Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Eur J Pharmacol ; 964: 176291, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38158115

RESUMO

OBJECTIVE: To identify therapeutic targets for malignant rhabdoid tumors of kidney (MRTK) and to investigate the effects and underlying mechanism of doxycycline hydrochloride on these tumors. METHODS: Gene expression and clinical data of MRTK were retrieved from the TARGET database. Differentially expressed genes (DEGs) and prognostic-related genes (PRGs) were selected through a combination of statistical analyses. The functional roles of MMP17 and MMP1 were elucidated through RNA overexpression and intervention experiments. Furthermore, in vitro and in vivo studies provided evidence for the inhibitory effect of doxycycline hydrochloride on MRTK. Additionally, transcriptome sequencing was employed to investigate the underlying molecular mechanisms. RESULTS: 3507 DEGs and 690 PRGs in MRTK were identified. Among these, we focused on 41 highly expressed genes associated with poor prognosis and revealed their involvement in extracellular matrix regulatory pathways. Notably, MMP17 and MMP1 stood out as particularly influential genes. When these genes were knocked out, a significant inhibition of proliferation, invasion and migration was observed in G401 cells. Furthermore, our study explored the impact of the matrix metalloproteinase inhibitor, doxycycline hydrochloride, on the malignant progression of G401 both in vitro and in vivo. Combined with sequencing data, the results indicated that doxycycline hydrochloride effectively inhibited MRTK progression, due to its ability to suppress the expression of MMP17 and MMP1 through the PI3K-Akt signaling pathway. CONCLUSION: Doxycycline hydrochloride inhibits the expression of MMP17 and MMP1 through the PI3K-Akt signaling pathway, thereby inhibiting the malignant progression of MRTK in vivo and in vitro.


Assuntos
Doxiciclina , Neoplasias Renais , Metaloproteinase 17 da Matriz , Tumor Rabdoide , Humanos , Doxiciclina/farmacologia , Doxiciclina/uso terapêutico , Rim/patologia , Neoplasias Renais/tratamento farmacológico , Neoplasias Renais/patologia , Metaloproteinase 1 da Matriz/genética , Metaloproteinase 1 da Matriz/metabolismo , Metaloproteinase 17 da Matriz/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Tumor Rabdoide/tratamento farmacológico , Tumor Rabdoide/patologia , Transdução de Sinais
2.
Front Immunol ; 14: 1243528, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37869014

RESUMO

Intestinal epithelial homeostasis is maintained by intrinsic and extrinsic signals. The extrinsic signals include those provided by mesenchymal cell populations that surround intestinal crypts and is further facilitated by the extracellular matrix (ECM), which is modulated by proteases such as matrix metalloproteinases (MMPs). Extrinsic signals ensure an appropriate balance between intestinal epithelial proliferation and differentiation. This study explores the role of MMP17, which is preferentially expressed by smooth muscle cells in the intestine, in intestinal homeostasis and during immunity to infection. Mice lacking MMP17 expressed high levels of goblet-cell associated genes and proteins, such as CLCA1 and RELM-ß, which are normally associated with immune responses to infection. Nevertheless, Mmp17 KO mice did not have altered resistance during a bacterial Citrobacter rodentium infection. However, when challenged with a low dose of the helminth Trichuris muris, Mmp17 KO mice had increased resistance, without a clear role for an altered immune response during infection. Mechanistically, we did not find changes in traditional modulators of goblet cell effectors such as the NOTCH pathway or specific cytokines. We found MMP17 expression in smooth muscle cells as well as lamina propria cells such as macrophages. Together, our data suggest that MMP17 extrinsically alters goblet cell maturation which is sufficient to alter clearance in a helminth infection model.


Assuntos
Metaloproteinase 17 da Matriz , Tricuríase , Animais , Camundongos , Colo , Células Caliciformes/metabolismo , Metaloproteinase 17 da Matriz/metabolismo , Infecção Persistente , Trichuris
3.
Int J Mol Sci ; 24(12)2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37373092

RESUMO

MT4-MMP (or MMP-17) belongs to the membrane-type matrix metalloproteinases (MT-MMPs), a distinct subset of the MMP family that is anchored to the cell surface, in this case by a glycosylphosphatidylinositol (GPI) motif. Its expression in a variety of cancers is well documented. However, the molecular mechanisms by which MT4-MMP contributes to tumor development need further investigation. In this review, we aim to summarize the contribution of MT4-MMP in tumorigenesis, focusing on the molecular mechanisms triggered by the enzyme in tumor cell migration, invasiveness, and proliferation, in the tumor vasculature and microenvironment, as well as during metastasis. In particular, we highlight the putative substrates processed and signaling cascades activated by MT4-MMP that may underlie these malignancy processes and compare this with what is known about its role during embryonic development. Finally, MT4-MMP is a relevant biomarker of malignancy that can be used for monitoring cancer progression in patients as well as a potential target for future therapeutic drug development.


Assuntos
Metaloproteinase 17 da Matriz , Neoplasias , Humanos , Metaloproteinase 17 da Matriz/metabolismo , Neoplasias/genética , Metaloproteinases da Matriz Associadas à Membrana/metabolismo , Microambiente Tumoral
4.
Medicine (Baltimore) ; 101(34): e30279, 2022 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-36042626

RESUMO

Ovarian cancer has the highest fatality rate among female reproductive system cancers, which is due to lack of biomarker for diagnosis and prognosis. We aimed to evaluate the role of matrix metalloproteinase 17 (MMP17) in ovarian cancer tumorigenesis and prognosis. Based on the epithelial ovarian cancer (EOC) in The Cancer Genome Atlas database, we determined the expression of MMP17 using the Wilcoxon rank-sum test. The biological functions of MMP17 were evaluated using the Metascape database and Gene Set Enrichment Analysis. The association between MMP17 and immune cell infiltration was investigated by single sample Gene Set Enrichment Analysis. Logistic analysis was applied to study the correlation between MMP17 expression and clinicopathological characteristics. Finally, Cox regression analysis, Kaplan-Meier analysis, and nomograms were used to determine the predictive value of MMP17 on clinical outcomes in EOC patients. The expression of MMP17 was much higher in EOC patients than in pericarcinomatous tissues (P < .001). MMP17-associated differentially expressed genes were significantly enriched in cell extracellular matrix (ECM) degrading and corresponding pathways in the high MMP17 expression phenotype. MMP17 has a high sensitivity and specificity for EOC diagnosis, with an area under the curve of 0.988. MMP17 expression was found to be an independent risk factor for overall survival (hazard ratio [HR]: 1.488, P < .001), progression-free interval (HR: 1.347, P < .01), and disease-specific survival (HR: 1.548, P < .01). Increased MMP17 expression in EOC may contribute to carcinogenesis by degrading ECM and provide diagnostic and prognostic value for clinical outcomes.


Assuntos
Carcinoma Epitelial do Ovário , Metaloproteinase 17 da Matriz , Neoplasias Epiteliais e Glandulares , Neoplasias Ovarianas , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Carcinoma Epitelial do Ovário/diagnóstico , Carcinoma Epitelial do Ovário/patologia , Feminino , Humanos , Estimativa de Kaplan-Meier , Metaloproteinase 17 da Matriz/metabolismo , Metaloproteinases da Matriz Associadas à Membrana , Neoplasias Ovarianas/diagnóstico , Neoplasias Ovarianas/patologia , Prognóstico
5.
Sci Rep ; 12(1): 5938, 2022 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-35396524

RESUMO

Vascular smooth muscle cell (VSMC) proliferation is essential for arteriogenesis to restore blood flow after artery occlusion, but the mechanisms underlying this response remain unclear. Based on our previous findings showing increased VSMC proliferation in the neonatal aorta of mice lacking the protease MT4-MMP, we aimed at discovering new players in this process. We demonstrate that MT4-MMP absence boosted VSMC proliferation in vitro in response to PDGF-BB in a cell-autonomous manner through enhanced p38 MAPK activity. Increased phospho-p38 in basal MT4-MMP-null VSMCs augmented the rate of mitochondrial degradation by promoting mitochondrial morphological changes through the co-activator PGC1α as demonstrated in PGC1α-/- VSMCs. We tested the in vivo implications of this pathway in a novel conditional mouse line for selective MT4-MMP deletion in VSMCs and in mice pre-treated with the p38 MAPK activator anisomycin. Priming of p38 MAPK activity in vivo by the absence of the protease MT4-MMP or by anisomycin treatment led to enhanced arteriogenesis and improved flow recovery after femoral artery occlusion. These findings may open new therapeutic opportunities for peripheral vascular diseases.


Assuntos
Metaloproteinase 17 da Matriz , Proteínas Quinases p38 Ativadas por Mitógeno , Animais , Anisomicina , Proliferação de Células/fisiologia , Células Cultivadas , Metaloproteinase 17 da Matriz/metabolismo , Camundongos , Dinâmica Mitocondrial , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
6.
Nat Commun ; 12(1): 6741, 2021 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-34795242

RESUMO

Smooth muscle is an essential component of the intestine, both to maintain its structure and produce peristaltic and segmentation movements. However, very little is known about other putative roles that smooth muscle cells may have. Here, we show that smooth muscle cells may be the dominant suppliers of BMP antagonists, which are niche factors essential for intestinal stem cell maintenance. Furthermore, muscle-derived factors render epithelium reparative and fetal-like, which includes heightened YAP activity. Mechanistically, we find that the membrane-bound matrix metalloproteinase MMP17, which is exclusively expressed by smooth muscle cells, is required for intestinal epithelial repair after inflammation- or irradiation-induced injury. Furthermore, we propose that MMP17 affects intestinal epithelial reprogramming after damage indirectly by cleaving diffusible factor(s) such as the matricellular protein PERIOSTIN. Together, we identify an important signaling axis that establishes a role for smooth muscle cells as modulators of intestinal epithelial regeneration and the intestinal stem cell niche.


Assuntos
Metaloproteinase 17 da Matriz/metabolismo , Músculo Liso/metabolismo , Regeneração/fisiologia , Nicho de Células-Tronco/fisiologia , Animais , Humanos , Mucosa Intestinal/metabolismo , Intestinos/citologia , Intestinos/patologia , Transdução de Sinais/fisiologia , Células-Tronco/metabolismo
7.
Nat Commun ; 9(1): 910, 2018 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-29500407

RESUMO

Matrix metalloproteinases are involved in vascular remodeling. Little is known about their immune regulatory role in atherosclerosis. Here we show that mice deficient for MT4-MMP have increased adherence of macrophages to inflamed peritonea, and larger lipid deposits and macrophage burden in atherosclerotic plaques. We also demonstrate that MT4-MMP deficiency results in higher numbers of patrolling monocytes crawling and adhered to inflamed endothelia, and the accumulation of Mafb+ apoptosis inhibitor of macrophage (AIM)+ macrophages at incipient atherosclerotic lesions in mice. Functionally, MT4-MMP-null Mafb+AIM+ peritoneal macrophages express higher AIM and scavenger receptor CD36, are more resistant to apoptosis, and bind acLDL avidly, all of which contribute to atherosclerosis. CCR5 inhibition alleviates these effects by hindering the enhanced recruitment of MT4-MMP-null patrolling monocytes to early atherosclerotic lesions, thus blocking Mafb+AIM+ macrophage accumulation and atherosclerosis acceleration. Our results suggest that MT4-MMP targeting may constitute a novel strategy to boost patrolling monocyte activity in early inflammation.


Assuntos
Aterosclerose/enzimologia , Aterosclerose/patologia , Metaloproteinase 17 da Matriz/deficiência , Monócitos/metabolismo , Animais , Antígeno CD11b/metabolismo , Humanos , Macrófagos Peritoneais/metabolismo , Fator de Transcrição MafB/metabolismo , Masculino , Metaloproteinase 17 da Matriz/metabolismo , Camundongos Endogâmicos C57BL , Placa Aterosclerótica/metabolismo , Placa Aterosclerótica/patologia , Receptores CCR5/metabolismo , Receptores Depuradores/metabolismo
8.
Mol Med Rep ; 17(4): 5454-5462, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29393373

RESUMO

The present study investigated the role of microRNA (miR)­27a in the development of arthritis and its mechanism of action. Initially, collagen was used to develop an in vivo rat model of arthritis. Changes in the miRs in the rats were analyzed. It was subsequently observed that miR­27a expression was reduced in patients with arthritis, compared with the control group. In the present study an in vitro miR­27a overexpression model of arthritis was established and it was observed that miR­27a increased the proliferation of osteoblast­like cells in vitro. miR­27a overexpression promoted osteogenic differentiation, increased alkaline phosphatase (ALP) and osteoporosis (OST) content, induced insulin­like growth factor binding protein-5 (IGFBP­5) protein expression, reduced inflammation and suppressed peroxisome proliferator­activated receptor Î³ (PPARγ) and matrix metalloproteinase-17 (MMP­17) protein expression in arthritis. However, miR­27a downregulation inhibited osteogenic differentiation, increased inflammation and PPARγ and MMP­17 protein expression and suppressed ALP and OST content in an in vitro model of arthritis. The PPARγ inhibitor reduced the function of miR­27a downregulation on arthritis. Therefore the results of the present study revealed that miR­27a regulates arthritis via PPARγ.


Assuntos
Artrite Experimental/genética , Regulação da Expressão Gênica , MicroRNAs/genética , PPAR gama/genética , Interferência de RNA , Animais , Artrite Experimental/metabolismo , Artrite Experimental/patologia , Diferenciação Celular , Linhagem Celular , Proliferação de Células/genética , Feminino , Humanos , Proteína 5 de Ligação a Fator de Crescimento Semelhante à Insulina/genética , Proteína 5 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo , Metaloproteinase 17 da Matriz/genética , Metaloproteinase 17 da Matriz/metabolismo , Osteoblastos/metabolismo , Osteogênese/genética , PPAR gama/antagonistas & inibidores , PPAR gama/metabolismo , Ratos
9.
Arch Med Res ; 49(7): 471-478, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30792164

RESUMO

BACKGROUND: MT4-MMP is a member of the metalloproteinases family, although with a controversial role in the extracellular matrix remodelation. Overexpression of this metalloproteinase has been observed in breast cancer and it has been suggested that it can regulate tumor growth and cancer progression. The mechanisms by which MT4-MMP participates in breast cancer includes tumor blood vessels desestabilization, the activation of an angiogenic switch, and increase of EGFR signaling. However, all the mechanisms by which MT4-MMP participates in breast cancer are still unknowns. AIM OF THE STUDY: To study if MT4-MMP could modulate the expression of microRNAs (miRNAs) related to biological processes associated with tumor formation and progression. METHODS: MT4-MMP was ectopically overexpressed in MDA-MB-231 cells and the miRNAs expression profile modulated by the metalloproteinase was studied by using miRNAs microarrays. Microarray data were analyzed with different tools to find the molecular and cellular functions related to the differentially expressed miRNAs. The clinical relevance of some miRNAs was analyzed using a public database. RESULTS: MT4-MMP overexpression in breast cancer cells induced the modulation of 65 miRNAs, which were related to the alteration of pathways dependent of p53, TGF-ß, MAPK, ErbB, and Wnt, as well as processes such as cell cycle, adherens junctions, apoptosis, and focal adhesion. Several of the upregulated miRNAs were associated to a worse prognosis in breast cancer patients. CONCLUSIONS: In breast cancer cells, the overexpression of MT4-MMP modulates the expression of miRNAs involved in several biological processes associated with tumor formation and progression and with clinical relevance.


Assuntos
Neoplasias da Mama/patologia , Metaloproteinase 17 da Matriz/metabolismo , MicroRNAs/biossíntese , Junções Aderentes/genética , Apoptose/genética , Ciclo Celular/genética , Linhagem Celular Tumoral , Feminino , Adesões Focais/genética , Humanos , MicroRNAs/genética , Prognóstico , Transdução de Sinais
10.
PLoS One ; 12(9): e0184767, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28926609

RESUMO

Matrix metalloproteinases (MMPs) constitute a large group of endoproteases that play important functions during embryonic development, tumor metastasis and angiogenesis by degrading components of the extracellular matrix. Within this family, we focused our study on Mt4-mmp (also called Mmp17) that belongs to a distinct subset that is anchored to the cell surface via a glycosylphosphatidylinositol (GPI) moiety and with the catalytic site exposed to the extracellular space. Information about its function and substrates is very limited to date, and little has been reported on its role in the developing embryo. Here, we report a detailed expression analysis of Mt4-mmp during mouse embryonic development by using a LacZ reporter transgenic mouse line. We showed that Mt4-mmp is detected from early stages of development to postnatal stages following a dynamic and restricted pattern of expression. Mt4-mmp was first detected at E8.5 limited to the intersomitic vascularization, the endocardial endothelium and the dorsal aorta. Mt4-mmpLacZ/+ cells were also observed in the neural crest cells, somites, floor plate and notochord at early stages. From E10.5, expression localized in the limb buds and persists during limb development. A strong expression in the brain begins at E12.5 and continues to postnatal stages. Specifically, staining was observed in the olfactory bulb, cerebral cortex, hippocampus, striatum, septum, dorsal thalamus and the spinal cord. In addition, LacZ-positive cells were also detected during eye development, initially at the hyaloid artery and later on located in the lens and the neural retina. Mt4-mmp expression was confirmed by quantitative RT-PCR and western blot analysis in some embryonic tissues. Our data point to distinct functions for this metalloproteinase during embryonic development, particularly during brain formation, angiogenesis and limb development.


Assuntos
Embrião de Mamíferos/metabolismo , Metaloproteinase 17 da Matriz/metabolismo , Animais , Embrião de Mamíferos/patologia , Desenvolvimento Embrionário/genética , Regulação da Expressão Gênica no Desenvolvimento , Genes Reporter , Imuno-Histoquímica , Metaloproteinase 17 da Matriz/genética , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Reação em Cadeia da Polimerase em Tempo Real
11.
J Mol Cell Cardiol ; 103: 11-21, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27993561

RESUMO

Hypertension is associated with hypertrophy and hyperplasia of smooth muscle cells (SMCs). Disintegrin and metalloproteinase 17 (ADAM17) is a membrane-bound enzyme reported to mediate SMC hypertrophy through activation of epidermal growth factor receptor (EGFR). We investigated the role of ADAM17 in Ang II-induced hypertension and end-organ damage. VSMC was isolated from mice with intact ADAM17 expression (Adam17f/f) or lacking ADAM17 in the SMC (Adam17f/f/CreSm22). Human VSMCs were isolated from the aorta of donors, and ADAM17 deletion was achieved by siRNA transfection. Ang II suppressed proliferation and migration of Adam17-deficient SMCs, but did not affect apoptosis (mouse and human), this was associated with reduced activation of EGFR and Erk1/2 signaling. Adam17f/f/CreSm22 and littermate Adam17f/f mice received saline or Ang II (Alzet pumps, 1.5mg/kg/d; 2 or 4weeks). Daily blood pressure measurement in conscious mice (telemetry) showed suppressed hypertension in Adam17f/f/CreSm22 mice during the first week of Ang II infusion, but by the second week, it become comparable to that in Adam17f/f mice. EGFR activation remained suppressed in Adam17f/f/CreSm22-Ang II arteries. Ex vivo vascular function and compliance assessed in mesenteric arteries were comparable between genotypes. Consistent with the transient protection against Ang II-induced hypertension, Adam17f/f/CreSm22 mice exhibited significantly lower cardiac hypertrophy and fibrosis, and renal fibrosis at 2weeks post-Ang II, however this protection was abolished by the fourth week of Ang II infusion. In conclusion, while Adam17-deficiency suppresses Ang II-induced SMC remodeling in vitro, in vivo Adam17-deficiency provides only a transient protective effect against Ang II-mediated hypertension and end-organ damage.


Assuntos
Angiotensina II/metabolismo , Desintegrinas/metabolismo , Hipertensão/etiologia , Hipertensão/metabolismo , Metaloproteinase 17 da Matriz/metabolismo , Miócitos de Músculo Liso/metabolismo , Angiotensina II/efeitos adversos , Animais , Apoptose , Modelos Animais de Doenças , Receptores ErbB/metabolismo , Humanos , Hipertensão/patologia , Masculino , Metaloproteinase 17 da Matriz/deficiência , Metaloproteinase 17 da Matriz/genética , Camundongos , Camundongos Knockout , Músculo Liso Vascular/metabolismo
12.
Ultrastruct Pathol ; 38(1): 26-33, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24134725

RESUMO

BACKGROUND: Thymoquinone (TQ) is the most abundant and active ingredient of Nigella sativa (NS) seeds. Its hepatic, renal, and cardiac protective effects have been demonstrated in animal models. Streptozotocin (STZ) is an antibiotic that is widely used experimentally as an agent capable of inducing insulin-dependent diabetes mellitus (IDDM), also known as type I diabetes mellitus (T1DM). OBJECTIVES: This study was carried out in an attempt to highlight the possible beneficial effects of TQ in STZ-induced diabetes in rats and to determine the predictive value of mesenchymal and epithelial markers in the response of diabetic nephropathy to TQ. MATERIALS AND METHODS: Sixty adult male albino rats were divided in 3 groups: control, diabetic untreated, and diabetic treated with TQ. RESULTS: Diabetic rats exhibited morphological changes in both renal glomeruli and tubules with immunohistochemical expression of the mesenchymal markers Fsp1, desmin, and MMP-17 and disappearance of the epithelial marker ZO-1 largely in the glomeruli of diabetic kidneys. Treatment with TQ significantly attenuated renal morphological and immunohistochemical changes in STZ-induced diabetic rats. CONCLUSIONS: Thymoquinone has protective effects on experimental diabetic nephropathy. Both mesenchymal and epithelial markers serve as excellent predictors of early kidney damage and indicators of TQ responsiveness in STZ-induced diabetic nephropathy.


Assuntos
Benzoquinonas/farmacologia , Nefropatias Diabéticas/metabolismo , Rim/efeitos dos fármacos , Animais , Proteínas de Ligação ao Cálcio/efeitos dos fármacos , Proteínas de Ligação ao Cálcio/metabolismo , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Nefropatias Diabéticas/patologia , Imuno-Histoquímica , Rim/metabolismo , Rim/patologia , Masculino , Metaloproteinase 17 da Matriz/efeitos dos fármacos , Metaloproteinase 17 da Matriz/metabolismo , Ratos
13.
PLoS One ; 8(10): e76484, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24098510

RESUMO

The extracellular matrix plays a critical role in neural crest (NC) cell migration. In this study, we characterize the contribution of the novel GPI-linked matrix metalloproteinase (MMP) zebrafish mmp17b. Mmp17b is expressed post-gastrulation in the developing NC. Morpholino inactivation of mmp17b function, or chemical inhibition of MMP activity results in aberrant NC cell migration with minimal change in NC proliferation or apoptosis. Intriguingly, a GPI anchored protein with metalloproteinase inhibitor properties, Reversion-inducing-Cysteine-rich protein with Kazal motifs (RECK), which has previously been implicated in NC development, is expressed in close apposition to NC cells expressing mmp17b, raising the possibility that these two gene products interact. Consistent with this possibility, embryos silenced for mmp17b show defective development of the dorsal root ganglia (DRG), a crest-derived structure affected in RECK mutant fish sensory deprived (sdp). Taken together, this study has identified the first pair of MMP, and their putative MMP inhibitor RECK that functions together in NC cell migration.


Assuntos
Movimento Celular/genética , Metaloproteinase 17 da Matriz/genética , Metaloproteinase 17 da Matriz/metabolismo , Crista Neural/citologia , Crista Neural/metabolismo , Sequência de Aminoácidos , Animais , Padronização Corporal/genética , Desenvolvimento Embrionário/genética , Ativação Enzimática , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/metabolismo , Perfilação da Expressão Gênica , Metaloproteinase 17 da Matriz/química , Dados de Sequência Molecular , Especificidade de Órgãos/genética , Alinhamento de Sequência , Peixe-Zebra
14.
Int J Cancer ; 131(7): 1537-48, 2012 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-22262494

RESUMO

Membrane-type 4 matrix metalloprotease (MT4-MMP) expression in breast adenocarcinoma stimulates tumor growth and metastatic spreading to the lung. However, whether these pro-tumorigenic and pro-metastatic effects of MT4-MMP are related to a proteolytic action is not yet known. Through site directed mutagenesis MT4-MMP has been inactivated in cancer cells through Glutamic acid 249 substitution by Alanine in the active site. Active MT4-MMP triggered an angiogenic switch at day 7 after tumor implantation and drastically accelerated subcutaneous tumor growth as well as lung colonization in recombination activating gene-1-deficient mice. All these effects were abrogated upon MT4-MMP inactivation. In sharp contrast to most MMPs being primarily of stromal origin, we provide evidence that tumor-derived MT4-MMP, but not host-derived MT4-MMP contributes to angiogenesis. A genetic approach using MT4-MMP-deficient mice revealed that the status of MT4-MMP produced by host cells did not affect the angiogenic response. Despite of this tumor intrinsic feature, to exert its tumor promoting effect, MT4-MMP requires a permissive microenvironment. Indeed, tumor-derived MT4-MMP failed to circumvent the lack of an host angio-promoting factor such as plasminogen activator inhibitor-1. Overall, our study demonstrates the key contribution of MT4-MMP catalytic activity in the tumor compartment, at the interface with host cells. It identifies MT4-MMP as a key intrinsic tumor cell determinant that contributes to the elaboration of a permissive microenvironment for metastatic dissemination.


Assuntos
Metaloproteinase 17 da Matriz/metabolismo , Neoplasias/enzimologia , Neoplasias/patologia , Neovascularização Patológica/enzimologia , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Progressão da Doença , Ativação Enzimática/genética , Humanos , Metaloproteinase 17 da Matriz/genética , Metástase Neoplásica , Neoplasias/genética , Neovascularização Patológica/genética , Proteólise , Microambiente Tumoral/genética
15.
PLoS One ; 6(10): e26065, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22022509

RESUMO

Fear memory formation is thought to require dopamine, brain-derived neurotrophic factor (BDNF) and zinc release in the basolateral amygdala (BLA), as well as the induction of long term potentiation (LTP) in BLA principal neurons. However, no study to date has shown any relationship between these processes in the BLA. Here, we have used in vitro whole-cell patch clamp recording from BLA principal neurons to investigate how dopamine, BDNF, and zinc release may interact to modulate the LTP induction in the BLA. LTP was induced by either theta burst stimulation (TBS) protocol or spaced 5 times high frequency stimulation (5xHFS). Significantly, both TBS and 5xHFS induced LTP was fully blocked by the dopamine D1 receptor antagonist, SCH23390. LTP induction was also blocked by the BDNF scavenger, TrkB-FC, the zinc chelator, DETC, as well as by an inhibitor of matrix metalloproteinases (MMPs), gallardin. Conversely, prior application of the dopamine reuptake inhibitor, GBR12783, or the D1 receptor agonist, SKF39393, induced robust and stable LTP in response to a sub-threshold HFS protocol (2xHFS), which does not normally induce LTP. Similarly, prior activation of TrkB receptors with either a TrkB receptor agonist, or BDNF, also reduced the threshold for LTP-induction, an effect that was blocked by the MEK inhibitor, but not by zinc chelation. Intriguingly, the TrkB receptor agonist-induced reduction of LTP threshold was fully blocked by prior application of SCH23390, and the reduction of LTP threshold induced by GBR12783 was blocked by prior application of TrkB-FC. Together, our results suggest a cellular mechanism whereby the threshold for LTP induction in BLA principal neurons is critically dependent on the level of dopamine in the extracellular milieu and the synergistic activation of postsynaptic D1 and TrkB receptors. Moreover, activation of TrkB receptors appears to be dependent on concurrent release of zinc and activation of MMPs.


Assuntos
Tonsila do Cerebelo/metabolismo , Plasticidade Neuronal , Receptor trkB/metabolismo , Receptores de Dopamina D1/metabolismo , Tonsila do Cerebelo/efeitos dos fármacos , Animais , Benzazepinas/farmacologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Cálcio/metabolismo , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Dopamina/farmacologia , Estimulação Elétrica , Técnicas In Vitro , Potenciação de Longa Duração/efeitos dos fármacos , Masculino , Metaloproteinase 17 da Matriz/metabolismo , Plasticidade Neuronal/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/enzimologia , Piperazinas/farmacologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Receptor trkB/genética , Receptores de Dopamina D1/antagonistas & inibidores , Receptores de Dopamina D1/genética , Transdução de Sinais/efeitos dos fármacos
16.
PLoS One ; 6(2): e17099, 2011 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-21347258

RESUMO

MT4-MMP is a membrane-type metalloproteinase (MMP) anchored to the membrane by a glycosyl-phosphatidylinositol (GPI) motif. GPI-type MT-MMPs (MT4- and MT6-MMP) are related to other MT-MMPs, but their physiological substrates and functions in vivo have yet to be identified. In this manuscript we show that MT4-MMP is expressed early in kidney development, as well as in the adult kidney, where the highest levels of expression are found in the papilla. MT4-MMP null mice had minimal renal developmental abnormalities, with a minor branching morphogenesis defect in early embryonic kidney development and slightly dysmorphic collecting ducts in adult mice. Interestingly, MT4-MMP null mice had higher baseline urine osmolarities relative to wild type controls, but these animals were able to concentrate and dilute their urines normally. However, MT4-MMP-null mice had decreased daily water intake and daily urine output, consistent with primary hypodipsia. MT4-MMP was shown to be expressed in areas of the hypothalamus considered important for regulating thirst. Thus, our results show that although MT4-MMP is expressed in the kidney, this metalloproteinase does not play a major role in renal development or function; however it does appear to modify the neural stimuli that modulate thirst.


Assuntos
Homeostase , Metaloproteinase 17 da Matriz/metabolismo , Água/metabolismo , Animais , Deleção de Genes , Regulação Enzimológica da Expressão Gênica , Hipotálamo Anterior/enzimologia , Hipotálamo Anterior/fisiologia , Medula Renal/enzimologia , Metaloproteinase 17 da Matriz/deficiência , Metaloproteinase 17 da Matriz/genética , Camundongos , Concentração Osmolar
17.
Neoplasia ; 11(12): 1371-82, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20019845

RESUMO

The hypoxic tumor environment has been shown to be critical to cancer metastasis through the promotion of angiogenesis, induction of epithelial-mesenchymal transition (EMT), and acquisition of invasive potential. However, the impact of hypoxia on the expression profile of the proteolytic enzymes involved in invasiveness is relatively unknown. Membrane-type 4 matrix metalloproteinase (MT4-MMP) is a glycosyl-phosphatidyl inositol-anchored protease that has been shown to be overexpressed in human cancers. However, detailed mechanisms regarding the regulation and function of MT4-MMP expression in tumor cells remain unknown. Here, we demonstrate that hypoxia or overexpression of hypoxia-inducible factor-1alpha (HIF-1alpha) induced MT4-MMP expression in human cancer cells. Activation of SLUG, a transcriptional factor regulating the EMT process of human cancers, by HIF-1alpha was critical for the induction of MT4-MMP under hypoxia. SLUG regulated the transcription of MT4-MMP through direct binding to the E-box located in its proximal promoter. Short-interference RNA-mediated knockdown of MT4-MMP attenuated in vitro invasiveness and in vivo pulmonary colonization of tumor cells without affecting cell migratory ability. MT4-MMP promoted invasiveness and pulmonary colonization through modulation of the expression profile of MMPs and angiogenic factors. Finally, coexpression of HIF-1alpha and MT4-MMP in human head and neck cancer was predictive of a worse clinical outcome. These findings establish a novel signaling pathway for hypoxia-mediated metastasis and elucidate the underlying regulatory mechanism and functional significance of MT4-MMP in cancer metastasis.


Assuntos
Regulação Neoplásica da Expressão Gênica , Metaloproteinase 17 da Matriz/genética , Neoplasias/genética , Fatores de Transcrição/genética , Animais , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Linhagem Celular , Linhagem Celular Tumoral , Feminino , Neoplasias de Cabeça e Pescoço/metabolismo , Neoplasias de Cabeça e Pescoço/patologia , Humanos , Hipóxia , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Imuno-Histoquímica , Estimativa de Kaplan-Meier , Masculino , Metaloproteinase 17 da Matriz/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Pessoa de Meia-Idade , Modelos Biológicos , Metástase Neoplásica , Neoplasias/metabolismo , Neoplasias/patologia , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Transcrição da Família Snail , Fatores de Transcrição/metabolismo , Transplante Heterólogo
18.
J Cell Mol Med ; 13(9B): 4002-13, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19426156

RESUMO

The present study aims at investigating the mechanism by which membrane-type 4 matrix metalloproteinase (MT4-MMP), a membrane-anchored MMP expressed by human breast tumour cells promotes the metastatic dissemination into lung. We applied experimental (intravenous) and spontaneous (subcutaneous) models of lung metastasis using human breast adenocarcinoma MDA-MB-231 cells overexpressing or not MT4-MMP. We found that MT4-MMP does not affect lymph node colonization nor extravasation of cells from the bloodstream, but increases the intravasation step leading to metastasis. Ultrastructural and fluorescent microscopic observations coupled with automatic computer-assisted quantifications revealed that MT4-MMP expression induces blood vessel enlargement and promotes the detachment of mural cells from the vascular tree, thus causing an increased tumour vascular leak. On this basis, we propose that MT4-MMP promotes lung metastasis by disturbing the tumour vessel integrity and thereby facilitating tumour cell intravasation.


Assuntos
Neoplasias da Mama/enzimologia , Neoplasias Pulmonares/enzimologia , Metaloproteinase 17 da Matriz/metabolismo , Animais , Neoplasias da Mama/irrigação sanguínea , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Humanos , Neoplasias Pulmonares/secundário , Metástase Linfática , Neoplasias Mamárias Animais/irrigação sanguínea , Neoplasias Mamárias Animais/enzimologia , Neoplasias Mamárias Animais/patologia , Camundongos , Camundongos Nus , Microscopia Eletrônica de Transmissão/métodos , Microscopia de Fluorescência/métodos , Transplante de Neoplasias , Neovascularização Patológica , Pericitos/metabolismo
19.
Genes Cells ; 12(9): 1091-100, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17825051

RESUMO

The biological functions of membrane-type 4 matrix metalloproteinase (MT4-MMP/MMP-17) are poorly understood because of the lack of a sensitive system for tracking its expression in vivo. We established a mutant mouse strain (Mt4-mmp(-/-)) in which Mt4-mmp was replaced with a reporter gene encoding beta-galactosidase (LacZ). Mt4-mmp(-/-) mice had normal gestations, and no apparent defects in growth, life span and fertility. Using LacZ as a marker, we were able to monitor the expression and promoter activity of Mt4-mmp for the first time in vivo. The tissue distribution of Mt4-mmp mRNA correlated with LacZ expression, and we showed that Mt4-mmp is expressed primarily in cerebrum, lung, spleen, intestine and uterus. We identified LacZ-positive neurons in the cerebrum, smooth muscle cells in the intestine and uterus, and macrophages located in the lung alveolar or intraperitoneal space. Contrary to the reported role of MT4-MMP as a tumor necrosis factor-alpha (TNF-alpha) sheddase, the lipopolysaccharide (LPS)-induced release of TNF-alpha from Mt4-mmp(-/-)macrophages was similar to that in wild-type cells, and expression of Mt4-mmp mRNA was repressed following LPS stimulation. Thus, we have established a mutant mouse strain for analyzing the physiological functions of MT4-MMP, which also serves as a sensitive system for monitoring and tracking the expression of MT4-MMP in vivo.


Assuntos
Genes Reporter , Metaloproteinase 17 da Matriz/genética , Camundongos Knockout , beta-Galactosidase/análise , Animais , Cérebro/metabolismo , Óperon Lac , Metaloproteinase 17 da Matriz/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Modelos Genéticos , Miócitos de Músculo Liso/metabolismo , Regiões Promotoras Genéticas , Fator de Necrose Tumoral alfa/metabolismo , beta-Galactosidase/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA