Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 146
Filtrar
1.
Sci Adv ; 5(9): eaax7946, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31598554

RESUMO

Formulations and devices for precision medicine applications must be tunable and multiresponsive to treat heterogeneous patient populations in a calibrated and individual manner. We engineered modular poly(acrylamide-co-methacrylic acid) copolymers, cross-linked into multiresponsive nanogels with either a nondegradable or degradable disulfide cross-linker, that were customized via orthogonal chemistries to target biomarkers of an individual patient's disease or deliver multiple therapeutic modalities. Upon modification with functional small molecules, peptides, or proteins, these nanomaterials delivered methylene blue with environmental responsiveness, transduced visible light for photothermal therapy, acted as a functional enzyme, or promoted uptake by cells. In addition to quantifying the nanogels' composition, physicochemical characteristics, and cytotoxicity, we used a QCM-D method for characterizing nanomaterial degradation and a high-throughput assay for cellular uptake. In conclusion, we generated a tunable nanogel composition for precision medicine applications and new quantitative protocols for assessing the bioactivity of similar platforms.


Assuntos
Portadores de Fármacos , Nanogéis/química , Nanopartículas/química , Medicina de Precisão , Resinas Acrílicas/química , Resinas Acrílicas/farmacocinética , Resinas Acrílicas/farmacologia , Animais , Linhagem Celular Tumoral , Portadores de Fármacos/síntese química , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Portadores de Fármacos/farmacologia , Humanos , Metacrilatos/química , Metacrilatos/farmacocinética , Metacrilatos/farmacologia , Camundongos , Células RAW 264.7
2.
Acta Pharmacol Sin ; 40(8): 1106-1118, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30792487

RESUMO

Cinnamic acid and its analogues (pyragrel and ozagrel) undergo chain-shortened (ß-oxidative) and reductive metabolism on acyl side chain. In this study, we characterized the ß-oxidative and reductive metabolism on acyl side chain of cinnamic acid and its analogues using primary rat hepatocytes, hepatic mitochondrial, and microsomal systems. A compartmental model including parent compounds and metabolites was developed to characterize in vivo ß-oxidative and reductive metabolism following an intravenous dose of parent compounds to rats. The fitted total in vivo clearance values were further compared with the in vitro values predicted by the well-stirred model. We showed that hepatic microsomal CYP450s did not catalyze ß-oxidative or reductive metabolism of the three compounds. Similar to ß-oxidation of fatty acids, ß-oxidative metabolism on their acyl side chain occurred mainly in mitochondria, which was highly dependent on ATP, CoA and NAD+. Fatty acids and NADH inhibited the ß-oxidative metabolism. Reductive metabolism occurred in both mitochondria and microsomes. Reduction in mitochondria was ATP-, CoA-, and NAD(P)H-dependent and reversible, which was suppressed by enoyl reductase inhibitor triclosan. Reduction in microsomes was ATP-, CoA-, and NADPH-dependent but little affected by triclosan. Both plasma concentrations of ß-oxidative metabolites and reductive metabolites were successfully fitted using the compartmental model. The estimated total in vivo clearance values were consistent with those predicted from hepatocytes and organelles, implicating significance of in vitro kinetics. These findings demonstrate the roles of hepatic mitochondria and microsomes in ß-oxidative and reductive metabolism on acyl side chain of cinnamic acid and its analogues along with their metabolic characteristics.


Assuntos
Cinamatos/metabolismo , Metacrilatos/metabolismo , Pirazinas/metabolismo , Animais , Cinamatos/química , Cinamatos/farmacocinética , Ácidos Graxos/metabolismo , Hepatócitos/metabolismo , Masculino , Metacrilatos/química , Metacrilatos/farmacocinética , Microssomos Hepáticos/metabolismo , Mitocôndrias Hepáticas/metabolismo , Estrutura Molecular , NAD/metabolismo , Oxirredução/efeitos dos fármacos , Pirazinas/química , Pirazinas/farmacocinética , Ratos Sprague-Dawley , Triclosan/farmacologia
3.
J Pept Sci ; 25(2): e3144, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30588703

RESUMO

Mitochondrion plays an important role in executing cell programmed death pathway. Therefore, drugs designed to target mitochondria are supposed to make superior contributions to cancer therapy. However, the problem that drugs or drug delivery systems being sequestrated in endosomes/lysosomes needs to be solved for effective drug delivery. Here, mitochondrial targeting and nonendocytic cell entry peptide SS20 modified HPMA copolymer (P-FITC-SS20) was synthesized. With SS20 peptide modification, the uptake behavior of HPMA copolymers changed remarkably compared with unmodified ones. The internalization of P-FITC-SS20 was not influenced by endocytic inhibitors and temperature. Further, the internalized copolymers were not trapped in endosomes/lysosomes. Although cellular uptake of HPMA copolymer was decreased after SS20 peptide modification, SS20 peptide significantly improved mitochondrial accumulation of HPMA copolymers due to its outstanding mitochondrial targeting ability. Moreover, owing to lower susceptibility to macrophagocyte in blood, P-SS20-Cy5 showed longer blood circulation time and enhanced tumor accumulation. The current study validated that SS20 peptide modification is a promising strategy for mitochondrial targeting drug delivery systems and can be further applied to mitochondria associated diseases to improve therapeutic efficacy.


Assuntos
Endocitose , Metacrilatos/farmacocinética , Mitocôndrias/metabolismo , Peptídeos/farmacocinética , Polímeros/farmacocinética , Animais , Células Cultivadas , Endocitose/efeitos dos fármacos , Células HeLa , Humanos , Metacrilatos/síntese química , Metacrilatos/química , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Mitocôndrias/efeitos dos fármacos , Peptídeos/química , Polímeros/síntese química , Polímeros/química , Células RAW 264.7 , Distribuição Tecidual
4.
Mater Sci Eng C Mater Biol Appl ; 93: 277-288, 2018 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-30274059

RESUMO

It is known that an efficient gene therapy vector must overcome several steps to be able to express the gene of interest: (I) enter the cell by crossing the cell membrane; (II) escape the endo-lysosomal degradation pathway; (III) release the genetic material; (IV) traffic through the cytoplasm and enter the nucleus; and last (V), enable gene expression to synthetize the protein of interest. In recent years, we and others have demonstrated the potential of poly(2­(N,N'­dimethylamino)ethylmethacrylate) (PDMAEMA) as a gene therapy vehicle. Further optimization of gene transfer efficiency requires the understanding of the intracellular pathway of PDMAEMA. Therefore the goal of this study was to determine the cellular entry and intracellular trafficking mechanisms of our PDMAEMA vectors and determine the gene transfer bottleneck. For this, we have produced rhodamine-labeled PDMAEMA polyplexes that were used to transfect retinal cells and the cellular localization determined by co-localization with cellular markers. Our vectors quickly and efficiently cross the cell membrane, and escape the endo-lysosomal system by 24 h. We have observed the PDMAEMA vectors to concentrate around the nucleus, and the DNA load to be released in the first 24 h after transfection. These results allow us to conclude that although the endo-lysosomal system is an important obstacle, PDMAEMA gene vectors can overcome it. The nuclear membrane, however, constitutes the bottleneck to PDMAEMA gene transfer ability.


Assuntos
Endossomos/metabolismo , Técnicas de Transferência de Genes , Terapia Genética , Vetores Genéticos , Lisossomos/metabolismo , Metacrilatos , Nylons , Linhagem Celular , Vetores Genéticos/química , Vetores Genéticos/farmacocinética , Vetores Genéticos/farmacologia , Humanos , Metacrilatos/química , Metacrilatos/farmacocinética , Metacrilatos/farmacologia , Nylons/química , Nylons/farmacocinética , Nylons/farmacologia
5.
Int J Biol Macromol ; 116: 1175-1185, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29777818

RESUMO

Hydroxyethyl methacrylate-derivative pullulan (pullulan-HEMA) was synthesized by activation of HEMA followed by catalyzed reaction for adjusting the degree of substitution (DS) of copolymer. Pullulan-HEMA was photocrosslinked using new three-components photoinitiating system composed of carboxylated camphorquinone-folic acid-iodonium salt under visible light. Folic acid was employed as new coinitiator for improving the entire hydrogel properties and avoiding harms of traditional used tertiary amine coinitiators. Pullulan-HEMA hydrogels were characterized by swelling, crosslinking density, and degree of conversion. It was observed that the increase of crosslinking density, Tg, degree of conversion are owing to increasing the DS of copolymer. However, water uptake of hydrogel decreased with increasing the DS value and folic acid concentrations, owing to increasing the crosslinking densities of hydrogels. Also, increasing DS of copolymer and folic acid improved sharply hydrogel surface morphology and prolonged the required time for enzymatic degradation. Notably, the alteration in DS of copolymer converted the in vitro release profile of dexamethasone from rapid and big burst release into sustained and low release behavior. Meanwhile, we could obtain progressive and tunable storage modulus ranged ca. 2.0-10 KPa when DS of copolymer was altered from 0.025 to 0.086, showing that pullulan-HEMA hydrogels are promising biomaterial candidate for biomedical applications.


Assuntos
Reagentes de Ligações Cruzadas/química , Dexametasona , Ácido Fólico , Glucanos , Hidrogéis , Metacrilatos , Processos Fotoquímicos , Preparações de Ação Retardada/síntese química , Preparações de Ação Retardada/química , Preparações de Ação Retardada/farmacocinética , Preparações de Ação Retardada/farmacologia , Dexametasona/química , Dexametasona/farmacocinética , Dexametasona/farmacologia , Ácido Fólico/química , Ácido Fólico/farmacocinética , Ácido Fólico/farmacologia , Glucanos/química , Glucanos/farmacocinética , Glucanos/farmacologia , Hidrogéis/síntese química , Hidrogéis/química , Hidrogéis/farmacocinética , Hidrogéis/farmacologia , Metacrilatos/química , Metacrilatos/farmacocinética , Metacrilatos/farmacologia
6.
Int J Biol Macromol ; 116: 911-919, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29775710

RESUMO

Star-shaped poly(2-(dimethylamino)ethyl methacrylate) based on ß-cyclodextrin (ß-CD-(PDMAEMA)7) was synthesized by means of atomic transfer radical polymerization (ATRP). Dual pH-sensitive supramolecular micelles were formed from ß-CD-(PDMAEMA)7 and benzimidazole modified poly(ε-caprolactone) (BM-PCL) through the host-guest interactions between ß-CD and benzimidazole. The supramolecular micelles have regular spherical structure with hydrophobic ß-CD/BM-PCL as the core and pH-sensitive PDMAEMA as the shell. The hydrophobic PCL as well as the hydrophobic cavity of ß-CD can efficiently encapsulate doxorubicin (DOX) with the drug-loading content and entrapment efficiency up to 40% and 86%. The drug release from micelles accelerated when the pH decreased from 7.0 to 2.0 and the temperature increased from 25 °C to 45 °C. MTT assay showed that drug loaded supramolecular micelles exhibited excellent anti-cancer activity than free DOX. These supramolecular micelles have promising potential applications as intelligent nanocarriers in drug delivery system.


Assuntos
Metacrilatos , Micelas , Nylons , beta-Ciclodextrinas , Preparações de Ação Retardada/química , Preparações de Ação Retardada/farmacocinética , Preparações de Ação Retardada/farmacologia , Doxorrubicina , Células HeLa , Humanos , Metacrilatos/química , Metacrilatos/farmacocinética , Metacrilatos/farmacologia , Nylons/química , Nylons/farmacocinética , Nylons/farmacologia , beta-Ciclodextrinas/química , beta-Ciclodextrinas/farmacocinética , beta-Ciclodextrinas/farmacologia
7.
Biomaterials ; 178: 570-582, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29680158

RESUMO

Size and shape have progressively appeared as some of the key factors influencing the properties of nanosized drug delivery systems. In particular, elongated materials are thought to interact differently with cells and therefore may allow alterations of in vivo fate without changes in chemical composition. A challenge, however, remains the creation of stable self-assembled materials with anisotropic shape for delivery applications that still feature the ability to disassemble, avoiding organ accumulation and facilitating clearance from the system. In this context, we report on cyclic peptide-polymer conjugates that self-assemble into supramolecular nanotubes, as confirmed by SANS and SLS. Their behaviour ex and in vivo was studied: the nanostructures are non-toxic up to a concentration of 0.5 g L-1 and cell uptake studies revealed that the pathway of entry was energy-dependent. Pharmacokinetic studies following intravenous injection of the peptide-polymer conjugates and a control polymer to rats showed that the larger size of the nanotubes formed by the conjugates reduced renal clearance and elongated systemic circulation. Importantly, the ability to slowly disassemble into small units allowed effective clearance of the conjugates and reduced organ accumulation, making these materials interesting candidates in the search for effective drug carriers.


Assuntos
Sistemas de Liberação de Medicamentos , Metacrilatos/química , Nanotubos/química , Peptídeos Cíclicos/química , Animais , Linhagem Celular Tumoral , Humanos , Masculino , Metacrilatos/farmacocinética , Difração de Nêutrons , Peptídeos Cíclicos/sangue , Peptídeos Cíclicos/farmacocinética , Polímeros/síntese química , Polímeros/química , Ratos Sprague-Dawley , Espalhamento de Radiação , Distribuição Tecidual
8.
Nucl Med Biol ; 58: 59-66, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29413458

RESUMO

BACKGROUND: For the evaluation of macromolecular drug delivery systems suitable pre-clinical monitoring of potential nanocarrier systems is needed. In this regard, both short-term as well as long-term in vivo tracking is crucial to understand structure-property relationships of polymer carrier systems and their resulting pharmacokinetic profile. Based on former studies revealing favorable in vivo characteristics for 18F-labeled random (ran) copolymers consisting of N-(2-hydroxypropyl)methacrylamide (HPMA) and lauryl methacrylate (LMA) - including prolonged plasma half-life as well as enhanced tumor accumulation - the presented work focuses on their long-term investigation in the living organism. METHODS: In this respect, four different HPMA-based polymers (homopolymers as well as random copolymers with LMA as hydrophobic segment) were synthesized and subsequent radioactive labeling was accomplished via the longer-lived radioisotope 131I. In vivo results, concentrating on the pharmacokinetics of a high molecular weight HPMA-ran-LMA copolymer, were obtained by means of biodistribution and metabolism studies in the Walker 256 mammary carcinoma model over a time-span of up to three days. Besides, a direct comparison with the 18F-radiolabeled polymer was drawn. To consider physico-chemical differences between the differently labeled polymer (18F or 131I) on the critical micelle concentration (CMC) and the size of the polymeric micelles, those properties were determined using the 19F- or 127I-functionalized polymer. Special emphasis was laid on the time-dependent correlation between blood circulation properties and corresponding tumor accumulation, particularly regarding the enhanced permeability and retention (EPR) effect. RESULTS: Studies revealed, at first, differences in the short time (2h) body distribution, despite the very similar properties (molecular structure, CMC and size of the micellar aggregates) of the non-radioactive 19F- and 127I-functionalized polymers. Long-term investigations with the 131I-labeled polymer demonstrated that, despite a polymer clearance from the blood within 72h, there was still an increase in tumor uptake observed over time. Regarding the stability of the 131I-label, ex vivo biodistribution experiments, considering the uptake in the thyroid, indicated low metabolism rates. CONCLUSION: The observed in vivo characteristics strongly underline the EPR effect. The findings illustrate the need to combine information of different labeling approaches and in vivo evaluation techniques to generate an overall pharmacokinetic picture of potential nanocarriers in the pre-clinical setting. ADVANCES IN KNOWLEDGE AND IMPLICATIONS FOR PATIENTS: The in vivo behavior of the investigated HPMA-ran-LMA copolymer demonstrates great potential in terms of an effective accumulation in the tumor.


Assuntos
Radioisótopos do Iodo , Ácidos Láuricos/química , Ácidos Láuricos/farmacocinética , Metacrilatos/química , Metacrilatos/farmacocinética , Polímeros/química , Polímeros/farmacocinética , Animais , Linhagem Celular Tumoral , Marcação por Isótopo , Ácidos Láuricos/metabolismo , Metacrilatos/metabolismo , Polímeros/metabolismo , Ratos , Distribuição Tecidual
9.
Int J Biol Macromol ; 110: 167-178, 2018 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-29462679

RESUMO

The aim of the present study was to develop a novel pH sensitive gelatin methacrylate hydrogel for the controlled delivery of Gentamicin (GS) and Ampicillin (Amp). GS and Amp having synergistic activity is effective in killing multi drug resistant bacteria. The hydrogel was well characterized using FTIR, XRD and SEM techniques. The drug loading and encapsulation efficiency were found to be 85.0 and 77.0% for GS, 79.0 and 88.0% for Amp, respectively. The in vitro swelling, degradation and release profiles suggest the pH dependent behaviour of hydrogel. DPPH Assay confirmed the role of 2-amino guanidine in nullifying the side effect of GS and inhibition percentage of DDLHG is found to be 85.0%. Antimicrobial studies revealed the increased efficiency of the drug combination in killing bacteria.


Assuntos
Ampicilina , Antibacterianos , Escherichia coli/crescimento & desenvolvimento , Gelatina , Gentamicinas , Hidrogéis , Metacrilatos , Staphylococcus aureus/crescimento & desenvolvimento , Ampicilina/química , Ampicilina/farmacocinética , Ampicilina/farmacologia , Animais , Antibacterianos/química , Antibacterianos/farmacocinética , Antibacterianos/farmacologia , Linhagem Celular , Preparações de Ação Retardada/química , Preparações de Ação Retardada/farmacocinética , Preparações de Ação Retardada/farmacologia , Gelatina/química , Gelatina/farmacocinética , Gelatina/farmacologia , Gentamicinas/química , Gentamicinas/farmacocinética , Gentamicinas/farmacologia , Hidrogéis/química , Hidrogéis/farmacocinética , Hidrogéis/farmacologia , Concentração de Íons de Hidrogênio , Metacrilatos/química , Metacrilatos/farmacocinética , Metacrilatos/farmacologia , Camundongos
10.
Mol Pharm ; 14(5): 1418-1428, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28343392

RESUMO

N-(2-Hydroxypropyl) methacrylamide (HPMA) copolymers were previously found to represent a versatile delivery platform for the early detection and intervention of orthopedic implant loosening. In this article, we evaluated the impact of different structural parameters of the HPMA copolymeric system (e.g., molecular weight (MW), drug content) to its pharmacokinetics and biodistribution (PK/BD) profile. Using 125I, Alexa Fluor 488, and IRDye 800 CW-labeled HPMA copolymer-dexamethasone (P-Dex) conjugates with different MW and dexamethasone (Dex) contents, we found the MW to be the predominant impact factor on the PK/BD profiles of P-Dex, with Dex content as a secondary impact factor. In gamma counter-based PK/BD studies, increased MW of P-Dex reduced elimination, leading to lower clearance, longer half-life, and higher systemic exposure (AUC and MRT). In the semiquantitative live animal optical imaging evaluation, the distribution of P-Dex to the peri-implant inflammatory lesion increased when MW was increased. This result was further confirmed by FACS analyses of cells isolated from peri-implant regions after systemic administration of Alexa Fluor 488-labeled P-Dex. Since the in vitro cell culture study suggested that the internalization of P-Dex by macrophages is generally independent of P-Dex's MW and Dex content, the impact of the MW and Dex content on its PK/BD profile was most likely exerted at physiological and pathophysiological levels rather than at the cellular level. In both gamma counter-based PK/BD analyses and semiquantitative optical imaging analyses, P-Dex with 6 wt % Dex content showed fast clearance. Dynamic light scattering analyses unexpectedly revealed significant molecular aggregation of P-Dex at this Dex content level. The underlining mechanisms of the aggregation and fast in vivo clearance of the P-Dex warrant further investigation.


Assuntos
Dexametasona/química , Metacrilatos/química , Polímeros/química , Animais , Citometria de Fluxo , Masculino , Metacrilatos/farmacocinética , Camundongos , Microscopia de Fluorescência , Polímeros/farmacocinética
11.
Regul Toxicol Pharmacol ; 82: 39-47, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27825834

RESUMO

Anionic Methacrylate Copolymer (AMC) is a fully polymerized copolymer used in the pharmaceutical industry as an enteric/delayed-release coating to permit the pH-dependent release of active ingredients in the gastrointestinal tract from oral dosage forms. This function is of potential use for food supplements. Oral administration of radiolabeled copolymer to rats resulted in the detection of chemically unchanged copolymer in the feces, with negligible absorption (<0.1%). AMC is therefore determined not to be bioavailable. Within a genotoxicity test battery AMC did not show any evidence of genotoxicity in bacteria and mammalian cells. Furthermore, no genotoxic effects occurred in vivo within a micronucleus test. There would therefore appear to be no safety concerns under intended conditions of oral use for the discussed toxicological endpoints.


Assuntos
Excipientes/toxicidade , Metacrilatos/toxicidade , Ácidos Polimetacrílicos/toxicidade , Administração Oral , Animais , Disponibilidade Biológica , Excipientes/administração & dosagem , Excipientes/química , Excipientes/farmacocinética , Fezes/química , Feminino , Absorção Gastrointestinal , Masculino , Metacrilatos/administração & dosagem , Metacrilatos/química , Metacrilatos/farmacocinética , Camundongos , Micronúcleos com Defeito Cromossômico/induzido quimicamente , Testes para Micronúcleos , Mutagênese , Ácidos Polimetacrílicos/administração & dosagem , Ácidos Polimetacrílicos/química , Ácidos Polimetacrílicos/farmacocinética , Ratos Sprague-Dawley , Medição de Risco , Toxicocinética
12.
J Pharm Sci ; 105(11): 3351-3358, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27653554

RESUMO

The formulation and the coating composition of biopolymeric pellets containing ranolazine were studied to improve their technological and biopharmaceutical properties. Eudragit L100 (EU L100) and Eudragit L30 D-55-coated alginate and alginate-hydroxypropylcellulose (HPC) pellets were prepared by ionotropic gelation using 3 concentrations of HPC (0.50%, 0.65%, and 1.00% wt/wt) and applying different percentages (5%, 10%, 20%, and 30% wt/wt) of coating material. The uncoated pellets were regular in shape and had mean diameter between 1490 and 1570 µm. The rate and the entity of the swelling process were affected by the polymeric composition: increasing the HPC concentration, the structure of the pellets became more compact and slowed down the penetration of fluids. Coated alginate-HPC formulations were able to control the drug release at neutral pH: a higher quantity of HPC in the system determined a slower release of the drug. The nature of the coating polymer and the coating level applied affected the drug release in acidic environment: EU L100 gave better performance than Eudragit L30 D-55 and the best coating level was 20%. The pellets containing 0.65% of HPC and coated with 20% EU L100 represented the best formulation, able to limit the drug release in acidic environment and to control it at pH 6.8.


Assuntos
Alginatos/química , Celulose/análogos & derivados , Química Farmacêutica/métodos , Implantes de Medicamento/química , Ranolazina/química , Alginatos/farmacocinética , Fármacos Cardiovasculares/química , Fármacos Cardiovasculares/farmacocinética , Celulose/química , Celulose/farmacocinética , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Composição de Medicamentos , Implantes de Medicamento/farmacocinética , Liberação Controlada de Fármacos , Ácido Glucurônico/química , Ácido Glucurônico/farmacocinética , Ácidos Hexurônicos/química , Ácidos Hexurônicos/farmacocinética , Metacrilatos/química , Metacrilatos/farmacocinética , Polímeros/química , Polímeros/farmacocinética , Ácidos Polimetacrílicos/química , Ácidos Polimetacrílicos/farmacocinética , Ranolazina/farmacocinética
13.
ACS Appl Mater Interfaces ; 8(28): 17775-17783, 2016 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-27378419

RESUMO

Intracellular delivery vehicles comprised of methacrylated alginate (Alg-MA) were developed for the internalization and release of doxorubicin hydrochloride (DOX). Alg-MA was synthesized via an anhydrous reaction, and a mixture of Alg-MA and DOX was formed into sub-microspheres using a water/oil emulsion. Covalently cross-linked sub-microspheres were formed via exposure to green light, in order to investigate effects of cross-linking on drug release and cell internalization, compared to traditional techniques, such as ultraviolet (UV) light irradiation. Cross-linking was performed using light exposure alone or in combination with ionic cross-linking using calcium chloride (CaCl2). Alg-MA sub-microsphere diameters were between 88 and 617 nm, and ζ-potentials were between -20 and -37 mV. Using human lung epithelial carcinoma cells (A549) as a model, cellular internalization was confirmed using flow cytometry; different sub-microsphere formulations varied the efficiency of internalization, with UV-cross-linked sub-microspheres achieving the highest internalization percentages. While blank (nonloaded) Alg-MA submicrospheres were noncytotoxic to A549 cells, DOX-loaded sub-microspheres significantly reduced mitochondrial activity after 5 days of culture. Photo-cross-linked Alg-MA sub-microspheres may be a potential chemotherapeutic delivery system for cancer treatment.


Assuntos
Alginatos/química , Doxorrubicina/química , Sistemas de Liberação de Medicamentos/métodos , Metacrilatos/química , Células A549 , Alginatos/administração & dosagem , Alginatos/farmacocinética , Antibióticos Antineoplásicos/administração & dosagem , Antibióticos Antineoplásicos/química , Antibióticos Antineoplásicos/farmacocinética , Carcinoma/tratamento farmacológico , Carcinoma/metabolismo , Carcinoma/patologia , Proliferação de Células/efeitos dos fármacos , Doxorrubicina/administração & dosagem , Portadores de Fármacos/administração & dosagem , Portadores de Fármacos/química , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Metacrilatos/administração & dosagem , Metacrilatos/farmacocinética , Microesferas
14.
Nanoscale ; 8(3): 1437-50, 2016 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-26677141

RESUMO

The tuning of the structure of nanocarriers with fast acidic-degradation rate and high stability in physiological conditions or during storage is under intensive study. In this context, a kind of dual-pH responsive micelles with well-balanced stability, that is, fast hydrolysis in acidic environment and stability towards blood drug release at 7.4 were developed. This is achieved by the self-assembly of micelles of poly(ethylene glycol)-b-(poly ε-caprolactone-g-poly(2,2-dimethyl-1,3-dioxolane-4-yl)methylacrylate-co-2(dimethylamino)ethyl methacrylate) (mPEG-b-(PCL-g-P(DA-co-DMAEMA))) copolymers with two inert pH responsive moieties of DA and DMAEMA. The fast synergistic acid-triggered disassembly and high stability at physiological condition of the mPEG-b-(PCL-g-P(DA-co-DMAEMA)) micelles was verified by (1)H NMR, particle size and optical stability measurements, which was induced and mediated by the synergistic pH responses of the hydrolysis of the ketal in DA moieties and the switch in solubility of tertiary amino moieties (DMAEMA) under mild acid conditions. It was observed that the hydrolysis rate of the ketal could be promoted by increasing the content of DMAEMA moieties. The fast intracellular disassembly of the micelles depending on the contents of DMAEMA moieties was also traced by fluorescence resonance energy transfer (FRET). The in vitro release studies showed that the release of DOX from mPEG-b-(PCL-g-P(DA-co-DMAEMA)) micelles at mild acid condition was significantly accelerated by increasing the content of DMAEMA moieties, while greatly impeding drug release in physiological conditions. The antitumor activity of DOX-loaded micelles was studied in MCF-7 and 4T1 cells in vitro and in 4T1 tumor-bearing Balb-c mice in vivo. The results indicated the DOX-loaded micelles with higher content of DMAEMA moieties exhibited enhanced anticancer activity. Collectively, the synergistic dual-pH responsive design of mPEG-b-(PCL-g-P(DA-co-DMAEMA)) micelles provided a new route for improving anticancer drug delivery efficiency.


Assuntos
Doxorrubicina , Micelas , Neoplasias Experimentais/tratamento farmacológico , Animais , Preparações de Ação Retardada/química , Preparações de Ação Retardada/farmacocinética , Preparações de Ação Retardada/farmacologia , Doxorrubicina/química , Doxorrubicina/farmacocinética , Doxorrubicina/farmacologia , Feminino , Humanos , Concentração de Íons de Hidrogênio , Células MCF-7 , Metacrilatos/química , Metacrilatos/farmacocinética , Metacrilatos/farmacologia , Camundongos , Camundongos Endogâmicos BALB C , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia
15.
J Mater Sci Mater Med ; 27(2): 28, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26704545

RESUMO

In this study, polyethersulfone/poly (glycidyl methacrylate) particles are prepared via in situ cross-linked polymerization coupled with a phase inversion technique. The surfaces of these particles are then further modified by grafting amino groups using tetraethylenepentamine, dethylenetriamine, ethylenediamine, or 1,6-hexanediamine for the removal of bilirubin. The particles are characterized by Flourier transform infrared spectroscopy, thermogravimetric analysis, and scanning electron microscopy. Batch adsorption experiments are performed to verify the adsorption capability, and the effect of bilirubin initial concentration, bovine serum albumin concentration, and solution ionic strength on the adsorption is also investigated. In addition, both adsorption kinetic and isotherm models are applied to analyze the adsorption process of bilirubin, and a particle column is used to further study the bilirubin removal ability.To prove that the method was a universal portal to prepare functional particles, polysulfone, polystyrene, and poly(vinylidene fluoride) based functional particles were also prepared and used for the removal of bilirubin. This study and the results indicated that the particles had a great potential to be used in hemoperfusion treatment for hyperbilirubinemia.


Assuntos
Bilirrubina/isolamento & purificação , Hemoperfusão/instrumentação , Polímeros/química , Sulfonas/química , Adsorção , Animais , Bilirrubina/sangue , Bilirrubina/farmacocinética , Bovinos , Compostos de Epóxi/química , Compostos de Epóxi/farmacocinética , Hemoperfusão/métodos , Humanos , Hiperbilirrubinemia/sangue , Hiperbilirrubinemia/terapia , Teste de Materiais , Metacrilatos/química , Metacrilatos/farmacocinética , Microesferas , Polímeros/farmacocinética , Soroalbumina Bovina/química , Soroalbumina Bovina/metabolismo , Sulfonas/farmacocinética , Temperatura
16.
Drug Deliv ; 23(1): 285-96, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-24865288

RESUMO

Somatostatin receptor 2 (SSTR2), specifically over-expressed on many tumor cells, is a potential receipt for active targeting in cancer therapy. In the present study, octreotide (Oct), which had high affinity to SSTR2, was attached to N-(2-hydroxypropyl) methacrylamide (HPMA) polymeric system to enhance the antitumor efficiency of the anticancer drug doxorubicin (DOX). Two kinds of cell lines (HepG2 and A549), which overexpress SSTR2, were chosen as cell models. Compared with non-modified conjugates, Oct-modified conjugates exhibited superior cytotoxicity and intracellular uptake on both HepG2 and A549 cell lines. This might be due to the mechanism of receptor-mediated endocytosis. Subsequently, the in vivo biodistribution and antitumor activity evaluations showed that Oct modification significantly improved the tumor accumulation and antitumor efficacy of HPMA copolymer conjugates in SSTR2 over-expressed Kunming mice bearing H22 tumor xenografts. In summary, Oct-modified HPMA polymer-DOX conjugates might be a promising system for the treatment of SSTR2 over-expressed cancers.


Assuntos
Acrilamidas/farmacologia , Antibióticos Antineoplásicos/farmacologia , Doxorrubicina/farmacologia , Metacrilatos/química , Octreotida/química , Receptores de Somatostatina/efeitos dos fármacos , Acrilamidas/farmacocinética , Animais , Antibióticos Antineoplásicos/farmacocinética , Linhagem Celular Tumoral , Doxorrubicina/farmacocinética , Sistemas de Liberação de Medicamentos , Humanos , Masculino , Metacrilatos/farmacocinética , Camundongos , Octreotida/farmacocinética , Receptores de Somatostatina/metabolismo , Distribuição Tecidual , Ensaios Antitumorais Modelo de Xenoenxerto
17.
J Biomed Mater Res B Appl Biomater ; 104(6): 1161-9, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-26061346

RESUMO

Hydrogels are widely used in the biomedical field. Their main purposes are either to deliver biological active agents or to temporarily fill a defect until they degrade and are followed by new host tissue formation. However, for this latter application, biodegradable hydrogels are usually not capable to sustain any significant load. The development of biodegradable hydrogels presenting load-bearing capabilities would open new possibilities to utilize this class of material in the biomedical field. In this work, an original formulation of biodegradable photo-crosslinked hydrogels based on hydroxyethyl methacrylate (HEMA) is presented. The hydrogels consist of short-length poly(2-hydroxyethyl methacrylate) (PHEMA) chains in a star shape structure, obtained by introducing a tetra-functional chain transfer agent in the backbone of the hydrogels. They are cross-linked with a biodegradable N,O-dimethacryloyl hydroxylamine (DMHA) molecule sensitive to hydrolytic cleavage. We characterized the degradation properties of these hydrogels submitted to mechanical loadings. We showed that the developed hydrogels undergo long-term degradation and specially meet the two essential requirements of a biodegradable hydrogel suitable for load bearing applications: enhanced mechanical properties and low molecular weight degradation products. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 1161-1169, 2016.


Assuntos
Plásticos Biodegradáveis , Condrócitos/metabolismo , Hidrogéis , Metacrilatos , Plásticos Biodegradáveis/química , Plásticos Biodegradáveis/farmacocinética , Plásticos Biodegradáveis/farmacologia , Células Cultivadas , Condrócitos/citologia , Humanos , Hidrogéis/química , Hidrogéis/farmacocinética , Hidrogéis/farmacologia , Metacrilatos/química , Metacrilatos/farmacocinética , Metacrilatos/farmacologia , Poli-Hidroxietil Metacrilato/química , Poli-Hidroxietil Metacrilato/farmacocinética , Poli-Hidroxietil Metacrilato/farmacologia
18.
Biomacromolecules ; 16(11): 3519-29, 2015 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-26451914

RESUMO

Despite the tremendous progress that photothermal therapy (PTT) has recently achieved, it still has a long way to go to gain the effective targeted photothermal ablation of tumor cells. Driven by this need, we describe a new class of targeted photothermal therapeutic agents for cancer cells with pH responsive bioimaging using near-infrared dye (NIR) IR825, conjugated poly(ethylene glycol)-g-poly(dimethylaminoethyl methacrylate) (PEG-g-PDMA, PgP), and hyaluronic acid (HA) anchored reduced graphene oxide (rGO) hybrid nanoparticles. The obtained rGO nanoparticles (PgP/HA-rGO) showed pH-dependent fluorescence emission and excellent near-infrared (NIR) irradiation of cancer cells targeted in vitro to provide cytotoxicity. Using intravenously administered PTT agents, the time-dependent in vivo tumor target accumulation was exactly defined, presenting eminent photothermal conversion at 4 and 8 h post-injection, which was demonstrated from the ex vivo biodistribution of tumors. These tumor environment responsive hybrid nanoparticles generated photothermal heat, which caused dominant suppression of tumor growth. The histopathological studies obtained by H&E staining demonstrated complete healing from malignant tumor. In an area of limited successes in cancer therapy, our translation will pave the road to design stimulus environment responsive targeted PTT agents for the safe eradication of devastating cancer.


Assuntos
Grafite/química , Nanopartículas/química , Neoplasias/terapia , Fototerapia/métodos , Animais , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Linhagem Celular Tumoral , Cães , Grafite/farmacocinética , Humanos , Ácido Hialurônico/química , Ácido Hialurônico/farmacocinética , Concentração de Íons de Hidrogênio , Células Madin Darby de Rim Canino , Metacrilatos/química , Metacrilatos/farmacocinética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Nanocompostos/química , Polietilenoglicóis/química , Polietilenoglicóis/farmacocinética , Espectroscopia de Luz Próxima ao Infravermelho , Distribuição Tecidual
19.
Nanoscale ; 7(39): 16399-416, 2015 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-26394168

RESUMO

Responsive block copolymer micelles emerging as promising imaging and drug delivery systems show high stability and on-demand drug release activities. Herein, we developed self-assembled pH-responsive NIR emission micelles entrapped with doxorubicin (DOX) within the cores by the electrostatic interactions for fluorescence imaging and chemotherapy applications. The block copolymer, poly(methacrylic acid)-block-poly[(poly(ethylene glycol) methyl ether methacrylate)-co-boron dipyrromethene derivatives] (PMAA-b-P(PEGMA-co-BODIPY), was synthesized via reversible addition-fragmentation chain transfer (RAFT) polymerization, and the molecular weight distribution of this copolymer was narrow (Mw/Mn = 1.31). The NIR fluorescence enhancement induced by the phenol/phenolate interconversion equilibrium works as a switch in response to the intracellular pH fluctuations. DOX-loaded PMAA-b-P(PEGMA-co-BODIPY) micelles can detect the physiological pH fluctuations with a pKa near physiological conditions (∼7.52), and showed pH-responsive collapse and an obvious acid promoted anticancer drug release behavior (over 58.8-62.8% in 10 h). Real-time imaging of intracellular pH variations was performed and a significant chemotherapy effect was demonstrated against HeLa cells.


Assuntos
Compostos de Boro , Doxorrubicina , Micelas , Imagem Óptica , Compostos de Boro/química , Compostos de Boro/farmacocinética , Compostos de Boro/farmacologia , Preparações de Ação Retardada/química , Preparações de Ação Retardada/farmacocinética , Preparações de Ação Retardada/farmacologia , Doxorrubicina/química , Doxorrubicina/farmacocinética , Doxorrubicina/farmacologia , Células HeLa , Humanos , Concentração de Íons de Hidrogênio , Metacrilatos/química , Metacrilatos/farmacocinética , Metacrilatos/farmacologia , Polietilenoglicóis/química , Polietilenoglicóis/farmacocinética , Polietilenoglicóis/farmacologia , Ácidos Polimetacrílicos/química , Ácidos Polimetacrílicos/farmacocinética , Ácidos Polimetacrílicos/farmacologia
20.
J Control Release ; 216: 158-68, 2015 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-26277064

RESUMO

Polymer-based nanoparticles are promising drug delivery systems allowing the development of new drug and treatment strategies with reduced side effects. However, it remains a challenge to screen for new and effective nanoparticle-based systems in vitro. Important factors influencing the behavior of nanoparticles in vivo cannot be simulated in screening assays in vitro, which still represent the main tools in academic research and pharmaceutical industry. These systems have serious drawbacks in the development of nanoparticle-based drug delivery systems, since they do not consider the highly complex processes influencing nanoparticle clearance, distribution, and uptake in vivo. In particular, the transfer of in vitro nanoparticle performance to in vivo models often fails, demonstrating the urgent need for novel in vitro tools that can imitate aspects of the in vivo situation more accurate. Dynamic cell culture, where cells are cultured and incubated in the presence of shear stress has the potential to bridge this gap by mimicking key-features of organs and vessels. Our approach implements and compares a chip-based dynamic cell culture model to the common static cell culture and mouse model to assess its capability to predict the in vivo success more accurately, by using a well-defined poly((methyl methacrylate)-co-(methacrylic acid)) and poly((methyl methacrylate)-co-(2-dimethylamino ethylmethacrylate)) based nanoparticle library. After characterization in static and dynamic in vitro cell culture we were able to show that physiological conditions such as cell-cell communication of co-cultured endothelial cells and macrophages as well as mechanotransductive signaling through shear stress significantly alter cellular nanoparticle uptake. In addition, it could be demonstrated by using dynamic cell cultures that the in vivo situation is simulated more accurately and thereby can be applied as a novel system to investigate the performance of nanoparticle systems in vivo more reliable.


Assuntos
Metacrilatos/metabolismo , Nanopartículas/metabolismo , Animais , Comunicação Celular , Células Cultivadas , Técnicas de Cocultura , Sistemas de Liberação de Medicamentos , Agregação Eritrocítica/efeitos dos fármacos , Hemólise/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Macrófagos/metabolismo , Metacrilatos/efeitos adversos , Metacrilatos/farmacocinética , Camundongos , Nanopartículas/efeitos adversos , Tamanho da Partícula , Polímeros/química , Resistência ao Cisalhamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA