Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23.021
Filtrar
1.
Funct Plant Biol ; 512024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38739736

RESUMO

The forage quality of alfalfa (Medicago sativa ) stems is greater than the leaves. Sucrose hydrolysis provides energy for stem development, with starch being enzymatically converted into sucrose to maintain energy homeostasis. To understand the physiological and molecular networks controlling stem development, morphological characteristics and transcriptome profiles in the stems of two alfalfa cultivars (Zhungeer and WL168) were investigated. Based on transcriptome data, we analysed starch and sugar contents, and enzyme activity related to starch-sugar interconversion. Zhungeer stems were shorter and sturdier than WL168, resulting in significantly higher mechanical strength. Transcriptome analysis showed that starch and sucrose metabolism were significant enriched in the differentially expressed genes of stems development in both cultivars. Genes encoding INV , bglX , HK , TPS and glgC downregulated with the development of stems, while the gene encoding was AMY upregulated. Weighted gene co-expression network analysis revealed that the gene encoding glgC was pivotal in determining the variations in starch and sucrose contents between the two cultivars. Soluble carbohydrate, sucrose, and starch content of WL168 were higher than Zhungeer. Enzyme activities related to sucrose synthesis and hydrolysis (INV, bglX, HK, TPS) showed a downward trend. The change trend of enzyme activity was consistent with gene expression. WL168 stems had higher carbohydrate content than Zhungeer, which accounted for more rapid growth and taller plants. WL168 formed hollow stems were formed during rapid growth, which may be related to the redistribution of carbohydrates in the pith tissue. These results indicated that starch and sucrose metabolism play important roles in the stem development in alfalfa.


Assuntos
Medicago sativa , Caules de Planta , Amido , Sacarose , Medicago sativa/genética , Medicago sativa/metabolismo , Medicago sativa/crescimento & desenvolvimento , Amido/metabolismo , Caules de Planta/metabolismo , Caules de Planta/crescimento & desenvolvimento , Caules de Planta/genética , Sacarose/metabolismo , Regulação da Expressão Gênica de Plantas , Transcriptoma , Metabolismo dos Carboidratos/genética , Perfilação da Expressão Gênica
2.
Nutrients ; 16(9)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38732548

RESUMO

Obesity represents a significant global public health concern. The excessive accumulation of abdominal adipose tissue is often implicated in the development of metabolic complications associated with obesity. Our study aimed to investigate the impact of particular deposits of abdominal adipose tissue on the occurrence of carbohydrate and lipid metabolism complications. We established cut-off points for visceral adipose tissue (VAT), subcutaneous adipose tissue (SAT), and the VAT/SAT ratio at which selected metabolic complications of obesity-related diseases (disorders of carbohydrate and/or lipid metabolism) occur. We conducted an observational study involving 91 subjects with first- and second-degree obesity, accounting for gender differences. Anthropometric measurements were taken, body composition analysis (BIA) was conducted, and biochemical determinations were made. Our findings suggest that commonly used parameters for assessing early metabolic risk, such as BMI or waist circumference, may overlook the significant factor of body fat distribution, as well as gender differences. Both visceral and subcutaneous adipose tissue were found to be important in estimating metabolic risk. We identified the cut-off points in women in terms of their elevated fasting glucose levels and the presence of insulin resistance (HOMA-IR: homeostasis model assessment of insulin resistance) based on SAT, VAT, and the VAT/SAT ratio. In men, cut-off points were determined for the presence of insulin resistance (HOMA-IR) based on VAT and the VAT/SAT ratio. However, the results regarding lipid disorders were inconclusive, necessitating further investigation of a larger population.


Assuntos
Resistência à Insulina , Gordura Intra-Abdominal , Obesidade , Humanos , Masculino , Feminino , Projetos Piloto , Gordura Intra-Abdominal/metabolismo , Adulto , Obesidade/metabolismo , Pessoa de Meia-Idade , Metabolismo dos Carboidratos , Transtornos do Metabolismo dos Lipídeos/metabolismo , Metabolismo dos Lipídeos , Gordura Subcutânea/metabolismo , Composição Corporal , Índice de Massa Corporal , Glicemia/metabolismo
3.
Sci Rep ; 14(1): 9367, 2024 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-38654118

RESUMO

This study is focused on analysing polyphenols and carbohydrates released by Phaeodactylum tricornutum (P. tricornutum) diatoms cultured in natural seawater enriched with sublethal and lethal Cu doses. Cu concentrations of 0.31, 0.79 and 1.57 µM reduced cell densities by 37, 82 and 91%, respectively, compared to the control. The total sum of all identified polyphenols and total carbohydrates released by cells grown under lethal Cu levels increased up to 18.8 and 107.4 times, respectively, compared to data from a control experiment. Four different in vitro assays were used to estimate the antioxidant activities of the extracellular compounds: 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical inhibition, cupric ion reducing antioxidant capacity (CUPRAC), ferric reducing antioxidant power and Cu complexing ability (CCA). The highest antioxidant activities were observed in the Cu lethal treatments, where the CCA assay exhibited a greater increase (up to 32.2 times higher than that found in the control experiment) to reduce the concentration of free Cu in the medium and its toxicity. The presence of Cu stimulated the release of polyphenols and carbohydrates to the medium as a detoxification mechanism to survive under lethal levels of Cu regulating its speciation.


Assuntos
Antioxidantes , Carboidratos , Cobre , Diatomáceas , Polifenóis , Diatomáceas/metabolismo , Diatomáceas/efeitos dos fármacos , Diatomáceas/crescimento & desenvolvimento , Polifenóis/metabolismo , Cobre/metabolismo , Carboidratos/química , Antioxidantes/metabolismo , Estresse Fisiológico/efeitos dos fármacos , Metabolismo dos Carboidratos/efeitos dos fármacos
4.
Genes (Basel) ; 15(4)2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38674400

RESUMO

Bifidobacterium longum subsp. infantis YLGB-1496 (YLGB-1496) is a probiotic strain isolated from human breast milk. The application of YLGB-1496 is influenced by carbohydrate utilization and genetic stability. This study used genome sequencing and morphology during continuous subculture to determine the carbohydrate utilization characteristics and genetic stability of YLGB-1496. The complete genome sequence of YLGB-1496 consists of 2,758,242 base pairs, 2442 coding sequences, and a GC content of 59.87%. A comparison of carbohydrate transport and metabolism genes of Bifidobacterium longum subsp. infantis (B. infantis) showed that YLGB-1496 was rich in glycosyl hydrolase 13, 20, 25, and 109 gene families. During continuous subculture, the growth characteristics and fermentation activity of the strain were highly stable. The bacterial cell surface and edges of the 1000th-generation strains were progressively smoother and well-defined, with no perforations or breaks in the cell wall. There were 20 SNP loci at the 1000th generation, fulfilling the requirement of belonging to the same strain. The presence of genes associated with cell adhesion and the absence of resistance genes supported the probiotic characteristics of the strain. The data obtained in this study provide insights into broad-spectrum carbohydrate utilization, genomic stability, and probiotic properties of YLGB-1496, which provide theoretical support to promote the use of YLGB-1496.


Assuntos
Bifidobacterium , Metabolismo dos Carboidratos , Genoma Bacteriano , Bifidobacterium/genética , Bifidobacterium/metabolismo , Metabolismo dos Carboidratos/genética , Humanos , Probióticos , Instabilidade Genômica , Bifidobacterium longum subspecies infantis/genética , Bifidobacterium longum subspecies infantis/metabolismo
5.
Food Microbiol ; 121: 104487, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38637064

RESUMO

Streptococcus thermophilus is a bacterium widely used in the production of yogurts and cheeses, where it efficiently ferments lactose, the saccharide naturally present in milk. It is also employed as a starter in dairy- or plant-based fermented foods that contain saccharides other than lactose (e.g., sucrose, glucose). However, little is known about how saccharide use is regulated, in particular when saccharides are mixed. Here, we determine the effect of the 5 sugars that S. thermophilus is able to use, at different concentration and when they are mixed on the promoter activities of the C-metabolism genes. Using a transcriptional fusion approach, we discovered that lactose and glucose modulated the activity of the lacS and scrA promoters in a concentration-dependent manner. When mixed with lactose, glucose also repressed the two promoter activities; when mixed with sucrose, lactose still repressed scrA promoter activity. We determined that catabolite control protein A (CcpA) played a key role in these dynamics. We also showed that promoter activity was linked with glycolytic flux, which varied depending on saccharide type and concentration. Overall, this study identified key mechanisms in carbohydrate metabolism - autoregulation and partial hierarchical control - and demonstrated that they are partly mediated by CcpA.


Assuntos
Glucose , Lactose , Lactose/metabolismo , Glucose/metabolismo , Metabolismo dos Carboidratos , Glicólise , Streptococcus thermophilus/genética , Streptococcus thermophilus/metabolismo , Sacarose/metabolismo
6.
Microbiol Res ; 283: 127709, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38593579

RESUMO

Bifidobacterium longum subsp. infantis commonly colonizes the human gut and is capable of metabolizing L-fucose, which is abundant in the gut. Multiple studies have focused on the mechanisms of L-fucose utilization by B. longum subsp. infantis, but the regulatory pathways governing the expression of these catabolic processes are still unclear. In this study, we have conducted a structural and functional analysis of L-fucose metabolism transcription factor FucR derived from B. longum subsp. infantis Bi-26. Our results indicated that FucR is a L-fucose-sensitive repressor with more α-helices, fewer ß-sheets, and ß-turns. Transcriptional analysis revealed that FucR displays weak negative self-regulation, which is counteracted in the presence of L-fucose. Isothermal titration calorimetry indicated that FucR has a 2:1 stoichiometry with L-fucose. The key amino acid residues for FucR binding L-fucose are Asp280 and Arg331, with mutation of Asp280 to Ala resulting in a decrease in the affinity between FucR and L-fucose with the Kd value from 2.58 to 11.68 µM, and mutation of Arg331 to Ala abolishes the binding ability of FucR towards L-fucose. FucR specifically recognized and bound to a 20-bp incomplete palindrome sequence (5'-ACCCCAATTACGAAAATTTTT-3'), and the affinity of the L-fucose-loaded FucR for the DNA fragment was lower than apo-FucR. The results provided new insights into the regulating L-fucose metabolism by B. longum subsp. infantis.


Assuntos
Bifidobacterium longum , Bifidobacterium , Humanos , Bifidobacterium/genética , Bifidobacterium/metabolismo , Fucose/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Metabolismo dos Carboidratos , Bifidobacterium longum/genética , Bifidobacterium longum/metabolismo
7.
Front Immunol ; 15: 1375453, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38596671

RESUMO

The overconsumption of dietary fructose has been proposed as a major culprit for the rise of many metabolic diseases in recent years, yet the relationship between a high fructose diet and neurological dysfunction remains to be explored. Although fructose metabolism mainly takes place in the liver and intestine, recent studies have shown that a hyperglycemic condition could induce fructose metabolism in the brain. Notably, microglia, which are tissue-resident macrophages (Mφs) that confer innate immunity in the brain, also express fructose transporters (GLUT5) and are capable of utilizing fructose as a carbon fuel. Together, these studies suggest the possibility that a high fructose diet can regulate the activation and inflammatory response of microglia by metabolic reprogramming, thereby altering the susceptibility of developing neurological dysfunction. In this review, the recent advances in the understanding of microglia metabolism and how it supports its functions will be summarized. The results from both in vivo and in vitro studies that have investigated the mechanistic link between fructose-induced metabolic reprogramming of microglia and its function will then be reviewed. Finally, areas of controversies and their associated implications, as well as directions that warrant future research will be highlighted.


Assuntos
Frutose , Microglia , Frutose/metabolismo , Microglia/metabolismo , Metabolismo dos Carboidratos , Fígado/metabolismo , Encéfalo/metabolismo
8.
Clin Exp Pharmacol Physiol ; 51(5): e13860, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38584327

RESUMO

Lung adenocarcinoma (LUAD) is a serious threat to public health and is accompanied by increased morbidity and mortality worldwide. Neuronal PAS domain protein2 (NPAS2) has been confirmed as an oncogene in LUAD; however, little is known about its molecular mechanism. Here, the expression level of NPAS2 was detected in LUAD cell lines and 16HBE cells. Gain- and loss-of-function experiments were performed. Cell Counting Kit-8, colony formation, flow cytometry, wound-healing and Transwell assays were conducted to assess cell proliferation, apoptosis, migration and invasion, respectively. Reprogramming of glucose metabolism was evaluated via oxygen consumption rate (OCR), complexes activities, lactic production and glucose consumption. The expression of critical proteins was examined by western blot. We demonstrated aberrant upregulation of NPAS2 and ß-arrestin-1 (ARRB1) in LUAD cell lines. ARRB1 was found to be a critical transcription factor of NPAS2 with binding sites within the promoter region of NPAS2, thereby causing its transcriptional activation. Functional experiments revealed that NPAS2 depletion significantly inhibited the malignant behaviours of A549 cells by suppressing cell proliferation, migration, invasion and epithelial-mesenchymal transition and promoting cell apoptosis. Meanwhile, NPAS2 depletion increased OCR and activities of complexes (I, II, III and V), and reduced lactic acid production and glucose uptake in A549 cells, indicating that NPAS2 depletion inhibited aerobic glycolysis, accompanied by reduced expression of glycolytic enzymes. However, the changes caused by NPAS2 knockdown were partly restored by ARRB1 overexpression. In conclusion, our study suggests that ARRB1 could transcriptionally activate NPAS2, facilitating malignant activities and glycolysis, and ultimately promoting the progression of LUAD, proving a novel therapeutic strategy for the treatment of LUAD.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Humanos , Metabolismo dos Carboidratos , Glicólise/genética , Adenocarcinoma de Pulmão/genética , Proliferação de Células/genética , Glucose , Neoplasias Pulmonares/genética , Movimento Celular/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Proteínas do Tecido Nervoso/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , beta-Arrestina 1
9.
PLoS One ; 19(4): e0297334, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38574179

RESUMO

Potato tubers are rich sources of various nutrients and unique sources of starch. Many genes play major roles in different pathways, including carbohydrate metabolism during the potato tuber's life cycle. Despite substantial scientific evidence about the physiological and morphological development of potato tubers, the molecular genetic aspects of mechanisms underlying tuber formation have not yet been fully understood. In this study, for the first time, RNA-seq analysis was performed to shed light on the expression of genes involved in starch biosynthesis during potato tuber development. To this end, samples were collected at the hook-like stolon (Stage I), swollen tips stolon (Stage II), and tuber initiation (Stage III) stages of tuber formation. Overall, 23 GB of raw data were generated and assembled. There were more than 20000 differentially expressed genes (DEGs); the expression of 73 genes involved in starch metabolism was further studied. Moreover, qRT-PCR analysis revealed that the expression profile of the starch biosynthesis DEGs was consistent with that of the RNA-seq data, which further supported the role of the DEGs in starch biosynthesis. This study provides substantial resources on potato tuber development and several starch synthesis isoforms associated with starch biosynthesis.


Assuntos
Solanum tuberosum , Solanum tuberosum/metabolismo , Perfilação da Expressão Gênica , Tubérculos/metabolismo , Metabolismo dos Carboidratos/genética , Amido/metabolismo , Regulação da Expressão Gênica de Plantas
10.
Plant Cell Rep ; 43(5): 125, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38647720

RESUMO

KEY MESSAGE: The interaction network and pathway map uncover the potential crosstalk between sugar and hormone metabolisms as a possible reason for leaf senescence in P. ternata. Pinellia ternata, an environmentally sensitive medicinal plant, undergoes leaf senescence twice a year, affecting its development and yield. Understanding the potential mechanism that delays leaf senescence could theoretically decrease yield losses. In this study, a typical senescent population model was constructed, and an integrated analysis of transcriptomic and metabolomic profiles of P. ternata was conducted using two early leaf senescence populations and two stay-green populations. The result showed that two key gene modules were associated with leaf senescence which were mainly enriched in sugar and hormone signaling pathways, respectively. A network constructed by unigenes and metabolisms related to the obtained two pathways revealed that several compounds such as D-arabitol and 2MeScZR have a higher significance ranking. In addition, a total of 130 hub genes in this network were categorized into 3 classes based on connectivity. Among them, 34 hub genes were further analyzed through a pathway map, the potential crosstalk between sugar and hormone metabolisms might be an underlying reason of leaf senescence in P. ternata. These findings address the knowledge gap regarding leaf senescence in P. ternata, providing candidate germplasms for molecular breeding and laying theoretical basis for the realization of finely regulated cultivation in future.


Assuntos
Regulação da Expressão Gênica de Plantas , Metabolômica , Pinellia , Reguladores de Crescimento de Plantas , Folhas de Planta , Transcriptoma , Folhas de Planta/genética , Folhas de Planta/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Pinellia/genética , Pinellia/metabolismo , Pinellia/fisiologia , Pinellia/crescimento & desenvolvimento , Reguladores de Crescimento de Plantas/metabolismo , Transcriptoma/genética , Senescência Vegetal/genética , Perfilação da Expressão Gênica , Açúcares/metabolismo , Metaboloma/genética , Redes Reguladoras de Genes , Metabolismo dos Carboidratos/genética
11.
Plant Physiol Biochem ; 210: 108650, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38653095

RESUMO

Plants have evolved the adaptive capacity to mitigate the negative effect of external adversities at chemical, molecular, cellular, and physiological levels. This capacity is conferred by triggering the coordinated action of internal regulatory factors, in which sugars play an essential role in the regulating chloroplast degradation and leaf senescence under various stresses. In this review, we summarize the recent findings on the senescent-associated changes in carbohydrate metabolism and its relation to chlorophyl degradation, oxidative damage, photosynthesis inhibition, programmed cell death (PCD), and sink-source relation as affected by abiotic stresses. The action of sugar signaling in regulating the initiation and progression of leaf senescence under abiotic stresses involves interactions with various plant hormones, reactive oxygen species (ROS) burst, and protein kinases. This discussion aims to elucidate the complex regulatory network and molecular mechanisms that underline sugar-induced leaf senescence in response to various abiotic stresses. The imperative role of sugar signaling in regulating plant stress responses potentially enables the production of crop plants with modified sugar metabolism. This, in turn, may facilitate the engineering of plants with improved stress responses, optimal life span and higher yield achievement.


Assuntos
Folhas de Planta , Senescência Vegetal , Transdução de Sinais , Estresse Fisiológico , Açúcares , Folhas de Planta/metabolismo , Folhas de Planta/fisiologia , Açúcares/metabolismo , Metabolismo dos Carboidratos , Fotossíntese , Cloroplastos/metabolismo
12.
Plant Cell Rep ; 43(5): 131, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38656568

RESUMO

KEY MESSAGE: The sugar supply in the medium affects the apical hook development of Arabidopsis etiolated seedlings. In addition, we provided the mechanism insights of this process. Dicotyledonous plants form an apical hook structure to shield their young cotyledons from mechanical damage as they emerge from the rough soil. Our findings indicate that sugar molecules, such as sucrose and glucose, are crucial for apical hook development. The presence of sucrose and glucose allows the apical hooks to be maintained for a longer period compared to those grown in sugar-free conditions, and this effect is dose-dependent. Key roles in apical hook development are played by several sugar metabolism pathways, including oxidative phosphorylation and glycolysis. RNA-seq data revealed an up-regulation of genes involved in starch and sucrose metabolism in plants grown in sugar-free conditions, while genes associated with phenylpropanoid metabolism were down-regulated. This study underscores the significant role of sugar metabolism in the apical hook development of etiolated Arabidopsis seedlings.


Assuntos
Arabidopsis , Regulação da Expressão Gênica de Plantas , Plântula , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/genética , Arabidopsis/metabolismo , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Plântula/genética , Açúcares/metabolismo , Sacarose/metabolismo , Glucose/metabolismo , Estiolamento , Metabolismo dos Carboidratos , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Cotilédone/metabolismo , Cotilédone/crescimento & desenvolvimento , Cotilédone/genética
13.
Am J Physiol Endocrinol Metab ; 326(5): E648-E662, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38568152

RESUMO

We investigated if a bout of exercise in a hot environment (HEAT) would reduce the postprandial hyperglycemia induced by glucose ingestion. The hypothesis was that HEAT stimulating carbohydrate oxidation and glycogen use would increase the disposal of an ingested glucose load [i.e., oral glucose tolerance test (OGTT); 75 g of glucose]. Separated by at least 1 wk, nine young healthy individuals underwent three trials after an overnight fast in a randomized order. Two trials included 50 min of pedaling at 58 ± 5% V̇o2max either in a thermoneutral (21 ± 1°C; NEUTRAL) or in a hot environment (33 ± 1°C; HEAT) eliciting similar energy expenditure (503 ± 101 kcal). These two trials were compared with a no-exercise trial (NO EXER). Twenty minutes after exercise (or rest), subjects underwent an OGTT, while carbohydrate oxidation (CHOxid, using indirect calorimetry) plasma blood glucose, insulin concentrations (i.e., [glucose], [insulin]), and double tracer glucose kinetics ([U-13C] glucose ingestion and [6,6-2H2] glucose infusion) were monitored for 120 min. At rest, [glucose], [insulin], and rates of appearance/disappearance of glucose in plasma (glucose Ra/Rd) were similar among trials. During exercise, heart rate, tympanic temperature, [glucose], glycogen oxidation, and total CHOxid were higher during HEAT than NEUTRAL (i.e., 149 ± 35 vs. 124 ± 31 µmol·kg-1·min-1, P = 0.010). However, during the following OGTT, glucose Rd was similar in HEAT and NEUTRAL trials (i.e., 25.1 ± 3.6 vs. 25.2 ± 5.3 µmol·kg-1·min-1, P = 0.981). Insulin sensitivity (i.e., ISIndexMATSUDA) only improved in NEUTRAL compared with NO EXER (10.1 ± 4.6 vs. 8.8 ± 3.7 au; P = 0.044). In summary, stimulating carbohydrate use with exercise in a hot environment does not improve postprandial plasma glucose disposal or insulin sensitivity in a subsequent OGTT.NEW & NOTEWORTHY Exercise in the heat increases estimated muscle glycogen use. Reduced muscle glycogen after exercise in the heat could increase insulin-mediated glucose uptake during a subsequent oral glucose tolerance test (OGTT). However, plasma glucose kinetics are not improved during the OGTT in response to a bout of exercise in the heat, and insulin sensitivity worsens. Heat stress activates glucose counterregulatory hormones whose actions may linger during the OGTT, preventing increased glucose uptake.


Assuntos
Glicemia , Metabolismo dos Carboidratos , Metabolismo Energético , Exercício Físico , Teste de Tolerância a Glucose , Glucose , Temperatura Alta , Humanos , Masculino , Exercício Físico/fisiologia , Adulto , Adulto Jovem , Glicemia/metabolismo , Feminino , Metabolismo dos Carboidratos/fisiologia , Glucose/metabolismo , Metabolismo Energético/fisiologia , Insulina/sangue , Insulina/metabolismo , Oxirredução , Voluntários Saudáveis , Glicogênio/metabolismo , Período Pós-Prandial/fisiologia , Hiperglicemia/metabolismo , Hiperglicemia/prevenção & controle
14.
Bull Exp Biol Med ; 176(4): 481-485, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38492104

RESUMO

We performed complex analysis of the association of polymorphic variants rs7903146 of the TCF7L2 gene and rs1801282 of the PPARG gene with metabolic parameters, insulin resistance, and ß-cell function in a group of patients with early signs of carbohydrate metabolism disturbances in a sample of Tyumen citizens. The study group consisted of 64 people (39 women, 25 men) aged 40-70 years. The distribution of frequencies of alleles and genotypes of the polymorphic markers rs7903146 and rs1801282 was analyzed and associations of carriage of major homozygous polymorphisms with various phenotypic traits were identified. Genotyping for polymorphic variants of TCF7L2 and PPARG genes was performed using allele-specific PCR with primers provided by Synthol company. Carriers of homozygotes for allele C of the polymorphic marker rs7903146 significantly differed from other respondents by a higher level of C-peptide, as well as by the presence of associations with waist circumference, elevated level of glycated hemoglobin, and arterial hypertension. Carriers of homozygotes for the allele C of the rs1801282 polymorphism of the PPARG gene differed from the group of carriers of homozygotes for the allele G and the group of heterozygote carriers by higher levels of triglycerides, as well as the presence of associations with waist circumference and the level of glycated hemoglobin.


Assuntos
Diabetes Mellitus Tipo 2 , PPAR gama , Proteína 2 Semelhante ao Fator 7 de Transcrição , Feminino , Humanos , Masculino , Metabolismo dos Carboidratos , Diabetes Mellitus Tipo 2/genética , Genótipo , Hemoglobinas Glicadas/genética , Polimorfismo Genético/genética , Polimorfismo de Nucleotídeo Único/genética , PPAR gama/genética , Proteína 2 Semelhante ao Fator 7 de Transcrição/genética
15.
J Agric Food Chem ; 72(12): 6500-6508, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38470347

RESUMO

Dipicolinic acid (DPA), a cyclic diacid, has garnered significant interest due to its potential applications in antimicrobial agents, antioxidants, chelating reagents, and polymer precursors. However, its natural bioproduction is limited since DPA is only accumulated in Bacillus and Clostridium species during sporulation. Thus, heterologous production by engineered strains is of paramount importance for developing a sustainable biological route for DPA production. Pseudomonas putida KT2440 has emerged as a promising host for the production of various chemicals thanks to its robustness, metabolic versatility, and genetic tractability. The dominant Entner-Doudoroff (ED) pathway for glucose metabolism in this strain offers an ideal route for DPA production due to the advantage of NADPH generation and the naturally balanced flux between glyceraldehyde-3-phosphate and pyruvate, which are both precursors for DPA synthesis. In this study, DPA production via the ED pathway was in silico designed in P. putida KT2440. The systematically engineered strain produced dipicolinate with a titer of 11.72 g/L from glucose in a 5 L fermentor. This approach not only provides a sustainable green route for DPA production but also expands our understanding of the metabolic potential of the ED pathway in P. putida KT2440.


Assuntos
Pseudomonas putida , Pseudomonas putida/genética , Metabolismo dos Carboidratos , Reatores Biológicos , Antioxidantes/metabolismo , Ácido Pirúvico/metabolismo , Engenharia Metabólica
16.
Int J Mol Sci ; 25(6)2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38542476

RESUMO

Sugar transporters play important roles in plant growth and development, flowering and fruiting, as well as responses to adverse abiotic and biotic environmental conditions. Lilies (Lilium spp.) are some of the most representative ornamental bulbous flowers. Sugar metabolism is critical for bulb formation in lilies; therefore, clarifying the amount and expression pattern of sugar transporters is essential for further analyzing their roles in bulb formation. In this study, based on the transcriptome data of the Lilium Oriental hybrid 'Sorbonne' and Lilium × formolongi, a total of 69 and 41 sugar transporters were identified in 'Sorbonne' and Lilium × formolongi, respectively, by performing bioinformatics analysis. Through phylogenetic analysis, monosaccharide transporters (MSTs) can be divided into seven subfamilies, sucrose transporters (SUTs) can be divided into three subgroups, and sugars will eventually be exported transporters (SWEETs) can be divided into four clades. According to an analysis of conserved motifs, 20, 14, and 12 conserved motifs were predicted in MSTs, SUTs, and SWEETs, respectively. A conserved domain analysis showed that MSTs and SUTs contained a single domain, whereas most of the SWEETs harbored two MtN3/saliva domains, also known as a PQ-loop repeat. The LohINT1, which was predicted to have a smaller number of transmembrane structural domains, was cloned and analyzed for subcellular localization. It was found that the LohINT1 protein is mainly localized in the cell membrane. In addition, the expression analysis indicated that 22 LohMSTs, 1 LohSUTs, and 5 LohSWEETs were upregulated in 'Sorbonne' 1 day after scale detachment treatment, suggesting that they may regulate the initiation of the bulblet. A total of 10 LflMSTs, 1 LflSUTs, and 6 LflSWEETs were upregulated 4~6 months after sowing, which corresponds to the juvenile-to-adult transition phase of Lilium × formolongi, suggesting that they may also play a role in the accompanying bulb swelling process. Combined with quantitative real-time PCR (qRT-PCR) analysis, LohSTP8 and LohSTP12 were significantly overexpressed during the extremely early stage of bulblet initiation, and LflERD6.3 was significantly overexpressed during the growth of the underground bulblet, suggesting that they may be key sugar transporters in the formation of lily bulbs, which needs further functional verification.


Assuntos
Lilium , Lilium/metabolismo , Filogenia , Metabolismo dos Carboidratos , Transcriptoma , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Açúcares/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
17.
Acta Pharm ; 74(1): 117-130, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38554383

RESUMO

Statin treatment may increase the risk of diabetes; there is insufficient data on how statins affect glucose regulation and glycemic control and the effects of statins on liver enzymes related to carbohydrate metabolism have not been fully studied. Therefore, we aimed to compare the effects of the statin derivatives, pravastatin, and rosuvastatin, on carbohydrate metabolism in an experimental diabetic rat model. Female Wistar albino rats were used and diabetes was induced by intraperitoneal injection of streptozotocin. Thereafter, 10 and 20 mg kg-1 day-1 doses of both pravastatin and rosuvastatin were administered by oral gavage to the diabetic rats for 8 weeks. At the end of the experiment, body masses, the levels of fasting blood glucose, serum insulin, insulin resistance (HOMA-IR), liver glycogen, and liver enzymes related to carbohydrate metabolism were measured. Both doses of pravastatin significantly in creased the body mass in diabetic rats, however, rosuvastatin, especially at the dose of 20 mg kg-1 day-1 reduced the body mass signi ficantly. Pravastatin, especially at a dose of 20 mg kg-1 day-1, caused significant increases in liver glycogen synthase and glucose 6-phosphate dehydrogenase levels but significant decreases in the levels of glycogen phosphorylase, lactate dehydrogenase, and glucose-6-phosphatase. Hence, pravastatin partially ameliorated the adverse changes in liver enzymes caused by diabetes and, especially at the dose of 20 mg kg-1 day-1, reduced the fasting blood glucose level and increased the liver glycogen content. However, rosuvastatin, especially at the dose of 20 mg kg-1 day-1, significantly reduced the liver glycogen synthase and pyruvate kinase levels, but increased the glycogen phosphorylase level in diabetic rats. Rosuvastatin, 20 mg kg-1 day-1 dose, caused significant decreases in the body mass and the liver glycogen content of diabetic rats. It can be concluded that pravastatin, especially at the dose of 20 mg kg-1 day-1 is more effective in ameliorating the negative effects of diabetes by modulating carbohydrate metabolism.


Assuntos
Diabetes Mellitus Experimental , Inibidores de Hidroximetilglutaril-CoA Redutases , Feminino , Ratos , Animais , Glicemia , Ratos Wistar , Rosuvastatina Cálcica/efeitos adversos , Pravastatina/farmacologia , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Hipoglicemiantes/farmacologia , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/tratamento farmacológico , Glicogênio Sintase/metabolismo , Glicogênio Sintase/farmacologia , Glicogênio Hepático/efeitos adversos , Glicogênio Hepático/metabolismo , Hemoglobinas Glicadas , Glucose/metabolismo , Metabolismo dos Carboidratos , Glicogênio Fosforilase/metabolismo , Glicogênio Fosforilase/farmacologia , Fígado/metabolismo , Insulina/farmacologia
18.
PeerJ ; 12: e17052, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38464751

RESUMO

Tuber plants are of great significance in the world as human food crops. Polysaccharides, important metabolites in tuber plants, also serve as a source of innovative drugs with significant pharmacological effects. These drugs are particularly known for their immunomodulation and antitumor properties. To fully exploit the potential value of tuber plant polysaccharides and establish a synthetic system for their targeted synthesis, it is crucial to dissect their metabolic processes and genetic regulatory mechanisms. In this article, we provide a comprehensive summary of the basic pathways involved in the synthesis of various types of tuber plant polysaccharides. We also outline the key research progress that has been made in this area in recent years. We classify the main types and functions of tuber plant polysaccharides and analyze the biosynthetic processes and genetic regulation mechanisms of key enzymes involved in the metabolic pathways of starch, cellulose, pectin, and fructan in tuber plants. We have identified hexokinase and glycosyltransferase as the key enzymes involved in the polysaccharide synthesis process. By elucidating the synthesis pathway of polysaccharides in tuber plants and understanding the underlying mechanism of action of key enzymes in the metabolic pathway, we can provide a theoretical framework for enhancing the yield of polysaccharides and other metabolites in plant culture cells. This will ultimately lead to increased production efficiency.


Assuntos
Plantas , Polissacarídeos , Humanos , Metabolismo dos Carboidratos , Frutanos/metabolismo , Plantas/metabolismo , Amido
19.
Physiol Plant ; 176(2): e14196, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38433117

RESUMO

Source-sink relationships influence photosynthesis. So far, the limiting factors for photosynthesis of wheat cultivars with different source-sink relationships have not been determined. We aimed to determine the variation patterns of photosynthetic characteristics of wheat cultivars with different source-sink relationships. In this study, two wheat cultivars with different source-sink relationships were selected for photosynthetic physiological analyses. The results showed that YM25 (source-limited cultivar) had higher photosynthetic efficiency compared to YM1 (sink-limited cultivar). This is mainly due to a stronger photochemical efficiency, electron transfer capacity, and Rubisco carboxylation capacity of YM25. YM25 accumulated less soluble carbohydrates in flag leaves than YM1. This is mainly due to the stronger sucrose synthesis and transport capacity of YM25 by presenting higher sucrose-related enzyme activities and gene expression. A PCA analysis showed that Rubisco was the main factor limiting the photosynthetic capacity of YM25. The soluble sugar accumulation in flag leaves and sink limitation decreased the photosynthetic activity of YM1. Increased N application improved source-sink relationships and increased grain yield and source leaf photosynthetic capacity in both two wheat cultivars. Taken together, our findings suggest that Rubisco and sucrose synthesis and translocation are involved in the regulation of photosynthesis of wheat cultivars with different source-sink relationships and that source and sink limitation effects should be considered in photosynthesis.


Assuntos
Ribulose-Bifosfato Carboxilase , Triticum , Triticum/genética , Fotossíntese , Metabolismo dos Carboidratos , Sacarose
20.
Plant Physiol Biochem ; 209: 108547, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38522132

RESUMO

Drought has been considered the most restrictive environmental constraint on agricultural production worldwide. Photosynthetic carbohydrate metabolism is a critical biochemical process connected with crop production and quality traits. A pot experiment was carried out under four potassium (K) rates (0, 0.75, 1.5 and 2.25 g pot-1 of K, respectively) and two water regimes to investigate the role of K in activating defense mechanisms on sucrose metabolism against drought damage in sesame. The soil moisture contents are 75 ± 5% (well-watered, WW) and 45 ± 5% (drought stress, DS) of field capacity respectively. The results showed that DS plants without K application have lower activities of ribulose-1,5-bisphosphate carboxylase (Rubisco), sucrose phosphate synthase (SPS), soluble acid invertase (SAI), and chlorophyll content and higher activity of sucrose synthase (SuSy), which resulted in declined synthesis and distribution of photosynthetic products to reproductive organs. Under drought, there was a significant positive correlation between leaf sucrose metabolizing enzymes and sucrose content. Plants subjected to drought stress increased the concentrations of soluble sugar and sucrose to produce osmo-protectants and energy sources for plants acclimating to stress but decreased starch content. Conversely, K application enhanced the carbohydrate metabolism, biomass accumulation and partitioning, thereby contributing to higher seed oil and protein yield (28.8%-43.4% and 27.5%-40.7%) as compared to K-deficiency plants. The positive impacts of K application enhanced as increasing K rates, and it was more pronounced in drought conditions. Furthermore, K application upregulated the gene expression of SiMYB57, SiMYB155, SiMYB176 and SiMYB192 while downregulated SiMYB108 and SiMYB171 in drought conditions, which may help to alleviate drought susceptibility. Conclusively, our study illustrated that the enhanced photo-assimilation and translocation process caused by the changes in sucrose metabolism activities under K application as well as regulation of MYB gene expression contributes towards drought resistance of sesame.


Assuntos
Secas , Sesamum , Sesamum/genética , Sesamum/metabolismo , Potássio/metabolismo , Metabolismo dos Carboidratos/genética , Folhas de Planta/genética , Folhas de Planta/metabolismo , Sacarose/metabolismo , Expressão Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA