenvironment landscape were further explored. RESULTS: A novel risk model was constructed based on the six ARGs. The patients were successfully divided into two subgroups by consensus clustering analysis, with a striking difference in the prognosis and landscape of immune infiltration. The Kaplan-Meier survival analysis indicated that the OS rate of the low-risk group was significantly higher than the high-risk group. Functional analysis, immune cell infiltration analysis, and drug sensitivity analysis showed that high- and low-risk groups had different immune statuses and drug sensitivity. CONCLUSIONS: In summary, we developed a novel risk model to predict MPM prognosis based on six selected ARGs, which could broaden comprehension of personalized and precise therapy approaches for MPM.


Assuntos
Mesotelioma Maligno , Humanos , Mesotelioma Maligno/genética , Anoikis/genética , Prognóstico , Algoritmos , Calibragem , Microambiente Tumoral
20.
ESMO Open ; 8(4): 101600, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37453150

RESUMO

BACKGROUND: Peritoneal mesothelioma (PeM) is a rare malignancy with a poor prognosis. Currently there is a lack of effective systemic therapies. Due to the rarity of PeM, it is challenging to study new treatment options. Off-label use of targeted drugs could be an effective approach. This scoping review aims to explore the genomic landscape of PeM to identify potential therapeutic targets. MATERIALS AND METHODS: A systematic literature search of Embase, Medline, Web of Science, the Cochrane Library, and Google Scholar was carried out up to 1 November 2022. Studies that reported on molecular alterations in PeM detected by high-throughput sequencing techniques were included. Genes that were altered in ≥1% of PeMs were selected for the identification of potential targeted therapies. RESULTS: Thirteen articles were included, comprising 824 PeM patients. In total, 142 genes were altered in ≥1% of patients, of which 7 genes were altered in ≥10%. BAP1 was the most commonly altered gene (50%). Other commonly altered genes were NF2 (25%), CDKN2A (23%), CDKN2B (17%), PBRM1 (15%), TP53 (14%), and SETD2 (13%). In total, 17% of PeM patients were carriers of a germline mutation, mainly in BAP1 (7%). CONCLUSIONS: This scoping review provides an overview of the mutational landscape of PeM. Germline mutations might be a larger contributor to the incidence of PeM than previously thought. Currently available targeted therapy options are limited, but several targeted agents [such as poly (ADP-ribose) polymerase (PARP), enhancer of zeste homolog 2 (EZH2), and cyclin-dependent kinase 4/6 (CDK4/6) inhibitors] were identified that might provide new targeted therapy options in the future.


Assuntos
Neoplasias Pulmonares , Mesotelioma Maligno , Mesotelioma , Neoplasias Peritoneais , Humanos , Neoplasias Pulmonares/genética , Mesotelioma Maligno/genética , Mesotelioma/genética , Mesotelioma/patologia , Mutação , Neoplasias Peritoneais/genética , Neoplasias Peritoneais/patologia , Sequenciamento de Nucleotídeos em Larga Escala/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA