Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22.397
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
Rev Invest Clin ; 76(2): 65-79, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38718804

RESUMO

UNASSIGNED: Excess body weight has become a global epidemic and a significant risk factor for developing chronic diseases, which are the leading causes of worldwide morbidities. Adipose tissue (AT), primarily composed of adipocytes, stores substantial amounts of energy and plays a crucial role in maintaining whole-body glucose and lipid metabolism. This helps prevent excessive body fat accumulation and lipotoxicity in peripheral tissues. In addition, AT contains endothelial cells and a substantial population of immune cells (constituting 60-70% of non-adipocyte cells), including macrophages, T and B lymphocytes, and natural killer cells. These resident immune cells engage in crosstalk with adipocytes, contributing to the maintenance of metabolic and immune homeostasis in AT. An exacerbated inflammatory response or inadequate immune resolution can lead to chronic systemic low-grade inflammation, triggering the development of metabolic alterations and the onset of chronic diseases. This review aims to elucidate the regulatory mechanisms through which immune cells influence AT function and energy homeostasis. We also focus on the interactions and functional dynamics of immune cell populations, highlighting their role in maintaining the delicate balance between metabolic health and obesity-related inflammation. Finally, understanding immunometabolism is crucial for unraveling the pathogenesis of metabolic diseases and developing targeted immunotherapeutic strategies. These strategies may offer innovative avenues in the rapidly evolving field of immunometabolism. (Rev Invest Clin. 2024;76(2):65-79).


Assuntos
Tecido Adiposo , Inflamação , Doenças Metabólicas , Obesidade , Humanos , Tecido Adiposo/metabolismo , Tecido Adiposo/imunologia , Obesidade/imunologia , Obesidade/metabolismo , Inflamação/imunologia , Inflamação/metabolismo , Doenças Metabólicas/imunologia , Doenças Metabólicas/metabolismo , Doenças Metabólicas/etiologia , Metabolismo Energético/fisiologia , Adipócitos/metabolismo , Adipócitos/imunologia , Metabolismo dos Lipídeos/fisiologia , Animais , Homeostase
2.
Sensors (Basel) ; 24(8)2024 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-38676136

RESUMO

The accurate estimation of energy expenditure from simple objective accelerometry measurements provides a valuable method for investigating the effect of physical activity (PA) interventions or population surveillance. Methods have been evaluated previously, but none utilize the temporal aspects of the accelerometry data. In this study, we investigated the energy expenditure prediction from acceleration measured at the subjects' hip, wrist, thigh, and back using recurrent neural networks utilizing temporal elements of the data. The acceleration was measured in children (N = 33) performing a standardized activity protocol in their natural environment. The energy expenditure was modelled using Multiple Linear Regression (MLR), stacked long short-term memory (LSTM) networks, and combined convolutional neural networks (CNN) and LSTM. The correlation and mean absolute percentage error (MAPE) were 0.76 and 19.9% for the MLR, 0.882 and 0.879 and 14.22% for the LSTM, and, with the combined LSTM-CNN, the best performance of 0.883 and 13.9% was achieved. The prediction error for vigorous intensities was significantly different (p < 0.01) from those of the other intensity domains: sedentary, light, and moderate. Utilizing the temporal elements of movement significantly improves energy expenditure prediction accuracy compared to other conventional approaches, but the prediction error for vigorous intensities requires further investigation.


Assuntos
Acelerometria , Metabolismo Energético , Redes Neurais de Computação , Humanos , Acelerometria/métodos , Metabolismo Energético/fisiologia , Masculino , Feminino , Criança , Exercício Físico/fisiologia , Modelos Lineares , Memória de Curto Prazo/fisiologia
3.
Sensors (Basel) ; 24(8)2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38676194

RESUMO

Sprinting is a decisive action in soccer that is considerably taxing from a neuromuscular and energetic perspective. This study compared different calculation methods for the metabolic power (MP) and energy cost (EC) of sprinting using global positioning system (GPS) metrics and electromyography (EMG), with the aim of identifying potential differences in performance markers. Sixteen elite U17 male soccer players (age: 16.4 ± 0.5 years; body mass: 64.6 ± 4.4 kg; and height: 177.4 ± 4.3 cm) participated in the study and completed four different submaximal constant running efforts followed by sprinting actions while using portable GPS-IMU units and surface EMG. GPS-derived MP was determined based on GPS velocity, and the EMG-MP and EC were calculated based on individual profiles plotting the MP of the GPS and all EMG signals acquired. The goodness of fit of the linear regressions was assessed by the coefficient of determination (R2), and a repeated measures ANOVA was used to detect changes. A linear trend was found in EMG activity during submaximal speed runs (R2 = 1), but when the sprint effort was considered, the trend became exponential (R2 = 0.89). The EMG/force ratio displayed two different trends: linear up to a 30 m sprint (R2 = 0.99) and polynomial up to a 50 m sprint (R2 = 0.96). Statistically significant differences between the GPS and EMG were observed for MP splits at 0-5 m, 5-10 m, 25-30 m, 30-35 m, and 35-40 m and for EC splits at 5-10 m, 25-30 m, 30-35 m, and 35-40 m (p ≤ 0.05). Therefore, the determination of the MP and EC based on GPS technology underestimated the neuromuscular and metabolic engagement during the sprinting efforts. Thus, the EMG-derived method seems to be more accurate for calculating the MP and EC in this type of action.


Assuntos
Eletromiografia , Metabolismo Energético , Sistemas de Informação Geográfica , Corrida , Futebol , Humanos , Futebol/fisiologia , Corrida/fisiologia , Masculino , Eletromiografia/métodos , Adolescente , Metabolismo Energético/fisiologia , Atletas , Desempenho Atlético/fisiologia
4.
Clin Sci (Lond) ; 138(8): 491-514, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38639724

RESUMO

The non-stop provision of chemical energy is of critical importance to normal cardiac function, requiring the rapid turnover of ATP to power both relaxation and contraction. Central to this is the creatine kinase (CK) phosphagen system, which buffers local ATP levels to optimise the energy available from ATP hydrolysis, to stimulate energy production via the mitochondria and to smooth out mismatches between energy supply and demand. In this review, we discuss the changes that occur in high-energy phosphate metabolism (i.e., in ATP and phosphocreatine) during ischaemia and reperfusion, which represents an acute crisis of energy provision. Evidence is presented from preclinical models that augmentation of the CK system can reduce ischaemia-reperfusion injury and improve functional recovery. Energetic impairment is also a hallmark of chronic heart failure, in particular, down-regulation of the CK system and loss of adenine nucleotides, which may contribute to pathophysiology by limiting ATP supply. Herein, we discuss the evidence for this hypothesis based on preclinical studies and in patients using magnetic resonance spectroscopy. We conclude that the correlative evidence linking impaired energetics to cardiac dysfunction is compelling; however, causal evidence from loss-of-function models remains equivocal. Nevertheless, proof-of-principle studies suggest that augmentation of CK activity is a therapeutic target to improve cardiac function and remodelling in the failing heart. Further work is necessary to translate these findings to the clinic, in particular, a better understanding of the mechanisms by which the CK system is regulated in disease.


Assuntos
Insuficiência Cardíaca , Traumatismo por Reperfusão , Humanos , Creatina Quinase/metabolismo , Trifosfato de Adenosina/metabolismo , Coração , Metabolismo Energético/fisiologia , Traumatismo por Reperfusão/metabolismo , Fosfocreatina/metabolismo , Doença Crônica , Miocárdio/patologia
5.
Sci Rep ; 14(1): 9030, 2024 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-38641659

RESUMO

This study compared the effects of blood flow restriction (BFR) on intensity and perceived enjoyment during an exergame. Fourteen healthy young participants engaged in a boxing exergame for 20 min, with or without BFR, across two sessions. Perceived enjoyment levels were assessed using the Physical Activity Enjoyment Scale. Heart rate was monitored, and energy expenditure (EE) during exercise was calculated. A mixed model analysis of variance with repeated measures was used to evaluate differences in EE and enjoyment between exergame conditions (with and without BFR) as well as the interaction effects of these protocols with gender. Although not statistically significant, perceived enjoyment decreased with BFR inclusion for both genders. No significant differences were observed between men and women for both protocols. Regarding EE, there was no significant difference between the two groups (with and without BFR). However, a significant main effect of gender was found, with men exhibiting higher EE values in both protocols compared to women. In conclusion, exergames incorporating BFR impact perceptual responses, particularly perceived enjoyment. Furthermore, significant gender differences in EE were found, with men displaying higher values.


Assuntos
Jogos Eletrônicos de Movimento , Prazer , Humanos , Feminino , Masculino , Hemodinâmica , Exercício Físico/fisiologia , Metabolismo Energético/fisiologia
6.
Nat Commun ; 15(1): 3377, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38643150

RESUMO

Zinc-alpha2-glycoprotein (AZGP1) has been implicated in peripheral metabolism; however, its role in regulating energy metabolism in the brain, particularly in POMC neurons, remains unknown. Here, we show that AZGP1 in POMC neurons plays a crucial role in controlling whole-body metabolism. POMC neuron-specific overexpression of Azgp1 under high-fat diet conditions reduces energy intake, raises energy expenditure, elevates peripheral tissue leptin and insulin sensitivity, alleviates liver steatosis, and promotes adipose tissue browning. Conversely, mice with inducible deletion of Azgp1 in POMC neurons exhibit the opposite metabolic phenotypes, showing increased susceptibility to diet-induced obesity. Notably, an increase in AZGP1 signaling in the hypothalamus elevates STAT3 phosphorylation and increases POMC neuron excitability. Mechanistically, AZGP1 enhances leptin-JAK2-STAT3 signaling by interacting with acylglycerol kinase (AGK) to block its ubiquitination degradation. Collectively, these results suggest that AZGP1 plays a crucial role in regulating energy homeostasis and glucose/lipid metabolism by acting on hypothalamic POMC neurons.


Assuntos
Leptina , Pró-Opiomelanocortina , Camundongos , Animais , Leptina/metabolismo , Fosforilação , Pró-Opiomelanocortina/metabolismo , Hipotálamo/metabolismo , Homeostase/fisiologia , Metabolismo Energético/fisiologia , Neurônios/metabolismo
7.
Sci Rep ; 14(1): 9530, 2024 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664457

RESUMO

To develop and validate a machine learning based algorithm to estimate physical activity (PA) intensity using the smartwatch with the capacity to record PA and determine outdoor state. Two groups of participants, including 24 adults (13 males) and 18 children (9 boys), completed a sequential activity trial. During each trial, participants wore a smartwatch, and energy expenditure was measured using indirect calorimetry as gold standard. The support vector machine algorithm and the least squares regression model were applied for the metabolic equivalent (MET) estimation using raw data derived from the smartwatch. Exercise intensity was categorized based on MET values into sedentary activity (SED), light activity (LPA), moderate activity (MPA), and vigorous activity (VPA). The classification accuracy was evaluated using area under the ROC curve (AUC). The METs estimation accuracy were assessed via the mean absolute error (MAE), the correlation coefficient, Bland-Altman plots, and intraclass correlation (ICC). A total of 24 adults aged 21-34 years and 18 children aged 9-13 years participated in the study, yielding 1790 and 1246 data points for adults and children respectively for model building and validation. For adults, the AUC for classifying SED, MVPA, and VPA were 0.96, 0.88, and 0.86, respectively. The MAE between true METs and estimated METs was 0.75 METs. The correlation coefficient and ICC were 0.87 (p < 0.001) and 0.89, respectively. For children, comparable levels of accuracy were demonstrated, with the AUC for SED, MVPA, and VPA being 0.98, 0.89, and 0.85, respectively. The MAE between true METs and estimated METs was 0.80 METs. The correlation coefficient and ICC were 0.79 (p < 0.001) and 0.84, respectively. The developed model successfully estimated PA intensity with high accuracy in both adults and children. The application of this model enables independent investigation of PA intensity, facilitating research in health monitoring and potentially in areas such as myopia prevention and control.


Assuntos
Algoritmos , Exercício Físico , Humanos , Masculino , Feminino , Exercício Físico/fisiologia , Criança , Adulto , Adolescente , Adulto Jovem , Metabolismo Energético/fisiologia , Calorimetria Indireta/métodos , Monitorização Fisiológica/métodos , Monitorização Fisiológica/instrumentação , Curva ROC
8.
Cell Death Dis ; 15(4): 243, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570521

RESUMO

The etiopathology of Parkinson's disease has been associated with mitochondrial defects at genetic, laboratory, epidemiological, and clinical levels. These converging lines of evidence suggest that mitochondrial defects are systemic and causative factors in the pathophysiology of PD, rather than being mere correlates. Understanding mitochondrial biology in PD at a granular level is therefore crucial from both basic science and translational perspectives. In a recent study, we investigated mitochondrial alterations in fibroblasts obtained from PD patients assessing mitochondrial function in relation to clinical measures. Our findings demonstrated that the magnitude of mitochondrial alterations parallels disease severity. In this study, we extend these investigations to blood cells and dopamine neurons derived from induced pluripotent stem cells reprogrammed from PD patients. To overcome the inherent metabolic heterogeneity of blood cells, we focused our analyses on metabolically homogeneous, accessible, and expandable erythroblasts. Our results confirm the presence of mitochondrial anomalies in erythroblasts and induced dopamine neurons. Consistent with our previous findings in fibroblasts, we observed that mitochondrial alterations are reversible, as evidenced by enhanced mitochondrial respiration when PD erythroblasts were cultured in a galactose medium that restricts glycolysis. This observation indicates that suppression of mitochondrial respiration may constitute a protective, adaptive response in PD pathogenesis. Notably, this effect was not observed in induced dopamine neurons, suggesting their distinct bioenergetic behavior. In summary, we provide additional evidence for the involvement of mitochondria in the disease process by demonstrating mitochondrial abnormalities in additional cell types relevant to PD. These findings contribute to our understanding of PD pathophysiology and may have implications for the development of novel biomarkers and therapeutic strategies.


Assuntos
Doenças Mitocondriais , Doença de Parkinson , Humanos , Doença de Parkinson/metabolismo , Mitocôndrias/metabolismo , Metabolismo Energético/fisiologia , Fibroblastos/metabolismo , Doenças Mitocondriais/metabolismo
9.
BMC Surg ; 24(1): 129, 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38678284

RESUMO

BACKGROUND: Mitochondria dysfunction is one of the major causes of insulin resistance, and other countless complications of obesity. PGC-1α, and UCP-2 play key roles in energy expenditure regulation in the mitochondrial thermogenesis. However, the effects of bariatric surgery on the level of PGC-1α and UCP-2 and their relationships are unclear. OBJECTIVE: This study aimed to investigate the effect of bariatric surgery on key pathways in energy, and to assess the potential predictive role of body composition and metabolic parameters in this regard. SETTINGS: Hazrat-e Rasool General Hospital, Center of Excellence of International Federation for Surgery of Obesity. METHODS: This prospective cohort study was carried out on 45 patients with morbid obesity who underwent Roux-en-Y gastric bypass surgery. The patients have evaluated three-time points at baseline, three, and six months after the surgery. Body composition components, the levels of PGC-1α, UCP-2, and metabolic parameters were measured three times during this study. RESULTS: Significant changes in TWL%, EBMIL%, and metabolic lab tests were observed at three- and six months post-surgery (P < 0.001). The PGC-1α and UCP-2 had a significant increase three and then six-month post-operation compared with the baseline (P < 0.001). Moreover, multivariate linear regression analysis identified that the changing trend of PGC-1α was associated with insulin, uric Acid, HOMA-IR, fat mass and trunk fat mass. UCP-2 was associated with TSH, AST, fat mass and FFM. CONCLUSIONS: Bariatric surgery has been shown to have a positive effect on UCP-2 and PGC-1α levels, as well as body composition and metabolic parameters. As a result, it is believed that bariatric surgery could improve thermogenesis and energy expenditure by enhancing mitochondrial biogenesis and function. However, further studies are needed to fully understand the precise mechanisms and possible causal relationship.


Assuntos
Biomarcadores , Metabolismo Energético , Obesidade Mórbida , Proteína Desacopladora 2 , Humanos , Feminino , Estudos Prospectivos , Metabolismo Energético/fisiologia , Masculino , Adulto , Biomarcadores/metabolismo , Biomarcadores/sangue , Obesidade Mórbida/cirurgia , Obesidade Mórbida/metabolismo , Proteína Desacopladora 2/metabolismo , Pessoa de Meia-Idade , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Cirurgia Bariátrica , Derivação Gástrica , Composição Corporal
10.
Int J Rehabil Res ; 47(2): 64-74, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38616768

RESUMO

Metabolic diseases disproportionately affect people with spinal cord injury (SCI). Increasing energy expenditure and remodeling body composition may offset deleterious consequences of SCI to improve cardiometabolic health. Evidence is emerging that robotic exoskeleton use increases physical activity in SCI, but little is known about its effects on energy expenditure and body composition. This study therefore aimed to evaluate the impact of robotic exoskeleton training on body composition and energy expenditure in adults with SCI. A systematic literature review was performed according to the Preferred Reporting Items for Systematic Review and Meta-Analysis guidelines. Five databases were searched to retrieve studies meeting pre-set eligibility criteria: adults with SCI, interventions evaluating the effects of robotic exoskeleton devices on body composition or energy expenditure. The PEDro scale guided quality assessments with findings described narratively. Of 2163 records, 10 studies were included. Robotic exoskeleton training does not significantly improve energy expenditure compared to other exercise interventions. Significant changes ( P  < 0.05) in body composition, particularly reduced fat mass, however, were reported. High variability seen with the interventions was coupled with poor quality of the studies. While robotic exoskeleton interventions may propose modest cardiometabolic benefits in adults with SCI, further robust trials in larger samples are needed to strengthen these findings.


Assuntos
Composição Corporal , Metabolismo Energético , Exoesqueleto Energizado , Traumatismos da Medula Espinal , Humanos , Traumatismos da Medula Espinal/reabilitação , Metabolismo Energético/fisiologia , Composição Corporal/fisiologia , Adulto
11.
Obesity (Silver Spring) ; 32(5): 949-958, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38650517

RESUMO

OBJECTIVE: We investigated how changes in 24-h respiratory exchange ratio (RER) and substrate oxidation during fasting versus an energy balance condition influence subsequent ad libitum food intake. METHODS: Forty-four healthy, weight-stable volunteers (30 male and 14 female; mean [SD], age 39.3 [11.0] years; BMI 31.7 [8.3] kg/m2) underwent 24-h energy expenditure measurements in a respiratory chamber during energy balance (50% carbohydrate, 30% fat, and 20% protein) and 24-h fasting. Immediately after each chamber stay, participants were allowed 24-h ad libitum food intake from computerized vending machines. RESULTS: Twenty-four-hour RER decreased by 9.4% (95% CI: -10.4% to -8.5%; p < 0.0001) during fasting compared to energy balance, reflecting a decrease in carbohydrate oxidation (mean [SD], -2.6 [0.8] MJ/day; p < 0.0001) and an increase in lipid oxidation (2.3 [0.9] MJ/day; p < 0.0001). Changes in 24-h RER and carbohydrate oxidation in response to fasting were correlated with the subsequent energy intake such that smaller decreases in fasting 24-h RER and carbohydrate oxidation, but not lipid oxidation, were associated with greater energy intake after fasting (r = 0.31, p = 0.04; r = 0.40, p = 0.007; and r = -0.27, p = 0.07, respectively). CONCLUSIONS: Impaired metabolic flexibility to fasting, reflected by an inability to transition away from carbohydrate oxidation, is linked with increased energy intake.


Assuntos
Ingestão de Energia , Metabolismo Energético , Jejum , Humanos , Feminino , Masculino , Adulto , Metabolismo Energético/fisiologia , Pessoa de Meia-Idade , Voluntários Saudáveis , Oxirredução , Carboidratos da Dieta/administração & dosagem , Carboidratos da Dieta/metabolismo , Metabolismo dos Lipídeos/fisiologia , Ingestão de Alimentos/fisiologia , Índice de Massa Corporal
12.
Medicine (Baltimore) ; 103(17): e37916, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38669419

RESUMO

Pheochromocytoma and paraganglioma (PPGL) are rare neuroendocrine tumors with diverse clinical presentations. Alterations in energy expenditure state are commonly observed in patients with PPGL. However, the reported prevalence of hypermetabolism varies significantly and the underlying mechanisms and implications of this presentation have not been well elucidated. This review discusses and analyzes the factors that contribute to energy consumption. Elevated catecholamine levels in patients can significantly affect substance and energy metabolism. Additionally, changes in the activation of brown adipose tissue (BAT), inflammation, and the inherent energy demands of the tumor can contribute to increased resting energy expenditure (REE) and other energy metabolism indicators. The PPGL biomarker, chromogranin A (CgA), and its fragments also influence energy metabolism. Chronic hypermetabolic states may be detrimental to these patients, with surgical tumor removal remaining the primary therapeutic intervention. The high energy expenditure of PPGL has not received the attention it deserves, and an accurate assessment of energy metabolism is the cornerstone for an adequate understanding and treatment of the disease.


Assuntos
Neoplasias das Glândulas Suprarrenais , Metabolismo Energético , Paraganglioma , Feocromocitoma , Humanos , Metabolismo Energético/fisiologia , Feocromocitoma/metabolismo , Paraganglioma/metabolismo , Neoplasias das Glândulas Suprarrenais/metabolismo , Catecolaminas/metabolismo , Tecido Adiposo Marrom/metabolismo , Cromogranina A/metabolismo
14.
J Physiol ; 602(9): 1967-1986, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38564214

RESUMO

Mitochondria within skeletal muscle cells are located either between the muscle contractile apparatus (interfibrillar mitochondria, IFM) or beneath the cell membrane (subsarcolemmal mitochondria, SSM), with several structural and functional differences reported between IFM and SSM. However, recent 3D imaging studies demonstrate that mitochondria are particularly concentrated in the proximity of capillaries embedded in sarcolemmal grooves rather than in proximity to the sarcolemma itself (paravascular mitochondria, PVM). To evaluate the impact of capillary vs. sarcolemmal proximity, we compared the structure and function of skeletal muscle mitochondria located either lateral to embedded capillaries (PVM), adjacent to the sarcolemma but not in PVM pools (SSM) or interspersed between sarcomeres (IFM). Mitochondrial morphology and interactions were assessed by 3D electron microscopy coupled with machine learning segmentation, whereas mitochondrial energy conversion was assessed by two-photon microscopy of mitochondrial membrane potential, content, calcium, NADH redox and flux in live, intact cells. Structurally, although PVM and SSM were similarly larger than IFM, PVM were larger, rounder and had more physical connections to neighbouring mitochondria compared to both IFM and SSM. Functionally, PVM had similar or greater basal NADH flux compared to SSM and IFM, respectively, despite a more oxidized NADH pool and a greater membrane potential, signifying a greater activation of the electron transport chain in PVM. Together, these data indicate that proximity to capillaries has a greater impact on resting mitochondrial energy conversion and distribution in skeletal muscle than the sarcolemma alone. KEY POINTS: Capillaries have a greater impact on mitochondrial energy conversion in skeletal muscle than the sarcolemma. Paravascular mitochondria are larger, and the outer mitochondrial membrane is more connected with neighbouring mitochondria. Interfibrillar mitochondria are longer and have greater contact sites with other organelles (i.e. sarcoplasmic reticulum and lipid droplets). Paravascular mitochondria have greater activation of oxidative phosphorylation than interfibrillar mitochondria at rest, although this is not regulated by calcium.


Assuntos
Capilares , Mitocôndrias Musculares , Músculo Esquelético , Sarcolema , Sarcolema/metabolismo , Sarcolema/ultraestrutura , Sarcolema/fisiologia , Animais , Capilares/fisiologia , Capilares/metabolismo , Mitocôndrias Musculares/metabolismo , Mitocôndrias Musculares/ultraestrutura , Músculo Esquelético/fisiologia , Músculo Esquelético/metabolismo , Músculo Esquelético/irrigação sanguínea , Camundongos , Metabolismo Energético/fisiologia , Masculino , Camundongos Endogâmicos C57BL , Potencial da Membrana Mitocondrial/fisiologia
15.
J Strength Cond Res ; 38(5): 842-847, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38662882

RESUMO

ABSTRACT: Barbosa, PH, Bueno de Camargo, JB, Jonas de Oliveira, J, Reis Barbosa, CG, Santos da Silva, A, Dos-Santos, JW, Verlengia, R, Barreira, J, Braz, TV, and Lopes, CR. Resistance exercise sessions comprising multijoint vs. single-joint exercises result in similar metabolic and hormonal responses, but distinct levels of muscle damage in trained men. J Strength Cond Res 38(5): 842-847, 2024-Resistance-type exercise (RE) elicits distinct acute metabolic and hormonal responses, which can be modulated by the manipulation of training variables. The purpose of this study was to compare the metabolic (blood lactate and estimated lactic anaerobic system energy expenditure) and hormonal (growth hormone [GH]) responses to RE sessions composed exclusively of multijoint (MULTI) or single-joint (SINGLE) exercises. Assessments of creatine kinase (CK) levels were also performed. In a crossover design, 10 recreationally resistance-trained men (age: 26.9 ± 3.0 years, total body mass: 83.2 ± 13.8 kg; height: 176 ± 7.0 cm; training experience: 5.5 ± 2.4 years) were randomly submitted to both protocols. Blood collections were made pre, 3 minutes after, and 36 hours after each experimental session. No significant difference between MULTI vs. SINGLE was observed for the rises in blood lactate (p = 0.057) and GH (p = 0.285) levels. For CK, a significant difference between the protocols was noted, in which MULTI resulted in significant rises after 3 minutes (p = 0.017) and 36 hours (p = 0.043) compared with SINGLE. In conclusion, the findings of this study suggest that resistance-trained individuals display similar metabolic and hormonal responses when performing MULTI and SINGLE exercise protocols. Also, RE sessions comprising MULTI exercises induce a higher magnitude of muscle damage, which may require a longer recovery period compared with SINGLE.


Assuntos
Creatina Quinase , Estudos Cross-Over , Ácido Láctico , Músculo Esquelético , Treinamento Resistido , Humanos , Masculino , Treinamento Resistido/métodos , Ácido Láctico/sangue , Adulto , Músculo Esquelético/lesões , Músculo Esquelético/fisiologia , Músculo Esquelético/metabolismo , Creatina Quinase/sangue , Adulto Jovem , Metabolismo Energético/fisiologia , Hormônio do Crescimento Humano/sangue
16.
Artigo em Inglês | MEDLINE | ID: mdl-38602189

RESUMO

Blood-based mitochondrial bioenergetic profiling is a feasible, economical, and minimally invasive approach that can be used to examine mitochondrial function and energy metabolism in human subjects. In this study, we use 2 complementary respirometric techniques to evaluate mitochondrial bioenergetics in both intact and permeabilized peripheral blood mononuclear cells (PBMCs) and platelets to examine sex dimorphism in mitochondrial function among older adults. Employing equal numbers of PBMCs and platelets to assess mitochondrial bioenergetics, we observe significantly higher respiration rates in female compared to male participants. Mitochondrial bioenergetic differences remain significant after controlling for independent parameters including demographic parameters (age, years of education), and cognitive parameters (mPACC5, COGDX). Our study illustrates that circulating blood cells, immune cells in particular, have distinctly different mitochondrial bioenergetic profiles between females and males. These differences should be taken into account as blood-based bioenergetic profiling is now commonly used to understand the role of mitochondrial bioenergetics in human health and aging.


Assuntos
Metabolismo Energético , Leucócitos Mononucleares , Mitocôndrias , Humanos , Masculino , Feminino , Mitocôndrias/metabolismo , Idoso , Metabolismo Energético/fisiologia , Leucócitos Mononucleares/metabolismo , Plaquetas/metabolismo , Envelhecimento/fisiologia , Fatores Sexuais , Caracteres Sexuais , Idoso de 80 Anos ou mais
17.
Am J Physiol Endocrinol Metab ; 326(5): E648-E662, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38568152

RESUMO

We investigated if a bout of exercise in a hot environment (HEAT) would reduce the postprandial hyperglycemia induced by glucose ingestion. The hypothesis was that HEAT stimulating carbohydrate oxidation and glycogen use would increase the disposal of an ingested glucose load [i.e., oral glucose tolerance test (OGTT); 75 g of glucose]. Separated by at least 1 wk, nine young healthy individuals underwent three trials after an overnight fast in a randomized order. Two trials included 50 min of pedaling at 58 ± 5% V̇o2max either in a thermoneutral (21 ± 1°C; NEUTRAL) or in a hot environment (33 ± 1°C; HEAT) eliciting similar energy expenditure (503 ± 101 kcal). These two trials were compared with a no-exercise trial (NO EXER). Twenty minutes after exercise (or rest), subjects underwent an OGTT, while carbohydrate oxidation (CHOxid, using indirect calorimetry) plasma blood glucose, insulin concentrations (i.e., [glucose], [insulin]), and double tracer glucose kinetics ([U-13C] glucose ingestion and [6,6-2H2] glucose infusion) were monitored for 120 min. At rest, [glucose], [insulin], and rates of appearance/disappearance of glucose in plasma (glucose Ra/Rd) were similar among trials. During exercise, heart rate, tympanic temperature, [glucose], glycogen oxidation, and total CHOxid were higher during HEAT than NEUTRAL (i.e., 149 ± 35 vs. 124 ± 31 µmol·kg-1·min-1, P = 0.010). However, during the following OGTT, glucose Rd was similar in HEAT and NEUTRAL trials (i.e., 25.1 ± 3.6 vs. 25.2 ± 5.3 µmol·kg-1·min-1, P = 0.981). Insulin sensitivity (i.e., ISIndexMATSUDA) only improved in NEUTRAL compared with NO EXER (10.1 ± 4.6 vs. 8.8 ± 3.7 au; P = 0.044). In summary, stimulating carbohydrate use with exercise in a hot environment does not improve postprandial plasma glucose disposal or insulin sensitivity in a subsequent OGTT.NEW & NOTEWORTHY Exercise in the heat increases estimated muscle glycogen use. Reduced muscle glycogen after exercise in the heat could increase insulin-mediated glucose uptake during a subsequent oral glucose tolerance test (OGTT). However, plasma glucose kinetics are not improved during the OGTT in response to a bout of exercise in the heat, and insulin sensitivity worsens. Heat stress activates glucose counterregulatory hormones whose actions may linger during the OGTT, preventing increased glucose uptake.


Assuntos
Glicemia , Metabolismo dos Carboidratos , Metabolismo Energético , Exercício Físico , Teste de Tolerância a Glucose , Glucose , Temperatura Alta , Humanos , Masculino , Exercício Físico/fisiologia , Adulto , Adulto Jovem , Glicemia/metabolismo , Feminino , Metabolismo dos Carboidratos/fisiologia , Glucose/metabolismo , Metabolismo Energético/fisiologia , Insulina/sangue , Insulina/metabolismo , Oxirredução , Voluntários Saudáveis , Glicogênio/metabolismo , Período Pós-Prandial/fisiologia , Hiperglicemia/metabolismo , Hiperglicemia/prevenção & controle
18.
Neuropeptides ; 105: 102425, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38554699

RESUMO

The control of feeding and physical activity is tightly linked and coordinated. However the underlying mechanisms are unclear. One of the major regulatory systems of feeding behaviour involves neuropeptide Y (NPY) signalling, with the signalling mediated through NPY Y4 receptor also known to influence activity. Here we show that mice globally lacking the Npy4r (Npy4r-/-) in the absence of access to a running wheel behaved WT-like with regards to food intake, energy expenditure, respiratory exchange ratio and locomotion regardless of being fed on a chow or high fat diet. Interestingly however, when given the access to a running wheel, Npy4r-/- mice while having a comparable locomotor activity, showed significantly higher wheel-running activity than WT, again regardless of dietary conditions. This higher wheel-running activity in Npy4r-/-mice arose from an increased dark-phase running time rather than changes in number of running bouts or the running speed. Consistently, energy expenditure was higher in Npy4r-/- than WT mice. Importantly, food intake was reduced in Npy4r-/-mice under wheel access condition which was due to decreased feeding bouts rather than changes in meal size. Together, these findings demonstrate an important role of Npy4r signalling in the dual control of feeding and physical activity, particularly in the form of wheel-running activity.


Assuntos
Ingestão de Alimentos , Metabolismo Energético , Comportamento Alimentar , Camundongos Knockout , Neuropeptídeo Y , Receptores de Neuropeptídeo Y , Transdução de Sinais , Animais , Receptores de Neuropeptídeo Y/metabolismo , Receptores de Neuropeptídeo Y/genética , Transdução de Sinais/fisiologia , Neuropeptídeo Y/metabolismo , Metabolismo Energético/fisiologia , Comportamento Alimentar/fisiologia , Ingestão de Alimentos/fisiologia , Camundongos , Masculino , Camundongos Endogâmicos C57BL , Atividade Motora/fisiologia , Condicionamento Físico Animal/fisiologia , Dieta Hiperlipídica , Locomoção/fisiologia
19.
Arch Orthop Trauma Surg ; 144(5): 2357-2363, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38498157

RESUMO

INTRODUCTION: While increased body mass index (BMI) in patients undergoing total hip arthroplasty (THA) increases surgical complexity, there is a paucity of objective studies assessing the impact of patient BMI on the cardiovascular stress experienced by surgeons during THA. The aim of this study was to assess the impact of patient BMI on surgeon cardiovascular strain during THA. METHODS: We prospectively evaluated three fellowship-trained arthroplasty surgeons performing a total of 115 THAs. A smart-vest worn by the surgeons recorded mean heart rate, stress index (correlate of sympathetic activation), respiratory rate, minute ventilation, and energy expenditure throughout the procedures. Patient demographics as well as perioperative data including surgical approach, surgery duration, number of assistants, and the timing of the surgery during the day were collected. Linear regression was utilized to assess the impact of patient characteristics and perioperative data on cardiorespiratory metrics. RESULTS: Average surgeon heart rate, energy expenditure, and stress index during surgery were 98.50 beats/min, 309.49 cal/h, and 14.10, respectively. Higher patient BMI was significantly associated with increased hourly energy expenditure (P = 0.027), mean heart rate (P = 0.037), and stress index (P = 0.027) independent of surgical approach. Respiratory rate and minute ventilation were not associated with patient BMI. The number of assistants and time of surgery during the day did not impact cardiorespiratory strain on the surgeon. CONCLUSION: The physiologic burden on surgeons during primary THA significantly increases as patient BMI increases. This study suggests that healthcare systems should consider adjusting reimbursement models to account for increased surgeon workload due to obesity. Further surgeons should adopt strategies in operative planning and case scheduling to handle this added physical strain. LEVEL OF EVIDENCE: III.


Assuntos
Artroplastia de Quadril , Índice de Massa Corporal , Humanos , Masculino , Feminino , Estudos Prospectivos , Pessoa de Meia-Idade , Idoso , Frequência Cardíaca/fisiologia , Metabolismo Energético/fisiologia , Cirurgiões/estatística & dados numéricos , Estresse Fisiológico/fisiologia
20.
Physiology (Bethesda) ; 39(4): 0, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38530221

RESUMO

Astrocytes are no longer considered as passive support cells. In the hypothalamus, these glial cells actively participate in the control of appetite, energy expenditure, and the processes leading to obesity and its secondary complications. Here we briefly review studies supporting this conclusion and the advances made in understanding the underlying mechanisms.


Assuntos
Astrócitos , Metabolismo Energético , Hipotálamo , Neurônios , Astrócitos/metabolismo , Astrócitos/fisiologia , Hipotálamo/metabolismo , Hipotálamo/fisiologia , Animais , Humanos , Neurônios/fisiologia , Neurônios/metabolismo , Metabolismo Energético/fisiologia , Obesidade/metabolismo , Obesidade/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA