Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 182
Filtrar
1.
Nature ; 626(7998): 327-334, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38109939

RESUMO

The pulp and paper industry is an important contributor to global greenhouse gas emissions1,2. Country-specific strategies are essential for the industry to achieve net-zero emissions by 2050, given its vast heterogeneities across countries3,4. Here we develop a comprehensive bottom-up assessment of net greenhouse gas emissions of the domestic paper-related sectors for 30 major countries from 1961 to 2019-about 3.2% of global anthropogenic greenhouse gas emissions from the same period5-and explore mitigation strategies through 2,160 scenarios covering key factors. Our results show substantial differences across countries in terms of historical emissions evolution trends and structure. All countries can achieve net-zero emissions for their pulp and paper industry by 2050, with a single measure for most developed countries and several measures for most developing countries. Except for energy-efficiency improvement and energy-system decarbonization, tropical developing countries with abundant forest resources should give priority to sustainable forest management, whereas other developing countries should pay more attention to enhancing methane capture rate and reducing recycling. These insights are crucial for developing net-zero strategies tailored to each country and achieving net-zero emissions by 2050 for the pulp and paper industry.


Assuntos
Agricultura Florestal , Efeito Estufa , Gases de Efeito Estufa , Indústrias , Internacionalidade , Papel , Desenvolvimento Sustentável , Madeira , Efeito Estufa/prevenção & controle , Efeito Estufa/estatística & dados numéricos , Gases de Efeito Estufa/análise , Gases de Efeito Estufa/isolamento & purificação , Indústrias/legislação & jurisprudência , Indústrias/estatística & dados numéricos , Metano/análise , Metano/isolamento & purificação , Reciclagem/estatística & dados numéricos , Reciclagem/tendências , Países Desenvolvidos , Países em Desenvolvimento , Florestas , Agricultura Florestal/métodos , Agricultura Florestal/tendências , Desenvolvimento Sustentável/tendências , Clima Tropical
3.
Sci Rep ; 12(1): 1160, 2022 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-35064149

RESUMO

Greenhouse gas (GHG) emissions from Arctic permafrost soils create a positive feedback loop of climate warming and further GHG emissions. Active methane uptake in these soils can reduce the impact of GHG on future Arctic warming potential. Aerobic methane oxidizers are thought to be responsible for this apparent methane sink, though Arctic representatives of these organisms have resisted culturing efforts. Here, we first used in situ gas flux measurements and qPCR to identify relative methane sink hotspots at a high Arctic cytosol site, we then labeled the active microbiome in situ using DNA Stable Isotope Probing (SIP) with heavy 13CH4 (at 100 ppm and 1000 ppm). This was followed by amplicon and metagenome sequencing to identify active organisms involved in CH4 metabolism in these high Arctic cryosols. Sequencing of 13C-labeled pmoA genes demonstrated that type II methanotrophs (Methylocapsa) were overall the dominant active methane oxidizers in these mineral cryosols, while type I methanotrophs (Methylomarinovum) were only detected in the 100 ppm SIP treatment. From the SIP-13C-labeled DNA, we retrieved nine high to intermediate quality metagenome-assembled genomes (MAGs) belonging to the Proteobacteria, Gemmatimonadetes, and Chloroflexi, with three of these MAGs containing genes associated with methanotrophy. A novel Chloroflexi MAG contained a mmoX gene along with other methane oxidation pathway genes, identifying it as a potential uncultured methane oxidizer. This MAG also contained genes for copper import, synthesis of biopolymers, mercury detoxification, and ammonia uptake, indicating that this bacterium is strongly adapted to conditions in active layer permafrost and providing new insights into methane biogeochemical cycling. In addition, Betaproteobacterial MAGs were also identified as potential cross-feeders with methanotrophs in these Arctic cryosols. Overall, in situ SIP labeling combined with metagenomics and genome binning demonstrated to be a useful tool for discovering and characterizing novel organisms related to specific microbial functions or biogeochemical cycles of interest. Our findings reveal a unique and active Arctic cryosol microbial community potentially involved in CH4 cycling.


Assuntos
Ciclo do Carbono , Gases de Efeito Estufa/metabolismo , Metano/metabolismo , Microbiota/genética , Pergelissolo/microbiologia , Regiões Árticas , Isótopos de Carbono , Genoma Bacteriano , Metano/química , Metano/isolamento & purificação
4.
ACS Appl Mater Interfaces ; 14(2): 2893-2907, 2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-34985249

RESUMO

Biogas is an environmentally friendly and sustainable energy resource that can substitute or complement conventional fossil fuels. For practical uses, biogas upgrading, mainly through the effective separation of CO2 (0.33 nm) and CH4 (0.38 nm), is required to meet the approximately 90-95% purity of CH4, while CO2 should be concomitantly purified. In this study, a high CO2 perm-selective zeolite membrane was synthesized by heteroepitaxially growing a chabazite (CHA) zeolite seed layer with a synthetic precursor that allowed the formation of all-silica deca-dodecasil 3 rhombohedral (DDR) zeolite (with a pore size of 0.36 × 0.44 nm2). The resulting hydrophobic DDR@CHA hybrid membrane on an asymmetric α-Al2O3 tube was thin (ca. 2 µm) and continuous, thus providing both high flux and permselectivity for CO2 irrespective of the presence or absence of water vapor (the third largest component in the biogas streams). To the best of our knowledge, the CO2 permeance of (2.9 ± 0.3) × 10-7 mol m-2 s-1 Pa-1 and CO2/CH4 separation factor of ca. 274 ± 73 at a saturated water vapor partial pressure of ca. 12 kPa at 50 °C have the highest CO2/CH4 separation performance yet achieved. Furthermore, we explored the membrane module properties of the hybrid membrane in terms of the recovery and purity of both CO2 and CH4 under dry and wet conditions. Despite the high intrinsic membrane properties of the current hybrid membrane, reflected by the high permeance and SF, the corresponding module properties indicated that high-performance separation of CO2 and CH4 for the desired biogas upgrading was achieved at a limited processing capacity. This supports the importance of understanding the correlation between the membrane and module properties, as this will provide guidance for the optimal operating conditions.


Assuntos
Materiais Biocompatíveis/química , Reatores Biológicos , Dióxido de Carbono/isolamento & purificação , Metano/isolamento & purificação , Zeolitas/química , Dióxido de Carbono/química , Teste de Materiais , Metano/química , Tamanho da Partícula
6.
J Microbiol Biotechnol ; 31(6): 803-814, 2021 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-33879637

RESUMO

A pilot-scale biocover was constructed at a sanitary landfill and the mitigation of methane and odor compounds was compared between the summer and non-summer seasons. The average inlet methane concentrations were 22.0%, 16.3%, and 31.3%, and the outlet concentrations were 0.1%, 0.1%, and 0.2% during winter, spring, and summer, respectively. The odor removal efficiency was 98.0% during summer, compared to 96.6% and 99.6% during winter and spring, respectively. No deterioration in methane and odor removal performance was observed even when the internal temperature of the biocover increased to more than 40°C at midday during summer. During summer, the packing material simultaneously degraded methane and dimethyl sulfide (DMS) under both moderately thermophilic (40-50°C) and mesophilic conditions (30°C). Hyphomicrobium and Brevibacillus, which can degrade methane and DMS at 40°C and 50°C, were isolated. The diversity of the bacterial community in the biocover during summer did not decrease significantly compared to other seasons. The thermophilic environment of the biocover during summer promoted the growth of thermotolerant and thermophilic bacterial populations. In particular, the major methane-oxidizing species were Methylocaldum spp. during summer and Methylobacter spp. during the nonsummer seasons. The performance of the biocover remained stable under moderately thermophilic conditions due to the replacement of the main species and the maintenance of bacterial diversity. The information obtained in this study could be used to design biological processes for methane and odor removal during summer and/or in subtropical countries.


Assuntos
Bactérias/metabolismo , Reatores Biológicos/microbiologia , Metano/metabolismo , Microbiota , Odorantes , Bactérias/classificação , Bactérias/isolamento & purificação , Metano/isolamento & purificação , Eliminação de Resíduos/métodos , República da Coreia , Estações do Ano , Sulfetos/isolamento & purificação , Sulfetos/metabolismo , Temperatura , Instalações de Eliminação de Resíduos
7.
Molecules ; 25(18)2020 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-32961921

RESUMO

Heightened levels of carbon dioxide (CO2) and other greenhouse gases (GHGs) have prompted research into techniques for their capture and separation, including membrane separation, chemical looping, and cryogenic distillation. Ionic liquids, due to their negligible vapour pressure, thermal stability, and broad electrochemical stability have expanded their application in gas separations. This work provides an overview of the recent developments and applications of ionic liquid membranes (ILMs) for gas separation by focusing on the separation of carbon dioxide (CO2), methane (CH4), nitrogen (N2), hydrogen (H2), or mixtures of these gases from various gas streams. The three general types of ILMs, such as supported ionic liquid membranes (SILMs), ionic liquid polymeric membranes (ILPMs), and ionic liquid mixed-matrix membranes (ILMMMs) for the separation of various mixed gas systems, are discussed in detail. Furthermore, issues, challenges, computational studies and future perspectives for ILMs are also considered. The results of the analysis show that SILMs, ILPMs, and the ILMMs are very promising membranes that have great potential in gas separation processes. They offer a wide range of permeabilities and selectivities for CO2, CH4, N2, H2 or mixtures of these gases. In addition, a comparison was made based on the selectivity and permeability of SILMs, ILPMs, and ILMMMs for CO2/CH4 separation based on a Robeson's upper bound curves.


Assuntos
Gases/isolamento & purificação , Líquidos Iônicos/química , Dióxido de Carbono/química , Dióxido de Carbono/isolamento & purificação , Gases/química , Aquecimento Global , Hidrogênio/química , Hidrogênio/isolamento & purificação , Membranas Artificiais , Metano/química , Metano/isolamento & purificação , Nitrogênio/química , Nitrogênio/isolamento & purificação , Permeabilidade
8.
Molecules ; 25(4)2020 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-32102352

RESUMO

Because kaolinite includes a large range of defect elements, the effects of Mg, Fe(II), and Al doping on the CH4 adsorption and diffusion on the surface of Na-kaolinite (001) were investigated by molecular simulations. The simulation results illustrate that ion doping can significantly reduce the amount of CH4 adsorbed by kaolinite, but the type of doped ions has little effect on the amount of adsorption. The specific surface area of kaolinite and the interaction energy between CH4 and the kaolinite's surface are two key factors that can determine CH4 adsorption capacity. The first peak value of the radial distribution functions (RDFs) between CH4 and the pure kaolinite is larger than that between Mg-, Fe(II)-, and Al-doped kaolinite, which indicates that ion doping can reduce the strength of the interactions between CH4 and the kaolinite's surface. Besides hydrogen and oxygen atoms, interlayer sodium ions are also strong adsorption sites for CH4 and lead to a weakened interaction between CH4 and the kaolinite's surface, as well as a decrease in CH4 adsorption. Contrary to the adsorption results, ion doping facilitates the diffusion of CH4, which is beneficial for actual shale gas extraction.


Assuntos
Alumínio/química , Ferro/química , Caulim/química , Magnésio/química , Metano/isolamento & purificação , Adsorção , Cátions , Difusão , Humanos , Concentração de Íons de Hidrogênio , Cinética , Metano/química , Simulação de Dinâmica Molecular , Gás Natural/provisão & distribuição , Sódio/química
9.
J Vis Exp ; (146)2019 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-31058905

RESUMO

Protocols for the isolation of the commonly employed cyclic (alkyl)(amino) carbene (CAAC) and N-heterocyclic carbene (NHC) are reported. Furthermore, the synthesis of their mixed CAAC-NHC "Wanzlick" dimer and the synthesis of the related stable organic "olefin" radical are presented. The main goal of this manuscript is to give a detailed and general protocol for the synthetic chemist of any skill level on how to prepare free heterocyclic carbenes by deprotonation using filter cannulas. Due to the air-sensitivity of the synthesized compounds, all experiments are performed under inert atmosphere using either Schlenk technique or a dinitrogen filled glovebox. Controlling Wanzlick's equilibrium (i.e., the dimerization of free carbenes), is a crucial requirement for the application of free carbenes in coordination chemistry or organic synthesis. Thus, we elaborate on the specific electronic and steric requirements favoring the formation of dimers, heterodimers, or monomers. We will show how proton catalysis allows for the formation of dimers, and how the electronic structure of carbenes and their dimers affects the reactivity with either moisture or air. The structural identity of the reported compounds is discussed based on their NMR spectra.


Assuntos
Metano/análogos & derivados , Catálise , Espectroscopia de Ressonância Magnética , Metano/química , Metano/isolamento & purificação
10.
J Environ Sci (China) ; 76: 238-248, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30528014

RESUMO

Anaerobic sludge from a sewage treatment plant was used to acclimatize microbial colonies capable of anaerobic oxidation of methane (AOM) coupled to sulfate reduction. Clone libraries and fluorescence in situ hybridization were used to investigate the microbial population. Sulfate-reducing bacteria (SRB) (e.g., Desulfotomaculum arcticum and Desulfobulbus propionicus) and anaerobic methanotrophic archaea (ANME) (e.g., Methanosaeta sp. and Methanolinea sp.) coexisted in the enrichment. The archaeal and bacterial cells were randomly or evenly distributed throughout the consortia. Accompanied by sulfate reduction, methane was oxidized anaerobically by the consortia of methane-oxidizing archaea and SRB. Moreover, CH4 and SO42- were consumed by methanotrophs and sulfate reducers with CO2 and H2S as products. The H3CSH produced by methanotrophy was an intermediate product during the process. The methanotrophic enrichment was inoculated in a down-flow biofilter for the treatment of methane and H2S from a landfill site. On average, 93.33% of H2S and 10.71% of methane was successfully reduced in the biofilter. This study tries to provide effective method for the synergistic treatment of waste gas containing sulfur compounds and CH4.


Assuntos
Sulfeto de Hidrogênio/isolamento & purificação , Sulfeto de Hidrogênio/metabolismo , Metano/isolamento & purificação , Metano/metabolismo , Anaerobiose , Biodegradação Ambiental , Deltaproteobacteria/metabolismo , Desulfotomaculum/metabolismo , Methanomicrobiales/metabolismo , Methanosarcinales/metabolismo , Oxirredução
12.
Bioresour Technol ; 268: 759-772, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30064899

RESUMO

The on-going annual increase in global methane (CH4) emissions can be largely attributed to anthropogenic activities. However, as more than half of these emissions are diffuse and possess a concentration less than 3% (v/v), physical-chemical treatments are inefficient as an abatement technology. In this regard, biotechnologies, such as biofiltration using methane-oxidizing bacteria, or methanotrophs, are a cost-effective and efficient means of combating diffuse CH4 emissions. In this review, a number of abiotic factors including temperature, pH, water content, packing material, empty-bed residence time, inlet gas flow rate, CH4 concentration, as well biotic factors, such as biomass development, are reviewed based on empirical findings on CH4 biofiltration studies that have been performed in the last decades.


Assuntos
Bactérias/metabolismo , Metano/metabolismo , Biomassa , Reatores Biológicos , Filtração , Metano/isolamento & purificação , Methylococcaceae
13.
Molecules ; 23(8)2018 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-30060557

RESUMO

Food and agricultural waste represents a growing problem with negative effects on the economy, environment, and human health. Winemaking produces byproducts with high added value, which can be used for new productions in several application fields. From the perspective of biorefinery and circular economy, grape seeds could be exploited by extracting bioactive compounds with high added value before using biomass for energy purposes. The markets concerned are, in addition to the food, cosmetics, and pharmaceuticals sectors, which use bioactive compounds, the sector of biopolymeric materials and of energy for the production of biohydrogen and biomethane. Generally, bioactive components should be investigated through an integrated and multidisciplinary study approach based on emerging analytical techniques; in this context, attention is addressed towards green and sustainable procedures; an update of extraction techniques, innovative technologies, and chemometrics are described. Nowadays, processes so far tested on a pilot scale for grape waste are developed to enhance the extraction yields. Here, a picture of the Italian experience applied to the byproducts of the wine industry is given.


Assuntos
Química Verde , Extratos Vegetais/química , Sementes/química , Vitis/química , Antioxidantes/química , Antioxidantes/isolamento & purificação , Antioxidantes/metabolismo , Biocombustíveis/provisão & distribuição , Biomassa , Fermentação , Humanos , Hidrogênio/isolamento & purificação , Hidrogênio/metabolismo , Itália , Metano/biossíntese , Metano/isolamento & purificação , Sementes/metabolismo , Vitis/metabolismo , Resíduos/análise , Vinho/provisão & distribuição
14.
N Biotechnol ; 46: 31-37, 2018 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-29909071

RESUMO

In order to limit ammonia (NH3) emissions from pig farms, various air cleaning solutions are widely applied. However, the literature data report that these systems (chemical scrubbers, bioscrubbers and biofilters) can be both inefficient and promote nitrous oxide (N2O) production. As air cleaning technologies should not contribute to secondary trace gases that may have a stronger environmental impact than the raw gas compounds themselves, the objective of this study was to quantify the effect of NH3 treatment in pig farms on greenhouse gas (GHG) emissions. GHGs (carbon dioxide, methane and nitrous oxide) emitted at the outlet of three different cleaning systems ("chemical scrubber", "bioscrubber" and "bioscrubber + denitrification step") were assessed and compared with the emissions generated by the exhaust air with "no treatment". The calculations show that the chemical scrubber has no effect whereas biological treatments can increase GHG emissions. The use of bioscrubbers alone for NH3 removal can remain acceptable provided that less than 3% of the NH3 entering the apparatus is converted into N2O. In such cases, a maximum increase of 1.9% in GHG emissions could be obtained. Conversely, the addition of a denitrification step to a bioscrubber must be avoided. Increases in overall GHG emissions of up to 25.8% were calculated but more significant increases could occur. With regard to GHG emissions, it is concluded that the use of a chemical scrubber is more suitable than a bioscrubber to treat exhaust air from pig farms.


Assuntos
Amônia/isolamento & purificação , Dióxido de Carbono/isolamento & purificação , Monitoramento Ambiental , Fazendas , Gases de Efeito Estufa/isolamento & purificação , Metano/isolamento & purificação , Óxido Nitroso/isolamento & purificação , Sus scrofa/metabolismo , Animais , Gases de Efeito Estufa/química
15.
Artigo em Inglês | MEDLINE | ID: mdl-29775126

RESUMO

Aqueous Li+ - containing samples (in DI water or well water) were eluted over Octolig®, a polyethylenediimine covalently attached to a high- surface-area silica gel, and only slight removal, if any, could be claimed. However, when using tetrahydrofuran (THF) as a solvent we quantitatively removed lithium ion with Octolig® or with alkylated Octolig®, demonstrating the efficacy of Octolig® and lack of advantage of a N, N'-dialkylated Octolig®. In addition, the removal of alkali metal ions (lithium, sodium, and potassium) in THF by Octolig® was partially selective: While being quantitative for lithium it was only about 40% for potassium. The study has potential implications for using geothermal brines not only as a heat source, but as a source of lithium as well.


Assuntos
Compostos de Lítio/isolamento & purificação , Lítio/isolamento & purificação , Metano/análogos & derivados , Poluentes Químicos da Água/isolamento & purificação , Purificação da Água/métodos , Água/química , Ânions/isolamento & purificação , Lítio/química , Metano/química , Metano/isolamento & purificação , Sílica Gel/química , Purificação da Água/instrumentação
16.
Water Res ; 136: 112-119, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29500972

RESUMO

Cellulose from used toilet paper is a major untapped resource embedded in municipal wastewater which recovery and valorization to valuable products can be optimized. Cellulosic primary sludge (CPS) can be separated by upstream dynamic sieving and anaerobically digested to recover methane as much as 4.02 m3/capita·year. On the other hand, optimal acidogenic fermenting conditions of CPS allows the production of targeted short-chain fatty acids (SCFAs) as much as 2.92 kg COD/capita·year. Here propionate content can be more than 30% and can optimize the enhanced biological phosphorus removal (EBPR) processes or the higher valuable co-polymer of polyhydroxyalkanoates (PHAs). In this work, first a full set of batch assays were used at three different temperatures (37, 55 and 70 °C) and three different initial pH (8, 9 and 10) to identify the best conditions for optimizing both the total SCFAs and propionate content from CPS fermentation. Then, the optimal conditions were applied in long term to a Sequencing Batch Fermentation Reactor where the highest propionate production (100-120 mg COD/g TVSfed·d) was obtained at 37 °C and adjusting the feeding pH at 8. This was attributed to the higher hydrolysis efficiency of the cellulosic materials (up to 44%), which increased the selective growth of Propionibacterium acidopropionici in the fermentation broth up to 34%. At the same time, around 88% of the phosphorus released during the acidogenic fermentation was recovered as much as 0.15 kg of struvite per capita·year. Finally, the potential market value was preliminary estimated for the recovered materials that can triple over the conventional scenario of biogas recovery in existing municipal wastewater treatment plants.


Assuntos
Celulose/metabolismo , Ácidos Graxos Voláteis/metabolismo , Metano/metabolismo , Fósforo/metabolismo , Esgotos/química , Anaerobiose , Biodegradação Ambiental , Reatores Biológicos/microbiologia , Ácidos Graxos Voláteis/isolamento & purificação , Fermentação , Hidrólise , Metano/isolamento & purificação , Fósforo/isolamento & purificação , Propionibacterium/metabolismo , Águas Residuárias/química
17.
Environ Sci Pollut Res Int ; 25(20): 19238-19246, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28936639

RESUMO

Much of the solid municipal waste generated by society is sent to landfill, where biodegrading processes result in the release of methane, a major contributor to climate change. This work examined the possibility of installing a type of biofilter within paved areas of the landfill site, making use of modified pervious paving, both to allow the escape of ground gas and to avoid contamination of groundwater, using specially designed test models with provision for gas sampling in various chambers. It proposes the incorporation of an active layer within a void forming box with a view to making dual use of the pervious pavement to provide both a drainage feature and a ground gas vent, whilst providing an active layer for the oxidation of methane by microbial action. The methane removal was observed to have been effected by microbial oxidation and as such offers great promise as a method of methane removal to allow for development of landfills.


Assuntos
Poluentes Atmosféricos/isolamento & purificação , Compostagem/instrumentação , Metano/isolamento & purificação , Plásticos , Eliminação de Resíduos/instrumentação , Eliminação de Resíduos/métodos , Instalações de Eliminação de Resíduos , Poluentes Atmosféricos/análise , Poluição do Ar/prevenção & controle , Biodegradação Ambiental , Monitoramento Ambiental , Metano/análise , Oxirredução
18.
Environ Sci Pollut Res Int ; 24(26): 20883-20896, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28721620

RESUMO

Methane (CH4) removal in the presence of ethanol vapors was performed by a stone-based bed and a hybrid packing biofilter in parallel. In the absence of ethanol, a methane removal efficiency of 55 ± 1% was obtained for both biofilters under similar CH4 inlet load (IL) of 13 ± 0.5 gCH4 m-3 h-1 and an empty bed residence time (EBRT) of 6 min. The results proved the key role of the bottom section in both biofilters for simultaneous removal of CH4 and ethanol. Ethanol vapor was completely eliminated in the bottom sections for an ethanol IL variation between 1 and 11 gethanol m-3 h-1. Ethanol absorption and accumulation in the biofilm phase as well as ethanol conversion to CO2 contributed to ethanol removal efficiency of 100%. In the presence of ethanol vapor, CO2 productions in the bottom section increased almost fourfold in both biofilters. The ethanol concentration in the leachate of the biofilter exceeding 2200 gethanol m-3leachate in both biofilters demonstrated the excess accumulation of ethanol in the biofilm phase. The biofilters responded quickly to an ethanol shock load followed by a starvation with 20% decrease of their performance. The return to normal operations in both biofilters after the transient conditions took less than 5 days. Unlike the hybrid packing biofilter, excess pressure drop (up to 1.9 cmH2O m-1) was an important concern for the stone bed biofilter. The biomass accumulation in the bottom section of the stone bed biofilter contributed to 80% of the total pressure drop. However, the 14-day starvation reduced the pressure drop to 0.25 cmH2O m-1.


Assuntos
Filtração , Metano/isolamento & purificação , Biomassa , Etanol/química , Filtração/métodos , Metano/química
20.
Huan Jing Ke Xue ; 38(4): 1558-1565, 2017 Apr 08.
Artigo em Chinês | MEDLINE | ID: mdl-29965160

RESUMO

Landfills are the third largest iron reservoir and one of the largest sources of methane release. Iron, as a kind of transition metal, plays a particularly important role in environmental biogeochemistry and is closely linked to the biogeochemical cycle of C, S and N. The aged refuse could be utilized as bio-cover material to improve the removal of contaminants. Therefore, this work investigated the effect of iron reduction on anaerobic removal of methane, and the interactions of ferric iron with nitrate and sulfate in the aged refuse. The columns were operated as landfill bio-covers and recirculated leachate with addition of FeCl3 solution. In the experiment, three columns were used, two of them were used as controls (named as B1 and B3), B1 was fed with leachate and CH4, whereas B3 was only recirculated with leachate adding FeCl3. The treatment B2 was fed with the above two substrates. During the operation of columns, the contents of CH4, CO2 and N2 in the gas, and the concentrations of NO3-, NO2-, NH4+, SO42-, Fe(Ⅲ) and Fe(Ⅱ) in the leachate and refuse were respectively determined. The results showed that adding ferric iron obviously enhanced the removal of methane in anaerobic aged refuse, the decrease of methane content with time obeyed zero-order kinetic, and the rate of methane removal(denoted as CH4/aged refuse)reached 1.28 mmol·(kg·d)-1. In the anaerobic condition, methane could improve the reduction of Fe(Ⅲ) to dissolved, active and bioavailable Fe(Ⅱ). The active Fe(Ⅱ) probably coupled to the transformation of NO3- and SO42-, and thus accelerated the removal of NO3- and SO42-.


Assuntos
Compostos Férricos/química , Resíduos de Alimentos , Metano/isolamento & purificação , Eliminação de Resíduos , Disponibilidade Biológica , Instalações de Eliminação de Resíduos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA