Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 167
Filtrar
1.
J Appl Toxicol ; 41(4): 595-606, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33067908

RESUMO

The micronucleus test (MNT) is the most widely applied short-term assay to detect clastogens or spindle disruptors. The use of flow cytometry (FCM) has been reported for micronucleated erythrocytes scoring in peripheral blood. The aim of this study was to develop a novel and practical protocol for MNT in rat peripheral blood by FCM, with the method validation. CD71-fluorescein isothiocyanate and DRAQ5 were adopted for the fluorescent staining of proteins and DNA, respectively, to detect micronuclei. To validate the method, groups of male Sprague-Dawley rats (five per group) received two oral gavage doses at 0 and 24 h of six chemicals (four positive mutagens: ethyl methanesulphonate [EMS], cyclophosphamide [CP], colchicine [COL], and ethyl nitrosourea [ENU]; two nongenotoxic chemicals: sodium saccharin and eugenol). Blood samples were collected from the tail vein before and on the five continuous days after treatments; all of which were analyzed for micronuclei presence by both the manual (Giemsa staining) and FCM methods. The FCM-based method consistently demonstrated highly sensitive responses for micronucleus detection at all concentrations and all time points for EMS, CP, COL, and ENU. Sodium saccharin and eugenol could be identified as negative in this protocol. Results obtained with the FCM-based method correlated well with the micronucleus frequencies (r = 0.659-0.952), and the proportion of immature erythrocytes (r = 0.915-0.981) tested by Giemsa staining. The method reported here, with easy operation, low background, and requirement for a regular FCM, could be an efficient system for micronucleus scoring.


Assuntos
Citometria de Fluxo/métodos , Leucócitos Mononucleares/química , Testes para Micronúcleos/métodos , Mutagênicos/toxicidade , Compostos de Nitrosoureia/toxicidade , Reticulócitos , Animais , Colchicina/toxicidade , Ciclofosfamida/toxicidade , Metanossulfonato de Etila/análogos & derivados , Metanossulfonato de Etila/toxicidade , Eugenol/toxicidade , Masculino , Ratos , Ratos Sprague-Dawley , Sacarina/toxicidade
2.
Biochim Biophys Acta Biomembr ; 1862(2): 183129, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31738900

RESUMO

Slow inactivation in voltage-gated Na+ channels (Navs) plays an important physiological role in excitable tissues (muscle, heart, nerves) and mutations that disrupt Nav slow inactivation can result in pathophysiologies (myotonia, arrhythmias, epilepsy). While the molecular mechanisms responsible for slow inactivation remain elusive, previous studies have suggested a role for the pore-lining D1-S6 helix. The goals of this research were to determine if (1) cysteine substitutions in D1-S6 affect gating kinetics and (2) methanethiosulfonate ethylammonium (MTSEA) accessibility changes in different kinetic states. Site-directed mutagenesis in the human skeletal muscle isoform hNav1.4 was used to substitute cysteine for eleven amino acids in D1-S6 from L433 to L443. Mutants were expressed in HEK cells and recorded from with whole-cell patch clamp. All mutations affected one or more baseline kinetics of the sodium channel, including activation, fast inactivation, and slow inactivation. Substitution of cysteine (for nonpolar residues) adjacent to polar residues destabilized slow inactivation in G434C, F436C, I439C, and L441C. Cysteine substitution without adjacent polar residues enhanced slow inactivation in L438C and N440C, and disrupted possible H-bonds involving Y437:D4 S4-S5 and N440:D4-S6. MTSEA exposure in closed, fast-inactivated, or slow-inactivated states in most mutants had little-to-no effect. In I439C, MTSEA application in closed, fast-inactivated, and slow-inactivated states produced irreversible reduction in current, suggesting I439C accessibility to MTSEA in all three kinetic states. D1-S6 is important for Nav gating kinetics, stability of slow-inactivated state, structural contacts, and state-dependent positioning. However, prominent reconfiguration of D1-S6 may not occur in slow inactivation.


Assuntos
Substituição de Aminoácidos , Cisteína/genética , Ativação do Canal Iônico , Canal de Sódio Disparado por Voltagem NAV1.4/química , Cisteína/química , Metanossulfonato de Etila/análogos & derivados , Metanossulfonato de Etila/química , Células HEK293 , Humanos , Simulação de Dinâmica Molecular , Canal de Sódio Disparado por Voltagem NAV1.4/genética , Canal de Sódio Disparado por Voltagem NAV1.4/metabolismo , Ligação Proteica , Domínios Proteicos
3.
Physiol Rep ; 5(10): e13295, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28554967

RESUMO

In cardiac myocytes, an enhancement of late sodium current (INaL) under pathological conditions is known to cause prolongation of action potential duration (APD). This study investigated the contribution of INaL under basal, physiological conditions to the APD Whole-cell INaL and the APD of ventricular myocytes isolated from healthy adult guinea pigs were measured at 36°C. The INaL inhibitor GS967 or TTX was applied to block INaL The amplitude of basal INaL and the APD at 50% repolarization in myocytes stimulated at a frequency of 0.17 Hz were -0.24 ± 0.02 pA/pF and 229 ± 6 msec, respectively. GS967 (0.01-1 µmol/L) concentration dependently reduced the basal INaL by 18 ± 3-82 ± 4%. At the same concentrations, GS967 shortened the APD by 9 ± 2 to 25 ± 1%. Similarly, TTX at 0.1-10 µmol/L decreased the basal INaL by 13 ± 1-94 ± 1% and APD by 8 ± 1-31 ± 2%. There was a close correlation (R2 = 0.958) between the percentage inhibition of INaL and the percentage shortening of APD caused by either GS967 or TTX MTSEA (methanethiosulfonate ethylammonium, 2 mmol/L), a NaV1.5 channel blocker, reduced the INaL by 90 ± 5%, suggesting that the NaV1.5 channel isoform is the major contributor to the basal INaL KN-93 (10 µmol/L) and AIP (2 µmol/L), blockers of CaMKII, moderately reduced the basal INaL Thus, this study provides strong evidence that basal endogenous INaL is a significant contributor to the APD of cardiac myocytes. In addition, the basal INaL of guinea pig ventricular myocytes is mainly generated from NaV1.5 channel isoform and is regulated by CaMKII.


Assuntos
Potenciais de Ação , Miócitos Cardíacos/fisiologia , Canal de Sódio Disparado por Voltagem NAV1.5/fisiologia , Função Ventricular , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/antagonistas & inibidores , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/fisiologia , Metanossulfonato de Etila/administração & dosagem , Metanossulfonato de Etila/análogos & derivados , Feminino , Cobaias , Masculino , Piridinas/administração & dosagem , Tetrodotoxina/administração & dosagem , Triazóis/administração & dosagem , Bloqueadores do Canal de Sódio Disparado por Voltagem/administração & dosagem
4.
AIDS ; 30(17): 2729-2730, 2016 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-27662548

RESUMO

Ethyl methyl sulfone contained in nelfinavir between 2007 and 2008 accidentally exposed embryos and fetuses to a powerful mutagen. We report data for 101 HIV-uninfected children exposed in utero included in the French prospective national cohort. The incidence of malformation was similar to that in the cohort as a whole with different drug exposures; no children had developed cancer after 9 years of follow-up.


Assuntos
Anormalidades Congênitas/epidemiologia , Metanossulfonato de Etila/análogos & derivados , Inibidores da Protease de HIV/administração & dosagem , Troca Materno-Fetal , Mutagênicos/efeitos adversos , Nelfinavir/administração & dosagem , Efeitos Tardios da Exposição Pré-Natal/epidemiologia , Adolescente , Criança , Pré-Escolar , Contaminação de Medicamentos , Metanossulfonato de Etila/administração & dosagem , Metanossulfonato de Etila/efeitos adversos , Feminino , Seguimentos , França/epidemiologia , Inibidores da Protease de HIV/química , Humanos , Lactente , Recém-Nascido , Masculino , Mutagênicos/administração & dosagem , Nelfinavir/química , Gravidez , Estudos Prospectivos
5.
Biochim Biophys Acta ; 1864(11): 1473-80, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27479487

RESUMO

The oxoglutarate carrier (OGC) belongs to the mitochondrial carrier family and plays a key role in important metabolic pathways. Here, site-directed mutagenesis was used to conservatively replace lysine 122 by arginine, in order to investigate new structural rearrangements required for substrate translocation. K122R mutant was kinetically characterized, exhibiting a significant Vmax reduction with respect to the wild-type (WT) OGC, whereas Km value was unaffected, implying that this substitution does not interfere with 2-oxoglutarate binding site. Moreover, K122R mutant was more inhibited by several sulfhydryl reagents with respect to the WT OGC, suggesting that the reactivity of some cysteine residues towards these Cys-specific reagents is increased in this mutant. Different sulfhydryl reagents were employed in transport assays to test the effect of the cysteine modifications on single-cysteine OGC mutants named C184, C221, C224 (constructed in the WT background) and K122R/C184, K122R/C221, K122R/C224 (constructed in the K122R background). Cysteines 221 and 224 were more deeply influenced by some sulfhydryl reagents in the K122R background. Furthermore, the presence of 2-oxoglutarate significantly enhanced the degree of inhibition of K122R/C221, K122R/C224 and C224 activity by the sulfhydryl reagent 2-Aminoethyl methanethiosulfonate hydrobromide (MTSEA), suggesting that cysteines 221 and 224, together with K122, take part to structural rearrangements required for the transition from the c- to the m-state during substrate translocation. Our results are interpreted in the light of the homology model of BtOGC, built by using as a template the X-ray structure of the bovine ADP/ATP carrier isoform 1 (AAC1).


Assuntos
Cisteína/química , Ácidos Cetoglutáricos/química , Proteínas de Membrana Transportadoras/química , Mitocôndrias/química , Translocases Mitocondriais de ADP e ATP/química , Animais , Arginina/química , Arginina/metabolismo , Sítios de Ligação , Bovinos , Cisteína/metabolismo , Metanossulfonato de Etila/análogos & derivados , Metanossulfonato de Etila/química , Expressão Gênica , Ácidos Cetoglutáricos/metabolismo , Cinética , Lisina/química , Lisina/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Mitocôndrias/metabolismo , Translocases Mitocondriais de ADP e ATP/genética , Translocases Mitocondriais de ADP e ATP/metabolismo , Simulação de Acoplamento Molecular , Mutagênese Sítio-Dirigida , Ligação Proteica , Domínios Proteicos , Estrutura Secundária de Proteína , Homologia Estrutural de Proteína , Especificidade por Substrato
6.
ACS Chem Neurosci ; 7(10): 1406-1417, 2016 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-27425420

RESUMO

The transporters for the neurotransmitters serotonin and dopamine (SERT and DAT, respectively) are targets for drugs used in the treatment of mental disorders and widely used drugs of abuse. Studies of prokaryotic homologues have advanced our structural understanding of SERT and DAT, but it still remains enigmatic whether the human transporters contain one or two high-affinity substrate binding sites. We have designed and employed 24 bivalent ligands possessing a highly systematic combination of substrate moieties (serotonin and/or dopamine) and aliphatic or poly(ethylene glycol) spacers to reveal insight into substrate recognition in SERT and DAT. An optimized bivalent ligand comprising two serotonin moieties binds SERT with 3,800-fold increased affinity compared to that of serotonin, suggesting that the human transporters have two distinct substrate binding sites. We show that the bivalent ligands are inhibitors of SERT and an experimentally validated docking model suggests that the bivalent compounds bind with one substrate moiety in the central binding site (the S1 site), whereas the other substrate moiety binds in a distinct binding site (the S2 site). A systematic study of nonconserved SERT/DAT residues surrounding the proposed binding region showed that nonconserved binding site residues do not contribute to selective recognition of substrates in SERT or DAT. This study provides novel insight into the molecular basis for substrate recognition in human transporters and provides an improved foundation for the development of new drugs targeting SERT and DAT.


Assuntos
Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Células COS , Chlorocebus aethiops , Dopamina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Dopamina/genética , Metanossulfonato de Etila/análogos & derivados , Metanossulfonato de Etila/farmacologia , Humanos , Ligação de Hidrogênio , Ligantes , Simulação de Acoplamento Molecular , Mutação , Neurotransmissores/farmacologia , Oócitos/efeitos dos fármacos , Oócitos/metabolismo , Técnicas de Patch-Clamp , Serotonina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Serotonina/genética , Xenopus
7.
J Physiol ; 594(19): 5555-71, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27195487

RESUMO

KEY POINTS: The role of the ß1 strand in GABAA receptor function is unclear. It lies anti-parallel to the ß2 strand, which is known to participate in receptor activation. Molecular dynamics simulation revealed solvent accessible residues within the ß1 strand of the GABAA ß3 homopentamer that might be amenable to analysis using the substituted Cys accessibility method. Cys substitutions from Asp43 to Thr47 in the GABAA α1 subunit showed that D43C and T47C reduced the apparent potency of GABA. F45C caused a biphasic GABA concentration-response relationship and increased spontaneous gating. Cys43 and Cys47 were accessible to 2-aminoethyl methanethiosulphonate (MTSEA) modification, whereas Cys45 was not. Both GABA and the allosteric agonist propofol reduced MTSEA modification of Cys43 and Cys47. By contrast, modification of Cys64 in the ß2 strand loop D was impeded by GABA but unaffected by propofol. These data reveal movement of ß1 strand loop G residues during agonist activation of the GABAA receptor. ABSTRACT: The GABAA receptor α subunit ß1 strand runs anti-parallel to the ß2 strand, which contains loop D, known to participate in receptor activation and agonist binding. However, a role for the ß1 strand has yet to be established. We used molecular dynamics simulation to quantify the solvent accessible surface area (SASA) of ß1 strand residues in the GABAA ß3 homopentamer structure. Residues in the complementary interface equivalent to those between Asp43 and Thr47 in the α1 subunit have an alternating pattern of high and low SASA consistent with a ß strand structure. We investigated the functional role of these ß1 strand residues in the α1 subunit by individually replacing them with Cys residues. D43C and T47C substitutions reduced the apparent potency of GABA at α1ß2γ2 receptors by 50-fold and eight-fold, respectively, whereas the F45C substitution caused a biphasic GABA concentration-response relationship and increased spontaneous gating. Receptors with D43C or T47C substitutions were sensitive to 2-aminoethyl methanethiosulphonate (MTSEA) modification. However, GABA-evoked currents mediated by α1(F45C)ß2γ2 receptors were unaffected by MTSEA, suggesting that this residue is inaccessible. Both GABA and the allosteric agonist propofol reduced MTSEA modification of α1(D43C)ß2γ2 and α1(T47C)ß2γ2 receptors, indicating movement of the ß1 strand even during allosteric activation. This is in contrast to α1(F64C)ß2γ2 receptors, where only GABA, but not propofol, reduced MTSEA modification. These findings provide the first functional evidence for movement of the ß1 strand during gating of the receptor and identify residues that are critical for maintaining GABAA receptor function.


Assuntos
Receptores de GABA-A/química , Receptores de GABA-A/fisiologia , Metanossulfonato de Etila/análogos & derivados , Metanossulfonato de Etila/farmacologia , Células HEK293 , Humanos , Simulação de Dinâmica Molecular , Propofol/farmacologia , Conformação Proteica em Folha beta , Subunidades Proteicas/química , Subunidades Proteicas/fisiologia , Ácido gama-Aminobutírico/farmacologia
8.
J Physiol ; 593(6): 1409-27, 2015 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-25772296

RESUMO

KEY POINTS: Late Na(+) current (INaL) contributes to action potential remodelling and Ca(2+)/Na(+) changes in heart failure. The molecular identity of INaL remains unclear. The contributions of different Na(+) channel isoforms, apart from the cardiac isoform, remain unknown. We discovered and characterized a substantial contribution of neuronal isoform Nav1.1 to INaL. This new component is physiologically relevant to the control of action potential shape and duration, as well as to cell Ca(2+) dynamics, especially in heart failure. ABSTRACT: Late Na(+) current (INaL) contributes to action potential (AP) duration and Ca(2+) handling in cardiac cells. Augmented INaL was implicated in delayed repolarization and impaired Ca(2+) handling in heart failure (HF). We tested if Na(+) channel (Nav) neuronal isoforms contribute to INaL and Ca(2+) cycling defects in HF in 17 dogs in which HF was achieved via sequential coronary artery embolizations. Six normal dogs served as control. Transient Na(+) current (INaT ) and INaL in left ventricular cardiomyocytes (VCMs) were recorded by patch clamp while Ca(2+) dynamics was monitored using Fluo-4. Virally delivered short interfering RNA (siRNA) ensured Nav1.1 and Nav1.5 post-transcriptional silencing. The expression of six Navs was observed in failing VCMs as follows: Nav1.5 (57.3%) > Nav1.2 (15.3%) > Nav1.1 (11.6%) > Nav2.1 (10.7%) > Nav1.3 (4.6%) > Nav1.6 (0.5%). Failing VCMs showed up-regulation of Nav1.1 expression, but reduction of Nav1.6 mRNA. A similar Nav expression pattern was found in samples from human hearts with ischaemic HF. VCMs with silenced Nav1.5 exhibited residual INaT and INaL (∼30% of control) with rightwardly shifted steady-state activation and inactivation. These currents were tetrodotoxin sensitive but resistant to MTSEA, a specific Nav1.5 blocker. The amplitude of the tetrodotoxin-sensitive INaL was 0.1709 ± 0.0299 pA pF(-1) (n = 7 cells) and the decay time constant was τ = 790 ± 76 ms (n = 5). This INaL component was lacking in VCMs with a silenced Nav1.1 gene, indicating that, among neuronal isoforms, Nav1.1 provides the largest contribution to INaL. At -10 mV this contribution is ∼60% of total INaL. Our further experimental and in silico examinations showed that this new Nav1.1 INaL component contributes to Ca(2+) accumulation in failing VCMs and modulates AP shape and duration. In conclusion, we have discovered an Nav1.1-originated INaL component in dog heart ventricular cells. This component is physiologically relevant to controlling AP shape and duration, as well as to cell Ca(2+) dynamics.


Assuntos
Potenciais de Ação , Insuficiência Cardíaca/metabolismo , Miócitos Cardíacos/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.1/metabolismo , Animais , Sinalização do Cálcio , Células Cultivadas , Cães , Metanossulfonato de Etila/análogos & derivados , Metanossulfonato de Etila/farmacologia , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/fisiopatologia , Ventrículos do Coração/citologia , Humanos , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/fisiologia , Canal de Sódio Disparado por Voltagem NAV1.1/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Bloqueadores dos Canais de Sódio/farmacologia , Tetrodotoxina/farmacologia
9.
Biochem Pharmacol ; 86(11): 1584-93, 2013 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-24084430

RESUMO

Urotensin-II (UII), a cyclic undecapeptide, selectively binds the urotensin-II receptor (UT receptor), a G protein-coupled receptor (GPCR) involved in cardiovascular effects and associated with numerous pathophysiological conditions including hypertension, atherosclerosis, heart failure, pulmonary hypertension and others. In order to identify specific residues in transmembrane domains (TM) three (TM3), four (TM4) and five (TM5) that are involved in the formation of the UT receptor binding pocket, we used the substituted-cysteine accessibility method (SCAM). Each residue in the F118((3.20)) to S146((3.48)) fragment of TM3, the L168((4.44)) to G194((4.70)) fragment of TM4 and the W203((5.30)) to V232((5.59)) fragment of TM5, was mutated, individually, to a cysteine. The resulting mutants were then expressed in COS-7 cells and subsequently treated with the positively charged sulfhydryl-specific alkylating agent methanethiosulfonate-ethylammonium (MTSEA). MTSEA treatment resulted in a significant reduction in the binding of (125)I-UII to TM3 mutants L126C((3.28)), F127C((3.29)), F131C((3.33)) and M134C((3.36)) and TM4 mutants M184C((4.60)) and I188C((4.64)). No loss of binding was detected following treatment by MTSEA for all TM5 mutants tested. In absence of a crystal structure of UT receptor, these results identify key determinants in TM3, TM4 and TM5 that participate in the formation of the UT receptor binding pocket and has led us to propose a homology model of the UT receptor.


Assuntos
Receptores Acoplados a Proteínas G/metabolismo , Urotensinas/metabolismo , Substituição de Aminoácidos , Animais , Sítios de Ligação , Células COS , Técnicas de Cultura de Células , Chlorocebus aethiops , Cisteína/genética , Metanossulfonato de Etila/análogos & derivados , Metanossulfonato de Etila/farmacologia , Ligantes , Modelos Moleculares , Mutação , Ratos , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/genética , Transfecção
10.
Am J Physiol Cell Physiol ; 305(4): C392-405, 2013 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-23636456

RESUMO

Mutations in SLC4A4, the gene encoding the electrogenic Na(+)-HCO3(-) cotransporter NBCe1, cause severe proximal renal tubular acidosis (pRTA), growth retardation, decreased IQ, and eye and teeth abnormalities. Among the known NBCe1 mutations, the disease-causing mechanism of the T485S (NBCe1-A numbering) mutation is intriguing because the substituted amino acid, serine, is structurally and chemically similar to threonine. In this study, we performed intracellular pH and whole cell patch-clamp measurements to investigate the base transport and electrogenic properties of NBCe1-A-T485S in mammalian HEK 293 cells. Our results demonstrated that Ser substitution of Thr485 decreased base transport by ~50%, and importantly, converted NBCe1-A from an electrogenic to an electroneutral transporter. Aqueous accessibility analysis using sulfhydryl reactive reagents indicated that Thr485 likely resides in an NBCe1-A ion interaction site. This critical location is also supported by the finding that G486R (a pRTA causing mutation) alters the position of Thr485 in NBCe1-A thereby impairing its transport function. By using NO3(-) as a surrogate ion for CO3(2-), our result indicated that NBCe1-A mediates electrogenic Na(+)-CO3(2-) cotransport when functioning with a 1:2 charge transport stoichiometry. In contrast, electroneutral NBCe1-T485S is unable to transport NO3(-), compatible with the hypothesis that it mediates Na(+)-HCO3(-) cotransport. In patients, NBCe1-A-T485S is predicted to transport Na(+)-HCO3(-) in the reverse direction from blood into proximal tubule cells thereby impairing transepithelial HCO3(-) absorption, possibly representing a new pathogenic mechanism for generating human pRTA.


Assuntos
Acidose Tubular Renal/metabolismo , Túbulos Renais Proximais/metabolismo , Mutação de Sentido Incorreto , Simportadores de Sódio-Bicarbonato/metabolismo , Acidose Tubular Renal/genética , Bicarbonatos/metabolismo , Carbonatos/metabolismo , Metanossulfonato de Etila/análogos & derivados , Metanossulfonato de Etila/farmacologia , Etilmaleimida/farmacologia , Predisposição Genética para Doença , Células HEK293 , Humanos , Concentração de Íons de Hidrogênio , Túbulos Renais Proximais/efeitos dos fármacos , Potenciais da Membrana , Mesilatos/farmacologia , Mutagênese Sítio-Dirigida , Nitratos/metabolismo , Técnicas de Patch-Clamp , Fenótipo , Sódio/metabolismo , Simportadores de Sódio-Bicarbonato/efeitos dos fármacos , Simportadores de Sódio-Bicarbonato/genética , Transfecção
11.
Biophys J ; 104(6): 1230-7, 2013 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-23528082

RESUMO

Channelrhodopsin-2 (ChR2) is a light-activated nonselective cation channel that is found in the eyespot of the unicellular green alga Chlamydomonas reinhardtii. Despite the wide employment of this protein to control the membrane potential of excitable membranes, the molecular determinants that define the unique ion conductance properties of this protein are not well understood. To elucidate the cation permeability pathway of ion conductance, we performed cysteine scanning mutagenesis of transmembrane domain three followed by labeling with methanethiosulfonate derivatives. An analysis of our experimental results as modeled onto the crystal structure of the C1C2 chimera demonstrate that the ion permeation pathway includes residues on one face of transmembrane domain three at the extracellular side of the channel that face the center of ChR2. Furthermore, we examined the role of a residue at the extracellular side of transmembrane domain three in ion conductance. We show that ion conductance is mediated, in part, by hydrogen bonding at the extracellular side of transmembrane domain three. These results provide a starting point for examining the cation permeability pathway for ChR2.


Assuntos
Membrana Celular/metabolismo , Rodopsina/química , Rodopsina/metabolismo , Sequência de Aminoácidos , Animais , Transporte Biológico , Metanossulfonato de Etila/análogos & derivados , Metanossulfonato de Etila/metabolismo , Espaço Extracelular/metabolismo , Feminino , Íons/metabolismo , Mesilatos/metabolismo , Modelos Moleculares , Mutagênese Sítio-Dirigida , Permeabilidade , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Rodopsina/genética
12.
Biochem Pharmacol ; 85(4): 541-50, 2013 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-23219524

RESUMO

The chemokine SDF-1 (CXCL12) selectively binds to CXCR4, a member of the G protein-coupled receptor (GPCR) superfamily. In this study, we used the substituted-cysteine accessibility method (SCAM) to identify specific residues of the fourth transmembrane domain (TM4) that contribute to the formation of the binding pocket of CXCR4 in its inactive and active state. We successively substituted each residue from E179((4.68)) to K154((4.43)) with cysteine and expressed the mutants in COS-7 cells. Mutant receptors were then alkylated with methanethiosulfonate-ethylammonium (MTSEA), and binding inhibition was monitored using the CXCR4 antagonist FC131 [cyclo(-D-Tyr(1)-Arg(2)-Arg(3)-Nal(4)-Gly(5)-)], which displays anti-HIV activity. MTSEA treatment resulted in a significant reduction of FC131 binding to D171C((4.60)) and P170C((4.59)). To assess TM4 accessibility in an active state of CXCR4, TM4 cysteine mutants were transposed within the constitutively active mutant N119S((3.35)). MTSEA treatment of TM4 mutants N119S-S178C((4.67)), N119S-V177C((4.66)) and N119S-I173C((4.62)) resulted in a significant reduction in FC131 binding. Protection assays using FC131 prior to MTSEA treatment significantly reduced the alkylation of all MTSEA-sensitive mutants. The accessibility of the D171C((4.60)) and P170C((4.59)) residues suggests that they are oriented towards a water-accessible area of the binding pocket of CXCR4. S178C((4.67)), V177C((4.66)) and I173C((4.62)) showed binding inhibition only in an N119S((3.35)) background. Taken together our results suggest that TM4 and ECL2 undergo conformational changes during CXCR4 activation and also demonstrate how TM4 is an important feature for the binding of anti-HIV compounds.


Assuntos
Cisteína , Mutagênese , Receptores CXCR4/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Fármacos Anti-HIV/metabolismo , Sítios de Ligação , Células COS , Chlorocebus aethiops , Cisteína/metabolismo , Metanossulfonato de Etila/análogos & derivados , Metanossulfonato de Etila/farmacologia , Humanos , Indicadores e Reagentes , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Ligação Proteica , Conformação Proteica , Estrutura Terciária de Proteína , Receptores CXCR4/química , Receptores CXCR4/genética
13.
PLoS One ; 7(10): e47693, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23082193

RESUMO

A common phenotype for many genetic diseases is that the cell is unable to deliver full-length membrane proteins to the cell surface. For some forms of autism, hereditary spherocytosis and color blindness, the culprits are single point mutations to cysteine. We have studied two inheritable cysteine mutants of cyclic nucleotide-gated channels that produce achromatopsia, a common form of severe color blindness. By taking advantage of the reactivity of cysteine's sulfhydryl group, we modified these mutants with chemical reagents that attach moieties with similar chemistries to the wild-type amino acids' side chains. We show that these modifications restored proper delivery to the cell membrane. Once there, the channels exhibited normal functional properties. This strategy might provide a unique opportunity to assess the chemical nature of membrane protein traffic problems.


Assuntos
Membrana Celular/metabolismo , Cisteína/genética , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Mutação/genética , Substituição de Aminoácidos/genética , Animais , Bovinos , Membrana Celular/efeitos dos fármacos , Canais de Cátion Regulados por Nucleotídeos Cíclicos/genética , Canais de Cátion Regulados por Nucleotídeos Cíclicos/metabolismo , Metanossulfonato de Etila/análogos & derivados , Metanossulfonato de Etila/farmacologia , Proteínas de Fluorescência Verde/metabolismo , Humanos , Proteínas Mutantes/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Fatores de Tempo , Xenopus
14.
Br J Pharmacol ; 167(6): 1369-77, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22747884

RESUMO

BACKGROUND AND PURPOSE: NO is a highly diffusible and reactive gas produced in the nervous system, which acts as a neuronal signal mediating physiological or pathological mechanisms. NO can modulate the activity of neurotransmitter receptors and ion channels, including NMDA and GABA(A) receptors. In the present work, we examined whether GABA(C) receptor function can also be regulated by NO. EXPERIMENTAL APPROACH: Homomeric ρ1 GABA(C) receptors were expressed in oocytes and GABA-evoked responses electrophysiologically recorded in the presence or absence of the NO donor DEA. Chemical protection of cysteines by selective sulfhydryl reagents and site-directed mutagenesis were used to determine the protein residues involved in the actions of NO. KEY RESULTS: GABAρ1 receptor responses were significantly enhanced in a dose-dependent, fast and reversible manner by DEA and the specific NO scavenger CPTIO prevented these potentiating effects. The ρ1 subunits contain only three cysteine residues, two extracellular at the Cys-loop (C177 and C191) and one intracellular (C364). Mutations of C177 and C191 render the ρ1 GABA receptors non-functional, but C364 can be safely exchanged by alanine (C364A). NEM, N-ethyl maleimide and (2-aminoethyl) methanethiosulfonate prevented the effects of DEA on GABAρ1 receptors. Meanwhile, the potentiating effects of DEA on mutant GABAρ1(C364A) receptors were similar to those observed on wild-type receptors. CONCLUSIONS AND IMPLICATIONS: Our results suggest that the function of GABA(C) receptors can be enhanced by NO acting at the extracellular Cys-loop.


Assuntos
Óxido Nítrico/fisiologia , Receptores de GABA/fisiologia , Animais , Benzoatos/farmacologia , Metanossulfonato de Etila/análogos & derivados , Metanossulfonato de Etila/farmacologia , Etilmaleimida/farmacologia , Hidrazinas/farmacologia , Imidazóis/farmacologia , Doadores de Óxido Nítrico/farmacologia , Oócitos , S-Nitrosoglutationa/farmacologia , Xenopus laevis , Ácido gama-Aminobutírico/farmacologia
15.
Br J Pharmacol ; 167(6): 1378-88, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22748056

RESUMO

BACKGROUND AND PURPOSE: T-cells usually express voltage-gated K(v) 1.3 channels. These channels are distinguished by their typical C-type inactivation. Therefore, to be able to rationally design drugs specific for the C-type inactivation state that may have therapeutic value in autoimmune disease therapy, it is necessary to identify those amino acids that are accessible for drug binding in C-type inactivated channels. EXPERIMENTAL APPROACH: The influence of 2-aminoethylmethanethiosulphonate (MTSEA) on currents through wild-type human K(v)1.3 (hK(v)1.3) and three mutant channels, hK(v)1.3_L418C, hK(v)1.3_T419C and hK(v)1.3_I420C, in the closed, open and inactivated states was investigated by the patch-clamp technique. KEY RESULTS: Currents through hK(v)1.3_L418C and hK(v)1.3_T419C channels were irreversibly reduced after the external application of MTSEA in the open state but not in the inactivated and closed states. Currents through hK(v)1.3_I420C channels were irreversibly reduced in the open and inactivated states but not in the closed state. In the presence of verapamil, the MTSEA modification of hK(v)1.3_T419C and hK(v)1.3_I420C channels was prevented, while the MTSEA modification of hK(v)1.3_L418C channels was unaffected. CONCLUSION AND IMPLICATIONS: From our experiments, we conclude that the activation gate of all mutant channels must be open for modification by MTSEA and must also be open during inactivation. In addition, the relative movement of the S6 segments that occur during C-type inactivation includes a movement of the side chains of the amino acids at positions 418 and 419 away from the pore lining. Furthermore, the overlapping binding site for MTSEA and verapamil does not include position 418 in hK(v) 1.3 channels.


Assuntos
Metanossulfonato de Etila/análogos & derivados , Canal de Potássio Kv1.3/fisiologia , Verapamil/farmacologia , Animais , Células COS , Chlorocebus aethiops , Metanossulfonato de Etila/farmacologia , Humanos , Canal de Potássio Kv1.3/química , Simulação de Acoplamento Molecular , Conformação Proteica
16.
J Mol Cell Cardiol ; 53(5): 593-8, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22759452

RESUMO

Voltage gated sodium channels (Na(V)s) are essential to propagate neuronal and cardiac electrical impulses. While the cardiac Na(+) current (I(Na)) is often all attributed to the cardiac isoform, Na(V)1.5, some evidence suggests that other Na(+) channel isoforms are also expressed in the heart ventricle. One way to distinguish Na(+) channels is by their sensitivity to tetrodotoxin (TTX); various "non-cardiac-type" Na(+) channels are relatively sensitive to TTX (denoted tNa(V) channels) compared to Na(V)1.5 channels. tNa(V) channels have been detected in hearts with various pathological conditions such as hypertrophy, infarction and ischemia, where they might enhance the late Na(+) current (I(NaL)) thereby prolonging the action potential under such conditions (resulting in a prolonged QT interval on the EKG). The principal aim of this article is to evaluate the extent to which non-cardiac isotypes contribute to I(NaL) under normal physiological conditions. I(NaL) was measured in acutely dissociated dog cardiomyocytes using the patch-clamp technique. Our results indicate that 44% on average of the late I(Na) current is due to non-cardiac Na(V)s. Previous studies indicated that the overexpression of non-cardiac Na(V) channels is responsible for the prolonged duration of the cardiac action potential (and, thereby, a prolonged QT interval) under pathophysiological conditions associated with various heart diseases. Our finding indicates that non-cardiac Na(V) channels are strong contributors to I(NaL) under physiological conditions thereby suggesting that these channels are also major determinants of the duration of the cardiac action potential even in healthy hearts. Interestingly, these results may explain the observations of cardiac arrhythmias associated with prolonged QT intervals in people with inherited neuronal and musculoskeletal diseases involving mutations that enhance the current from non-cardiac-type Na(V)s, a connection which apparently was never made before.


Assuntos
Ventrículos do Coração/citologia , Miócitos Cardíacos/fisiologia , Canal de Sódio Disparado por Voltagem NAV1.5/metabolismo , Potenciais de Ação , Animais , Linhagem Celular , Cães , Metanossulfonato de Etila/análogos & derivados , Metanossulfonato de Etila/farmacologia , Potenciais da Membrana , Mesilatos/farmacologia , Miócitos Cardíacos/metabolismo , Técnicas de Patch-Clamp , Tetrodotoxina , Bloqueadores do Canal de Sódio Disparado por Voltagem/farmacologia
17.
J Pharmacol Exp Ther ; 340(2): 339-49, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22040678

RESUMO

Ethanol alters the function of several members of the Cys-loop ligand-gated ion channel superfamily. Recent studies have shown that the sensitivity of the α1 glycine receptor (GlyR) to ethanol can be affected by the state of G protein activation mediated by the interaction of Gßγ with intracellular amino acids in the GlyR. Here, we evaluated the physicochemical property of Lys385 that contributes to ethanol modulation by using mutagenesis, patch-clamp, and biochemical techniques. A conserved substitution (K385R) did not affect either the apparent glycine EC50 (40 ± 1 versus 41 ± 0.5 µM) or the ethanol-induced potentiation (53 ± 5 versus 46 ± 5%) of the human α1 GlyR. On the other hand, replacement of this residue with glutamic acid (K385E), an acidic amino acid, reduced the potentiation of the GlyR to 10 ± 1%. Furthermore, mutations with a hydrophobic leucine (K385L), a hydrogen bond donor glutamine (K385Q), or a neutral residue (K385A) also reduced ethanol modulation. Finally, substitution by a large and hydrophobic residue (K385F) and deletion of 385 (Lys385_) reduced ethanol modulation to 10 ± 4 and 17 ± 0.4%, respectively. Experiments using dynamic cysteine substitution with a methanethiosulfonate reagent and homology modeling indicate that the basic property and the position of Lys385, probably because of its interaction with Gßγ, is critical for ethanol potentiation of the receptor.


Assuntos
Etanol/farmacologia , Lisina/química , Receptores de Glicina/química , Receptores de Glicina/metabolismo , Substituição de Aminoácidos , Membrana Celular/metabolismo , Fenômenos Químicos , Cisteína/química , Cisteína/genética , Relação Dose-Resposta a Droga , Sinergismo Farmacológico , Fenômenos Eletrofisiológicos/efeitos dos fármacos , Fenômenos Eletrofisiológicos/fisiologia , Metanossulfonato de Etila/análogos & derivados , Metanossulfonato de Etila/química , Subunidades beta da Proteína de Ligação ao GTP/metabolismo , Subunidades gama da Proteína de Ligação ao GTP/metabolismo , Glicina/farmacologia , Guanosina 5'-O-(3-Tiotrifosfato)/metabolismo , Guanosina 5'-O-(3-Tiotrifosfato)/farmacologia , Células HEK293 , Humanos , Ativação do Canal Iônico/efeitos dos fármacos , Ativação do Canal Iônico/fisiologia , Lisina/genética , Modelos Moleculares , Neurotransmissores/farmacologia , Técnicas de Patch-Clamp , Propofol/farmacologia , Domínios e Motivos de Interação entre Proteínas/fisiologia , Receptores de Glicina/efeitos dos fármacos , Receptores de Glicina/genética , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Eletricidade Estática , Propriedades de Superfície , Transfecção
18.
Biochim Biophys Acta ; 1818(3): 443-7, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22155680

RESUMO

The substituted-cysteine scanning method (SCAM) is used to study conformational changes in proteins. Experiments using SCAM involve site-directed mutagenesis to replace native amino acids with cysteine and subsequent exposure to a methanethiosulfonate (MTS) reagent such as methanethiosulfonate ethylammonium (MTSEA). These reagents react with substituted-cysteines and can provide functional information about relative positions of amino acids within a protein. In the human heart voltage-gated Na(+) channel hNav1.5 there is a native cysteine at position C373 that reacts rapidly with MTS reagents resulting in a large reduction in whole-cell Na(+) current (I(Na)). Therefore, in order to use SCAM in studies in this isoform, this native cysteine is mutated to a non-reactive residue, e.g., tyrosine. This mutant, hNav1.5-C373Y, is resistant to the MTS-mediated decrease in I(Na). Here we show that this resistance is time- and state-dependent. With relatively short exposure times to MTSEA (<4min), there is little effect on I(Na). However, with longer exposures (4-8min), there is a large decrease in I(Na), but this effect is only found when hNav1.5-C373Y is inactivated (fast or slow) - MTSEA has little effect in the closed state. Additionally, this long-term, state-dependent effect is not seen in human skeletal muscle Na(+) channel isoform hNav1.4, which has a native tyrosine at the homologous site C407. We conclude that differences in molecular determinants of inactivation between hNav1.4 and hNav1.5 underlie the difference in response to MTSEA exposure.


Assuntos
Metanossulfonato de Etila/análogos & derivados , Indicadores e Reagentes/farmacologia , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Miocárdio/metabolismo , Canais de Sódio/metabolismo , Substituição de Aminoácidos , Metanossulfonato de Etila/farmacologia , Células HEK293 , Humanos , Proteínas Musculares/antagonistas & inibidores , Proteínas Musculares/genética , Mutagênese Sítio-Dirigida , Mutação de Sentido Incorreto , Canal de Sódio Disparado por Voltagem NAV1.5 , Isoformas de Proteínas/antagonistas & inibidores , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Canais de Sódio/genética
19.
Neuroscience ; 193: 89-99, 2011 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-21767613

RESUMO

Acid-sensing ion channel 1b (ASIC1b) is a proton-gated Na(+) channel mostly expressed in peripheral sensory neurons. To date, the functional significance of ASIC1b in these cells is unclear due to the lack of a specific inhibitor/blocker. A better understanding of the regulation of ASIC1b may provide a clue for future investigation of its functional importance. One important regulator of acid-sensing ion channels (ASICs) is zinc. In this study, we examined the detailed zinc inhibition of ASIC1b currents and specific amino acid(s) involved in the inhibition. In Chinese hamster ovary (CHO) cells expressing rat ASIC1b subunit, pretreatment with zinc concentration-dependently inhibited the ASIC1b currents triggered by pH dropping from 7.4 to 6.0 with a half-maximum inhibitory concentration of 26 µM. The inhibition of ASIC1b currents by pre-applied zinc was independent of pH, voltage, or extracellular Ca(2+). Further, we showed that the effect of zinc is dependent on the extracellular cysteine, but not histidine residue. Mutating cysteine 149, but not cysteine 58 or cysteine 162, located in the extracellular domain of the ASIC1b subunit abolished the zinc inhibition. These findings suggest that cysteine 149 in the extracellular finger domain of ASIC1b subunit is critical for zinc-mediated inhibition and provide the basis for future mechanistic studies addressing the functional significance of zinc inhibition of ASIC1b.


Assuntos
Cisteína/metabolismo , Potenciais da Membrana/efeitos dos fármacos , Proteínas do Tecido Nervoso/metabolismo , Canais de Sódio/metabolismo , Oligoelementos/farmacologia , Zinco/farmacologia , Canais Iônicos Sensíveis a Ácido , Análise de Variância , Animais , Cálcio/farmacologia , Linhagem Celular Transformada , Cricetinae , Cricetulus , Cisteína/genética , Relação Dose-Resposta a Droga , Metanossulfonato de Etila/análogos & derivados , Metanossulfonato de Etila/farmacologia , Líquido Extracelular/metabolismo , Peróxido de Hidrogênio , Potenciais da Membrana/genética , Mutagênese Sítio-Dirigida/métodos , Proteínas do Tecido Nervoso/genética , Técnicas de Patch-Clamp , Estrutura Terciária de Proteína/genética , Ratos , Canais de Sódio/genética , Transfecção
20.
Br J Pharmacol ; 163(3): 662-74, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21306584

RESUMO

BACKGROUND AND PURPOSE: Voltage-gated K(v)1.3 channels appear on T-lymphocytes and are characterized by their typical C-type inactivation. In order to develop drugs stabilizing the C-type inactivated state and thus potentially useful in treatment of autoimmune diseases, it is important to know more about the three-dimensional structure of this inactivated state of the channel. EXPERIMENTAL APPROACH: The patch-clamp technique was used to study effects of methanethiosulphonate (MTS) compounds on currents through wild-type human K(v)1.3 (hK(v)1.3) and two mutant channels, hK(v)1.3 V417C and hK(v) 1.3 H399T-V417C, in the closed, open and inactivated states. KEY RESULTS: Extracellular application of 2-aminoethyl methanethiosulphonate (MTSEA) irreversibly reduced currents through hK(v) 1.3 V417C channels in the open and inactivated, but not in the closed state, indicating that a modification was possible. Co-application of verapamil prevented this reduction. Intracellular application of MTSEA and [2-(trimethylammonium)ethyl] methanethiosulphonate (MTSET) also modified the mutant channels, whereas extra- and intracellular application of sodium (2-sulfonatoethyl)methanethiosulphonate (MTSES) and intracellular application of MTSET did not. CONCLUSIONS AND IMPLICATIONS: Our experiments showed that the binding site for MTS compounds was intracellular in the mutant channels and that the V417C mutant channels were modified in the open and the inactivated states, and this modification was prevented by verapamil. Therefore, the activation gate on the intracellular side of the selectivity filter must be open during inactivation. Furthermore, although the S6 segment is moving further apart during inactivation, this change does not include a movement of the side chain of the amino acid at position 417, away from lining the channel pore.


Assuntos
Metanossulfonato de Etila/análogos & derivados , Canal de Potássio Kv1.3/fisiologia , Mesilatos/farmacologia , Verapamil/farmacologia , Animais , Células COS , Chlorocebus aethiops , Metanossulfonato de Etila/farmacologia , Humanos , Ativação do Canal Iônico , Canal de Potássio Kv1.3/genética , Mutação , Técnicas de Patch-Clamp
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA