Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.565
Filtrar
1.
Aging (Albany NY) ; 16(9): 8155-8170, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38747739

RESUMO

BACKGROUND: Osteosarcoma (OS) is a primary malignant bone tumor arising from mesenchymal cells. The standard clinical treatment for OS involves extensive tumor resection combined with neoadjuvant chemotherapy or radiotherapy. OS's invasiveness, lung metastasis, and drug resistance contribute to a low cure rate and poor prognosis with this treatment. Metallothionein 1G (MT1G), observed in various cancers, may serve as a potential therapeutic target for OS. METHODS: OS samples in GSE33382 and TARGET datasets were selected as the test cohorts. As the external validation cohort, 13 OS tissues and 13 adjacent cancerous tissues from The Second Affiliated Hospital of Nanchang University were collected. Patients with OS were divided into high and low MT1G mRNA-expression groups; differentially expressed genes (DEGs) were identified as MT1G-related genes. The biological function of MT1G was annotated using Kyoto Encyclopedia of Genes and Genomes (KEGG), Gene Ontology (GO) and gene set enrichment analysis (GSEA). Gene expression correlation analysis and competing endogenous RNA (ceRNA) regulatory network construction were used to determine potential biological regulatory relationships of DEGs. Survival analysis assessed the prognostic value of MT1G. RESULTS: MT1G expression increased in OS samples and presented higher in metastatic OS compared with non-metastatic OS. Functional analyses indicated that MT1G was mainly associated with spliceosome. A ceRNA network with DEGs was constructed. MT1G is an effective biomarker predicting survival and correlated with increased recurrence rates and poorer survival. CONCLUSIONS: This research identified MT1G as a potential biomarker for OS prognosis, highlighting its potential as a therapy target.


Assuntos
Neoplasias Ósseas , Biologia Computacional , Regulação Neoplásica da Expressão Gênica , Células-Tronco Mesenquimais , Metalotioneína , Osteossarcoma , Osteossarcoma/genética , Osteossarcoma/patologia , Humanos , Neoplasias Ósseas/genética , Neoplasias Ósseas/patologia , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/mortalidade , Metalotioneína/genética , Metalotioneína/metabolismo , Células-Tronco Mesenquimais/metabolismo , Masculino , Prognóstico , Feminino , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Perfilação da Expressão Gênica , Redes Reguladoras de Genes
2.
Acta Neuropathol Commun ; 12(1): 68, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664739

RESUMO

Some individuals show a discrepancy between cognition and the amount of neuropathological changes characteristic for Alzheimer's disease (AD). This phenomenon has been referred to as 'resilience'. The molecular and cellular underpinnings of resilience remain poorly understood. To obtain an unbiased understanding of the molecular changes underlying resilience, we investigated global changes in gene expression in the superior frontal gyrus of a cohort of cognitively and pathologically well-defined AD patients, resilient individuals and age-matched controls (n = 11-12 per group). 897 genes were significantly altered between AD and control, 1121 between resilient and control and 6 between resilient and AD. Gene set enrichment analysis (GSEA) revealed that the expression of metallothionein (MT) and of genes related to mitochondrial processes was higher in the resilient donors. Weighted gene co-expression network analysis (WGCNA) identified gene modules related to the unfolded protein response, mitochondrial processes and synaptic signaling to be differentially associated with resilience or dementia. As changes in MT, mitochondria, heat shock proteins and the unfolded protein response (UPR) were the most pronounced changes in the GSEA and/or WGCNA, immunohistochemistry was used to further validate these processes. MT was significantly increased in astrocytes in resilient individuals. A higher proportion of the mitochondrial gene MT-CO1 was detected outside the cell body versus inside the cell body in the resilient compared to the control group and there were higher levels of heat shock protein 70 (HSP70) and X-box-binding protein 1 spliced (XBP1s), two proteins related to heat shock proteins and the UPR, in the AD donors. Finally, we show evidence for putative sex-specific alterations in resilience, including gene expression differences related to autophagy in females compared to males. Taken together, these results show possible mechanisms involving MTs, mitochondrial processes and the UPR by which individuals might maintain cognition despite the presence of AD pathology.


Assuntos
Doença de Alzheimer , Perfilação da Expressão Gênica , Metalotioneína , Mitocôndrias , Resposta a Proteínas não Dobradas , Humanos , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Metalotioneína/genética , Metalotioneína/metabolismo , Feminino , Masculino , Idoso , Resposta a Proteínas não Dobradas/genética , Resposta a Proteínas não Dobradas/fisiologia , Mitocôndrias/metabolismo , Mitocôndrias/genética , Mitocôndrias/patologia , Idoso de 80 Anos ou mais , Resiliência Psicológica
3.
Biomed Pharmacother ; 174: 116555, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38593708

RESUMO

Calprotectin (CP), a heterodimer of S100A8 and S100A9, is expressed by neutrophils and a number of innate immune cells and is used widely as a marker of inflammation, particularly intestinal inflammation. CP is a ligand for toll-like receptor 4 (TLR4) and the receptor for advanced glycation end products (RAGE). In addition, CP can act as a microbial modulatory agent via a mechanism termed nutritional immunity, depending on metal binding, most notably Zn2+. The effects on the intestinal epithelium are largely unknown. In this study we aimed to characterize the effect of calprotectin on mouse jejunal organoids as a model epithelium, focusing on Zn2+ metabolism and cell proliferation. CP addition upregulated the expression of the Zn2+ absorptive transporter Slc39a4 and of methallothionein Mt1 in a Zn2+-sensitive manner, while downregulating the expression of the Zn2+ exporter Slc30a2 and of methallothionein 2 (Mt2). These effects were greatly attenuated with a CP variant lacking the metal binding capacity. Globally, these observations indicate adaptation to low Zn2+ levels. CP had antiproliferative effects and reduced the expression of proliferative and stemness genes in jejunal organoids, effects that were largely independent of Zn2+ chelation. In addition, CP induced apoptosis modestly and modulated antimicrobial gene expression. CP had no effect on epithelial differentiation. Overall, CP exerts modulatory effects in murine jejunal organoids that are in part related to Zn2+ sequestration and partially reproduced in vivo, supporting the validity of mouse jejunal organoids as a model for mouse epithelium.


Assuntos
Proliferação de Células , Mucosa Intestinal , Jejuno , Complexo Antígeno L1 Leucocitário , Organoides , Zinco , Animais , Zinco/metabolismo , Organoides/metabolismo , Organoides/efeitos dos fármacos , Complexo Antígeno L1 Leucocitário/metabolismo , Jejuno/metabolismo , Jejuno/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Camundongos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Metalotioneína/metabolismo , Metalotioneína/genética , Inflamação/metabolismo , Inflamação/patologia , Biomarcadores/metabolismo , Masculino
4.
J Neuroimmunol ; 389: 578328, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38471284

RESUMO

Multiple sclerosis (MS) exhibits poor immune regulation and subnormal interferon (IFN-ß) signaling. Secondary Progressive MS displays waning exacerbations, relentless neurodegeneration, and diminished benefit of therapy. We find dysregulated serum protein balance (Th1/Th2) and excessive gene expression in Relapsing-Remitting MS vs. healthy controls (8700 differentially-expressed genes, DEG) and intermediate levels in SPMS (3900 DEG). Olfactory receptor genes (chemosensing), and WNT/ß-catenin (anti-inflammatory, repair) and metallothionein (anti-oxidant) gene pathways, have less expression in SPMS than RRMS. IFN-ß treatment decreased pro-inflammatory and increased metallothionein gene expression in SPMS. These gene expression biomarkers suggest new targets for immune regulation and brain repair in this neurodegenerative disease.


Assuntos
Esclerose Múltipla Crônica Progressiva , Esclerose Múltipla Recidivante-Remitente , Esclerose Múltipla , Doenças Neurodegenerativas , Humanos , Interferons , Biomarcadores , Metalotioneína/genética
5.
Hum Cell ; 37(3): 675-688, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38546949

RESUMO

Neurogenic intermittent claudication (NIC), a classic symptom of lumbar spinal stenosis (LSS), is associated with neuronal apoptosis. To explore the novel therapeutic target of NIC treatment, we constructed the rat model of NIC by cauda equina compression (CEC) method and collected dorsal root ganglion (DRG) tissues, a region responsible for sensory and motor function, for mRNA sequencing. Bioinformatic analysis of mRNA sequencing indicated that upregulated metallothionein 2A (MT2A), an apoptosis-regulating gene belonging to the metallothionein family, might participate in NIC progression. Activated p38 MAPK mediated motor dysfunction following LSS and it was also found in DRG tissues of rats with NIC. Therefore, we supposed that MT2A might affect NIC progression by regulating p38 MAPK pathway. Then the rat model of NIC was used to explore the exact role of MT2A. Rats at day 7 post-CEC exhibited poorer motor function and had two-fold MT2A expression in DRG tissues compared with rats with sham operation. Co-localization analysis showed that MT2A was highly expressed in neurons, but not in microglia or astrocytes. Subsequently, neurons isolated from DRG tissues of rats were exposed to hypoxia condition (3% O2, 92% N2, 5% CO2) to induce cell damage. Gain of MT2A function in neurons was performed by lentivirus-mediated overexpression. MT2A overexpression inhibited apoptosis by inactivating p38 MAPK in hypoxia-exposed neurons. Our findings indicated that high MT2A expression was related to NIC progression, and MT2A overexpression protected against NIC through inhibiting activated p38 MAPK-mediated neuronal apoptosis in DRG tissues.


Assuntos
Claudicação Intermitente , Proteínas Quinases p38 Ativadas por Mitógeno , Ratos , Animais , Regulação para Cima , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Apoptose/genética , Neurônios/metabolismo , Metalotioneína/genética , Metalotioneína/metabolismo , Hipóxia , RNA Mensageiro
6.
Cell Stress Chaperones ; 29(2): 312-325, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38490439

RESUMO

Type 1 diabetes (T1D) is characterized by lymphocyte infiltration into the pancreatic islets of Langerhans, leading to the destruction of insulin-producing beta cells and uncontrolled hyperglycemia. In the nonobese diabetic (NOD) murine model of T1D, the onset of this infiltration starts several weeks before glucose dysregulation and overt diabetes. Recruitment of immune cells to the islets is mediated by several chemotactic cytokines, including CXCL10, while other cytokines, including SDF-1α, can confer protective effects. Global gene expression studies of the pancreas from prediabetic NOD mice and single-cell sequence analysis of human islets from prediabetic, autoantibody-positive patients showed an increased expression of metallothionein (MT), a small molecular weight, cysteine-rich metal-binding stress response protein. We have shown that beta cells can release MT into the extracellular environment, which can subsequently enhance the chemotactic response of Th1 cells to CXCL10 and interfere with the chemotactic response of Th2 cells to SDF-1α. These effects can be blocked in vitro with a monoclonal anti-MT antibody, clone UC1MT. When administered to NOD mice before the onset of diabetes, UC1MT significantly reduces the development of T1D. Manipulation of extracellular MT may be an important approach to preserving beta cell function and preventing the development of T1D.


Assuntos
Diabetes Mellitus Tipo 1 , Estado Pré-Diabético , Humanos , Camundongos , Animais , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/prevenção & controle , Camundongos Endogâmicos NOD , Metalotioneína/genética , Metalotioneína/metabolismo , Quimiocina CXCL12
7.
Metallomics ; 16(5)2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38549424

RESUMO

Age/stage sensitivity is considered a significant factor in toxicity assessments. Previous studies investigated cadmium (Cd) toxicosis in Caenorhabditis elegans, and a plethora of metal-responsive genes/proteins have been identified and characterized in fine detail; however, most of these studies neglected age sensitivity and stage-specific response to toxicants at the molecular level. This present study compared the transcriptome response between C. elegans L3 vs L4 larvae exposed to 20 µM Cd to explore the transcriptional hallmarks of stage sensitivity. The results showed that the transcriptome of the L3 stage, despite being exposed to Cd for a shorter period, was more affected than the L4 stage, as demonstrated by differences in transcriptional changes and magnitude of induction. Additionally, T08G5.1, a hitherto uncharacterized gene located upstream of metallothionein (mtl-2), was transcriptionally hyperresponsive to Cd exposure. Deletion of one or both metallothioneins (mtl-1 and/or mtl-2) increased T08G5.1 expression, suggesting that its expression is linked to the loss of metallothionein. The generation of an extrachromosomal transgene (PT08G5.1:: GFP) revealed that T08G5.1 is constitutively expressed in the head neurons and induced in gut cells upon Cd exposure, not unlike mtl-1 and mtl-2. The low abundance of cysteine residues in T08G5.1 suggests, however, that it may not be involved directly in Cd sequestration to limit its toxicity like metallothionein, but might be associated with a parallel pathway, possibly an oxidative stress response.


Assuntos
Cádmio , Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Metalotioneína , Transcriptoma , Animais , Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Cádmio/toxicidade , Cádmio/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Transcriptoma/efeitos dos fármacos , Metalotioneína/genética , Metalotioneína/metabolismo , Larva/efeitos dos fármacos , Larva/genética , Larva/metabolismo
8.
Int J Mol Sci ; 25(6)2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38542276

RESUMO

Azacitidine, a DNA methylation inhibitor, is employed for the treatment of acute myeloid leukemia (AML). However, drug resistance remains a major challenge for effective azacitidine chemotherapy, though several studies have attempted to uncover the mechanisms of azacitidine resistance. With the aim to identify the mechanisms underlying acquired azacitidine resistance in cancer cell lines, we developed a computational strategy that can identify differentially regulated gene networks between drug-sensitive and -resistant cell lines by extending the existing method, differentially coexpressed gene sets (DiffCoEx). The technique specifically focuses on cell line-specific gene network analysis. We applied our method to gene networks specific to azacitidine sensitivity and identified differentially regulated gene networks between azacitidine-sensitive and -resistant cell lines. The molecular interplay between the metallothionein gene family, C19orf33, ELF3, GRB7, IL18, NRN1, and RBM47 were identified as differentially regulated gene network in drug resistant cell lines. The biological mechanisms associated with azacitidine and AML for the markers in the identified networks were verified through the literature. Our results suggest that controlling the identified genes (e.g., the metallothionein gene family) and "cellular response"-related pathways ("cellular response to zinc ion", "cellular response to copper ion", and "cellular response to cadmium ion", where the enriched functional-related genes are MT2A, MT1F, MT1G, and MT1E) may provide crucial clues to address azacitidine resistance in patients with AML. We expect that our strategy will be a useful tool to uncover patient-specific molecular interplay that provides crucial clues for precision medicine in not only gastric cancer but also complex diseases.


Assuntos
Leucemia Mieloide Aguda , Neuropeptídeos , Humanos , Azacitidina/farmacologia , Azacitidina/uso terapêutico , Redes Reguladoras de Genes , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Linhagem Celular Tumoral , Metalotioneína/genética , Metalotioneína/metabolismo , Neuropeptídeos/metabolismo , Proteínas Ligadas por GPI/metabolismo , Proteínas de Ligação a RNA/genética
9.
J Nanobiotechnology ; 22(1): 118, 2024 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-38494495

RESUMO

The assessment of AgNPs toxicity in vitro and in vivo models are frequently conflicting and inaccurate. Nevertheless, single cell immunological responses in a heterogenous environment have received little attention. Therefore, in this study, we have performed in-depth analysis which clearly revealed cellular-metal ion association as well as specific immunological response. Our study didn't show significant population differences in PMBC between control and AgNPs group implying no toxicological response. To confirm it further, deep profiling identified differences in subsets and differentially expressed genes (DEGs) of monocytes, B cells and T cells. Notably, monocyte subsets showed significant upregulation of metallothionein (MT) gene expression such as MT1G, MT1X, MT1E, MT1A, and MT1F. On the other hand, downregulation of pro-inflammatory genes such as IL1ß and CCL3 in both CD16 + and CD16- monocyte subsets were observed. This result indicated that AgNPs association with monocyte subsets de-promoted inflammatory responsive genes suggesting no significant toxicity observed in AgNPs treated group. Other cell types such as B cells and T cells also showed negligible differences in their subsets suggesting no toxicity response. Further, AgNPs treated group showed upregulation of cell proliferation, ribosomal synthesis, downregulation of cytokine release, and T cell differentiation inhibition. Overall, our results conclude that treatment of AgNPs to PMBC cells didn't display immunological related cytotoxicity response and thus motivate researchers to use them actively for biomedical applications.


Assuntos
Nanopartículas Metálicas , Prata , Prata/farmacologia , Análise da Expressão Gênica de Célula Única , Metalotioneína/genética , Monócitos/metabolismo
10.
Biometals ; 37(3): 671-696, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38416244

RESUMO

This is a critical review of what we know so far about the evolution of metallothioneins (MTs) in Gastropoda (snails, whelks, limpets and slugs), an important class of molluscs with over 90,000 known species. Particular attention will be paid to the evolution of snail MTs in relation to the role of some metallic trace elements (cadmium, zinc and copper) and their interaction with MTs, also compared to MTs from other animal phyla. The article also highlights the important distinction, yet close relationship, between the structural and metal-selective binding properties of gastropod MTs and their physiological functionality in the living organism. It appears that in the course of the evolution of Gastropoda, the trace metal cadmium (Cd) must have played an essential role in the development of Cd-selective MT variants. It is shown how the structures and Cd-selective binding properties in the basal gastropod clades have evolved by testing and optimizing different combinations of ancestral and novel MT domains, and how some of these domains have become established in modern and recent gastropod clades. In this context, the question of how adaptation to new habitats and lifestyles has affected the original MT traits in different gastropod lineages will also be addressed. The 3D structures and their metal binding preferences will be highlighted exemplarily in MTs of modern littorinid and helicid snails. Finally, the importance of the different metal requirements and pathways in snail tissues and cells for the shaping and functionality of the respective MT isoforms will be shown.


Assuntos
Evolução Molecular , Metalotioneína , Caramujos , Metalotioneína/metabolismo , Metalotioneína/química , Metalotioneína/genética , Animais , Caramujos/metabolismo , Caramujos/química , Cádmio/metabolismo , Cádmio/química , Zinco/metabolismo , Zinco/química , Metais/metabolismo , Metais/química
11.
Water Environ Res ; 96(2): e11000, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38385887

RESUMO

Heavy metals are the main pollutants in water and are an important global problem that threatens human health and ecosystems. In recent years, there has been an increasing interest in the use of genetically modified bacteria as an eco-friendly method to solve heavy metal pollution problems. The goal of this study was to generate genetically modified Escherichia coli expressing human metallothioneins (hMT2A and hMT3) and to determine their tolerance, bioaccumulation, and biosorption capacity to lead (Pb2+ ). Recombinant MT2A and MT3 strains expressing MT were successfully generated. Minimum inhibition concentrations (MIC) of Pb for MT2A and MT3 were found to be 1750 and 2000 mg L-1 , respectively. Pb2+ resistance and bioaccumulation capacity of MT3 were higher than MT2A. Therefore, only MT3 biosorbent was used in Pb2+ biosorption, and its efficiency was examined by performing experiments in a batch system. Pb2+ biosorption by MT3 was evaluated in terms of isotherms, kinetics, and thermodynamics. The results showed that Pb biosorption fits to the Langmuir isotherm model and the pseudo-first-order kinetic model, and the reaction is exothermic. The maximum Pb2+ capacity of the biosorbent was 50 mg Pb2+ g-1 . The potential of MT3 in Pb biosorption was characterized by Fourier-transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), and scanning transmission electron microscopy (STEM) analyses. The desorption study showed that the sorbent had up to 74% recovery and could be effectively used four times. These findings imply that this biosorbent can be applied as a promising, precise, and effective means of removing Pb2+ from contaminated waters. PRACTITIONER POINTS: In this study, the tolerance levels, bioaccumulation, and biosorption capacities of Pb in aqueous solutions were determined for the first time in recombinant MT2A and MT3 strains in which human MT2A and MT3 genes were cloned. The biosorbent of MT3, which was determined to be more effective in Pb bioaccumulation, was synthesized and used in Pb biosorption. The Pb biosorption mechanism of MT3 biosorbent was identified using isotherm modeling, kinetic modeling, and thermodynamic studies. The maximum Pb removal percentage capacity of the biosorbent was 90%, whereas the maximum biosorption capacity was up to 50 mg Pb2+ g-1 . These results indicated that MT3 biosorbent has a higher Pb biosorption capacity than existing recombinant biosorbents. MT3 biosorbent can be used as a promising and effective biosorbent for removing Pb from wastewater.


Assuntos
Ecossistema , Chumbo , Humanos , Espectroscopia de Infravermelho com Transformada de Fourier , Termodinâmica , Bactérias , Escherichia coli/genética , Metalotioneína/genética
12.
Int J Biol Macromol ; 262(Pt 1): 129960, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38325687

RESUMO

Metallothionein (MTs) can be used in the prevention and treatment of tumors and diabetes due to its antioxidant properties. However, it is necessary to solve its non-transmembrane properties and further improve its antioxidant activity, increase its fluorescence visualization and enhance its stability to meet practical applications in the biomedical field. Here, we report the preparation of a novel metallothionein-AuNP composite material with high transmembrane ability, fluorescence visualization, antioxidant activity, and stability by genetic modification (introducing transduction peptide TAT, fluorescence tag GFP and increasing sulfydryl groups) and immobilization technology (covalently bonding with AuNPs). The transmembrane activity of modified proteins was verified by immunofluorescence. Increasing the sulfhydryl content within a certain range can enhance the antioxidant activity of the protein. In addition, GFP were used to further simplify the imaging of the metallothionein-AuNP composite in cells. XPS results indicated that AuNPs can immobilize metallothionein through AuS covalent bonds. TGA characterization and degradation experiments showed that thermal and degradation stability of the immobilized material was significantly improved. This work provides new ideas to construct metallothionein composites with high transmembrane ability, antioxidant activity, fluorescence visualization and stability to meet novel applications in the biomedical field.


Assuntos
Antioxidantes , Nanopartículas Metálicas , Metalotioneína/genética , Ouro/química , Nanopartículas Metálicas/química , Peptídeos
13.
Artigo em Inglês | MEDLINE | ID: mdl-38387688

RESUMO

To understand the effect of salinity on the toxicokinetics, oxidative stress, and detoxification of cadmium-exposed Meretrix meretrix, M. meretrix were acclimatized to different salinities (8, 14, 20, 26, and 32 ppt) for 14 d, exposed to 10 µg/L Cd for 7 d, followed by a 28-day depuration period. The internal Cd concentration was determined, and the activities of antioxidant enzymes (superoxide dismutase (SOD), catalase (CAT), and glutathione-S-transferase (GST)), and the malondialdehyde (MDA) content were measured. The mRNA expression levels of antioxidant enzyme (Cu/Zn SOD, CAT) and detoxification-related genes metallothionein (MT) were analyzed. The mean concentrations of Cd in M. meretrix tissues were in the order gill > digestive gland > mantle > axe foot. The Cd uptake rate in the four tissues decreased with increasing salinity (range: 14-26 ppt). The Cd elimination half-lives were the highest at 8 ppt and 14 ppt salinity. Cadmium activated the four oxidative stress-related related enzymes in the gills. At the end of accumulation period, Cd exposure at 20 ppt salinity significantly increased the expression of Cu/Zn SOD. CAT expression was significantly inhibited at 20 ppt salinity, but was induced at 32 ppt. MT mRNA expression was only induced under Cd at 20 ppt salinity. At the end of depuration period, Cu/Zn SOD expression was inhibited at salinities of 8, 14, and 26 ppt. The results indicated that SOD, CAT, GST, MDA, Cu/Zn SOD, CAT, and MT were sensitive to cadmium in a water environment, and can be used as indicators of marine heavy metal pollution.


Assuntos
Cádmio , Poluentes Químicos da Água , Animais , Cádmio/análise , Antioxidantes/metabolismo , Salinidade , Metalotioneína/genética , Metalotioneína/metabolismo , Toxicocinética , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise , Estresse Oxidativo , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Expressão Gênica , RNA Mensageiro/metabolismo
14.
Artigo em Inglês | MEDLINE | ID: mdl-38387689

RESUMO

Cadmium (Cd) is a highly toxic heavy metal element that might adversely affect sperm function such as the acrosome reaction (AR). Although it is widely recognized that zinc (Zn) plays a crucial role in sperm quality, the complete elucidation of how Zn ameliorates Cd-induced sperm dysfunction is still unclear. In this study, we aimed to explore the protective effects of Zn against the sperm dysfunction induced by Cd in the freshwater crab Sinopotamon henanense. The results demonstrated that Cd exposure not only impaired the sperm ultrastructure, but also caused sperm dysfunction by decreasing the AR induction rate, acrosome enzyme activity, and Ca2+ content in sperm while elevating the activity and transcription expression of key Ca2+ signaling pathway-related proteins Calmodulin (CAM) and Ca2+-ATPase. However, the administration of Zn was found to alleviate Cd-induced sperm morphological and functional disorders by increasing the activity and transcription levels of CaM and Ca2+-ATPase, thereby regulating intracellular Ca2+ homeostasis and reversing the decrease in Ca2+ contents caused by Cd. Furthermore, this study was the first to investigate the distribution of metallothionein (MT) in the AR of S. henanense, and it was found that Zn can reduce the elevated levels of MT in crabs caused by Cd, demonstrating the significance of Zn in inducing MT to participate in the AR process and in metal detoxification in S. henanense. These findings offer novel perspectives and substantiation regarding the utilization of Zn as a protective agent against Cd-induced toxicity and hold significant practical implications for mitigating Cd-induced sperm dysfunction.


Assuntos
Braquiúros , Metais Pesados , Animais , Masculino , Cádmio/metabolismo , Zinco/toxicidade , Metalotioneína/genética , Metalotioneína/metabolismo , Sêmen/metabolismo , Metais Pesados/metabolismo , Espermatozoides , Água Doce , Adenosina Trifosfatases/metabolismo
15.
Genet Res (Camb) ; 2024: 3058875, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38283987

RESUMO

Background: Tesmin, a 60 kDa protein encoded by the metallothionein-like 5 (MTL5) gene, plays a vital role in spermatogenesis and oogenesis. Recent research has unveiled its potential involvement in malignancies, although its impact on HCC remains poorly understood. Methods: In this study, we sought to elucidate the clinical significance of tesmin in HCC patients. We investigated the relationship between tesmin expression and the prognosis of individuals with hepatocellular carcinoma (HCC), as well as its potential role in tumor proliferation and invasion. Immunohistochemistry (IHC) was employed to assess the expression of tesmin in HCC tissues. Chi-square tests were conducted to analyze the correlation between tesmin expression and various clinicopathological features among HCC patients. For survival analysis, we employed the Kaplan-Meier method and conducted Cox regression analyses. To investigate the functional role of tesmin, we utilized shRNA constructs for transfection-mediated knockdown. Proliferation was assessed using the CCK-8 assay, and invasive capability was determined through Matrigel Transwell assays. Results: IHC results indicated that tesmin expression was prominently observed in cancerous tissue. Notably, we observed a significant association between tesmin expression and tumor stage and invasion in HCC patients from both our medical center and TCGA dataset. Survival analysis further revealed that tesmin expression emerged as an independent prognostic factor for overall survival among individuals with HCC. Furthermore, cellular experiments demonstrated that knockdown of tesmin led to decreased proliferation and invasion of HCC cells. Conclusions: Our findings suggest that tesmin may serve as a novel prognostic marker for HCC, highlighting its potential as a target for further research into HCC treatment. Additionally, the functional experiments support the notion that tesmin may participate in promoting the proliferation and invasion of HCC cells, warranting further investigations into its mechanistic involvement in HCC progression.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Metalotioneína , Humanos , Biomarcadores Tumorais/genética , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Relevância Clínica , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Metalotioneína/genética , Prognóstico
16.
Curr Mol Med ; 24(3): 379-388, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-36999424

RESUMO

INTRODUCTION: Colon cancer is a common and malignant cancer featuring high morbidity and poor prognosis. AIMS: This study was performed to explore the regulatory role of MT1G in colon cancer as well as its unconcealed molecular mechanism. METHODS: The expressions of MT1G, c-MYC, and p53 were assessed with the application of RT-qPCR and western blot. The impacts of MT1G overexpression on the proliferative ability of HCT116 and LoVo cells were measured by CCK-8 and BrdU incorporation assays. Additionally, transwell wound healing, and flow cytometry assays were employed to evaluate the invasive and migrative capacities as well as the apoptosis level of HCT116 and LoVo cells. Moreover, the activity of the P53 promoter region was assessed with the help of a luciferase reporter assay. RESULTS: It was found that the expressions of MT1G at both mRNA and protein levels were greatly decreased in human colon cancer cell lines, particularly in HCT116 and LoVo cell lines. After transfection, it was discovered that the MT1G overexpression suppressed the proliferation, migration and invasion but promoted the apoptosis of HCT116 and LoVo cells, which were then partially reversed after overexpressing c-MYC. Additionally, MT1G overexpression reduced c-MYC expression but enhanced the p53 expression, revealing that the MT1G overexpression could regulate c-MYC/P53 signal. Elsewhere, it was also shown that c-MYC overexpression suppressed the regulatory effects of MT1G on P53. CONCLUSION: To conclude, MT1G was verified to regulate c-MYC/P53 signal to repress the proliferation, migration and invasion but promote the apoptosis of colon cancer cells, which might offer a novel targeted-therapy for the improvement of colon cancer.


Assuntos
Neoplasias do Colo , Proteína Supressora de Tumor p53 , Humanos , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , Neoplasias do Colo/genética , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Apoptose/genética , Movimento Celular/genética , Regulação Neoplásica da Expressão Gênica , Metalotioneína/genética , Metalotioneína/metabolismo , Metalotioneína/farmacologia
17.
Toxicol Ind Health ; 40(1-2): 69-74, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38095284

RESUMO

Trivalent lanthanide ions are known for their ability to interact with calcium-binding sites in various proteins. There is a need to assess the bioavailability of lanthanides and other heavy metals introduced into the body as components of implants or as contrast agents. This study aimed to develop a method to address bioavailability and/or presence of trivalent lanthanide ions by examining electrophoretic mobility in an agarose gel of a plasmid harboring the human metallothionein-II gene (hMT-II). Mobility of the plasmid was specifically altered by a monoclonal antibody raised against the zinc-binding transcription factor that controls the activity of the hMT-II gene. This study showed that the plasmid acquired a lanthanide-specific mobility pattern that allowed the presence of lanthanide ions to be readily determined in a 0.8% agarose gel. These findings suggest that this plasmid/monoclonal antibody combination under selected conditions may be useful in industrial, environmental, and biomedical settings to identify, separate, or capture lanthanide ions in complex mixtures that contain an array of metal ions.


Assuntos
Elementos da Série dos Lantanídeos , Metalotioneína , Metais Pesados , Humanos , Anticorpos Monoclonais/genética , Cátions , Eletroforese em Gel de Ágar , Lantânio , Metalotioneína/genética , Plasmídeos/genética , Sefarose
18.
Int J Mol Sci ; 24(23)2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-38068944

RESUMO

Cannabidiol (CBD) is a chemical obtained from Cannabis sativa; it has therapeutic effects on anxiety and cognition and anti-inflammatory properties. Although pharmacological applications of CBD in many types of tumors have recently been reported, the mechanism of action of CBD is not yet fully understood. In this study, we perform an mRNA-seq analysis to identify the target genes of CBD after determining the cytotoxic concentrations of CBD using an MTT assay. CBD treatment regulated the expression of genes related to DNA repair and cell division, with metallothionein (MT) family genes being identified as having highly increased expression levels induced by CBD. It was also found that the expression levels of MT family genes were decreased in colorectal cancer tissues compared to those in normal tissues, indicating that the downregulation of MT family genes might be highly associated with colorectal tumor progression. A qPCR experiment revealed that the expression levels of MT family genes were increased by CBD. Moreover, MT family genes were regulated by CBD or crude extract but not by other cannabinoids, suggesting that the expression of MT family genes was specifically induced by CBD. A synergistic effect between CBD and MT gene transfection or zinc ion treatment was found. In conclusion, MT family genes as novel target genes could synergistically increase the anticancer activity of CBD by regulating the zinc ions in human colorectal cancer cells.


Assuntos
Canabidiol , Canabinoides , Cannabis , Neoplasias Colorretais , Humanos , Canabidiol/farmacologia , Metalotioneína/genética , Metalotioneína/metabolismo , Zinco/farmacologia , Zinco/metabolismo , Cannabis/química , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética
19.
Diabetes Care ; 46(12): 2249-2257, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37878528

RESUMO

OBJECTIVE: To uncover novel targets for the treatment of type 2 diabetes (T2D) by investigating rare variants with large effects in monogenic forms of the disease. RESEARCH DESIGN AND METHODS: We performed whole-exome sequencing in a family with diabetes. We validated the identified gene using Sanger sequencing in additional families and diabetes- and community-based cohorts. Wild-type and variant gene transgenic mouse models were used to study the gene function. RESULTS: Our analysis revealed a rare variant of the metallothionein 1E (MT1E) gene, p.C36Y, in a three-generation family with diabetes. This risk allele was associated with T2D or prediabetes in a community-based cohort. MT1E p.C36 carriers had higher HbA1c levels and greater BMI than those carrying the wild-type allele. Mice with forced expression of MT1E p.C36Y demonstrated increased weight gain, elevated postchallenge serum glucose and liver enzyme levels, and hepatic steatosis, similar to the phenotypes observed in human carriers of MT1E p.C36Y. In contrast, mice with forced expression of MT1E p.C36C displayed reduced weight and lower serum glucose and serum triglyceride levels. Forced expression of wild-type and variant MT1E demonstrated differential expression of genes related to lipid metabolism. CONCLUSIONS: Our results suggest that MT1E could be a promising target for drug development, because forced expression of MT1E p.C36C stabilized glucose metabolism and reduced body weight, whereas MT1E p.C36Y expression had the opposite effect. These findings highlight the importance of considering the impact of rare variants in the development of new T2D treatments.


Assuntos
Diabetes Mellitus Tipo 2 , Metalotioneína , Estado Pré-Diabético , Animais , Humanos , Camundongos , Glicemia/análise , China , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/genética , População do Leste Asiático , Glucose , Metalotioneína/genética , Camundongos Transgênicos/genética , Estado Pré-Diabético/sangue , Estado Pré-Diabético/genética
20.
Mol Reprod Dev ; 90(8-9): 758-770, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37548351

RESUMO

Pre-eclampsia (PE) is usually defined as new-onset hypertension with albuminuria or other organ damage. Herein, the role and mechanism of long noncoding RNA (lncRNA) gastric carcinoma high expressed transcript 1 (GHET1) during PE are investigated. Expression of GHET1 in PE pregnancies was evaluated using quantitative real-time polymerase chain reaction (qRT-PCR). Proliferation and cell cycle of extravillous trophoblasts were assessed by Cell Counting Kit-8 (CCK-8), colony formation, 5-Ethynyl-2'-deoxyuridine (EdU) assays, and flow cytometry, respectively. Migration, invasion, and network formation of trophoblasts were measured by wound healing, transwell system, and tube formation assays. RNA immunoprecipitation (RIP), RNA pull-down, and chromatin immunoprecipitation (ChIP) assays were used to confirm the molecular interaction. GHET1 was markedly decreased in the placenta of PE patients. GHET1 promoted the proliferation and cell cycle of extravillous trophoblasts, as well as migration, invasion, and network formation in vitro. Metallothionein 2A (MT2A) functioned as a downstream effector of GHET1, which was negatively correlated with GHET1 in PE. GHET1 directly bound with zeste 2 polycomb repressive complex 2/lysine-specific demethylase 1 (EZH2/LSD1). Knockdown of GHET1 reduced the occupancies of H3K27me3 and H3K4me2 in the MT2A promoter region by recruiting EZH2 and LSD1. MT2A knockdown reversed GHET1 inhibition mediated biological functions. GHET1 regulates extravillous trophoblastic phenotype via EZH2/LSD1-mediated MT2A epigenetic suppression in PE.


Assuntos
Pré-Eclâmpsia , RNA Longo não Codificante , Gravidez , Feminino , Humanos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Pré-Eclâmpsia/genética , Pré-Eclâmpsia/metabolismo , Proliferação de Células/genética , Epigênese Genética , Histona Desmetilases/genética , Histona Desmetilases/metabolismo , Movimento Celular/genética , Linhagem Celular Tumoral , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Metalotioneína/genética , Metalotioneína/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA