Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.722
Filtrar
1.
Sci Rep ; 14(1): 9801, 2024 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-38684706

RESUMO

The Covid-19 pandemic outbreak has accelerated tremendous efforts to discover a therapeutic strategy that targets severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to control viral infection. Various viral proteins have been identified as potential drug targets, however, to date, no specific therapeutic cure is available against the SARS-CoV-2. To address this issue, the present work reports a systematic cheminformatic approach to identify the potent andrographolide derivatives that can target methyltransferases of SARS-CoV-2, i.e. nsp14 and nsp16 which are crucial for the replication of the virus and host immune evasion. A consensus of cheminformatics methodologies including virtual screening, molecular docking, ADMET profiling, molecular dynamics simulations, free-energy landscape analysis, molecular mechanics generalized born surface area (MM-GBSA), and density functional theory (DFT) was utilized. Our study reveals two new andrographolide derivatives (PubChem CID: 2734589 and 138968421) as natural bioactive molecules that can form stable complexes with both proteins via hydrophobic interactions, hydrogen bonds and electrostatic interactions. The toxicity analysis predicts class four toxicity for both compounds with LD50 value in the range of 500-700 mg/kg. MD simulation reveals the stable formation of the complex for both the compounds and their average trajectory values were found to be lower than the control inhibitor and protein alone. MMGBSA analysis corroborates the MD simulation result and showed the lowest energy for the compounds 2734589 and 138968421. The DFT and MEP analysis also predicts the better reactivity and stability of both the hit compounds. Overall, both andrographolide derivatives exhibit good potential as potent inhibitors for both nsp14 and nsp16 proteins, however, in-vitro and in vivo assessment would be required to prove their efficacy and safety in clinical settings. Moreover, the drug discovery strategy aiming at the dual target approach might serve as a useful model for inventing novel drug molecules for various other diseases.


Assuntos
Antivirais , Diterpenos , Metiltransferases , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , SARS-CoV-2 , Proteínas não Estruturais Virais , Diterpenos/farmacologia , Diterpenos/química , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/enzimologia , Metiltransferases/antagonistas & inibidores , Metiltransferases/química , Metiltransferases/metabolismo , Antivirais/farmacologia , Antivirais/química , Humanos , Proteínas não Estruturais Virais/antagonistas & inibidores , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/metabolismo , Quimioinformática/métodos , COVID-19/virologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Tratamento Farmacológico da COVID-19
2.
Int J Biol Macromol ; 266(Pt 2): 131381, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38580009

RESUMO

The biosynthetic route for flavonol in Camptotheca acuminata has been recently elucidated from a chemical point of view. However, the genes involved in flavonol methylation remain unclear. It is a critical step for fully uncovering the flavonol metabolism in this ancient plant. In this study, the multi-omics resource of this plant was utilized to perform flavonol O-methyltransferase-oriented mining and screening. Two genes, CaFOMT1 and CaFOMT2 are identified, and their recombinant CaFOMT proteins are purified to homogeneity. CaFOMT1 exhibits strict substrate and catalytic position specificity for quercetin, and selectively methylates only the 4'-OH group. CaFOMT2 possesses sequential O-methyltransferase activity for the 4'-OH and 7-OH of quercetin. These CaFOMT genes are enriched in the leaf and root tissues. The catalytic dyad and critical substrate-binding sites of the CaFOMTs are determined by molecular docking and further verified through site-mutation experiments. PHE181 and MET185 are designated as the critical sites for flavonol substrate selectivity. Genomic environment analysis indicates that CaFOMTs evolved independently and that their ancestral genes are different from that of the known Ca10OMT. This study provides molecular insights into the substrate-binding pockets of two new CaFOMTs responsible for flavonol metabolism in C. acuminata.


Assuntos
Camptotheca , Metiltransferases , Simulação de Acoplamento Molecular , Especificidade por Substrato , Camptotheca/enzimologia , Camptotheca/genética , Metiltransferases/genética , Metiltransferases/metabolismo , Metiltransferases/química , Flavonóis/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Filogenia , Metilação , Sequência de Aminoácidos
3.
J Steroid Biochem Mol Biol ; 240: 106498, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38447903

RESUMO

Phytosterols are vital structural and regulatory components in plants. Zea mays produces a series of phytosterols that are specific to corn. However, the underline biosynthetic mechanism remains elusive. In this study, we identified a novel sterol methyltransferase from Z. mays (ZmSMT1-2) which showed a unique feature compared with documented plant SMTs. ZmSMT1-2 showed a substrate preference for cycloartenol. Using S-adenosyl-L-methionine (AdoMet) as a donor, ZmSMT1-2 converted cycloartenol into alkylated sterols with unique side-chain architectures, including Δ25(27) (i.e., cyclolaudenol and cycloneolitsol) and Δ24(25) (i.e., cyclobranol) sterols. Cycloneolitsol is identified as a product of SMTs for the first time. Our discovery provides a previously untapped mechanism for phytosterol biosynthesis and adds another layer of diversity of sterol biosynthesis.


Assuntos
Metiltransferases , Fitosteróis , Triterpenos , Zea mays , Zea mays/metabolismo , Fitosteróis/metabolismo , Fitosteróis/química , Metiltransferases/metabolismo , Metiltransferases/química , Metiltransferases/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/química , Especificidade por Substrato , S-Adenosilmetionina/metabolismo , S-Adenosilmetionina/química
4.
Chem Asian J ; 19(8): e202400081, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38407495

RESUMO

As(III) S-adenosylmethionine methyltransferases, pivotal enzymes in arsenic metabolism, facilitate the methylation of arsenic up to three times. This process predominantly yields trivalent mono- and dimethylarsenite, with trimethylarsine forming in smaller amounts. While this enzyme acts as a detoxifier in microbial systems by altering As(III), in humans, it paradoxically generates more toxic and potentially carcinogenic methylated arsenic species. The strong affinity of As(III) for cysteine residues, forming As(III)-thiolate bonds, is exploited in medical treatments, notably in arsenic trioxide (Trisenox®), an FDA-approved drug for leukemia. The effectiveness of this drug is partly due to its interaction with cysteine residues, leading to the breakdown of key oncogenic fusion proteins. In this study, we extend the understanding of As(III)'s binding mechanisms, showing that, in addition to As(III)-S covalent bonds, noncovalent O⋅⋅⋅As pnictogen bonding plays a vital role. This interaction significantly contributes to the structural stability of the As(III) complexes. Our crystallographic analysis using the PDB database of As(III) S-adenosylmethionine methyltransferases, augmented by comprehensive theoretical studies including molecular electrostatic potential (MEP), quantum theory of atoms in molecules (QTAIM), and natural bond orbital (NBO) analysis, emphasizes the critical role of pnictogen bonding in these systems. We also undertake a detailed evaluation of the energy characteristics of these pnictogen bonds using various theoretical models. To our knowledge, this is the first time pnictogen bonds in As(III) derivatives have been reported in biological systems, marking a significant advancement in our understanding of arsenic's molecular interactions.


Assuntos
Metiltransferases , Metiltransferases/metabolismo , Metiltransferases/química , Humanos , Modelos Moleculares , Eletricidade Estática , Teoria Quântica , S-Adenosilmetionina/química , S-Adenosilmetionina/metabolismo , Arsênio/química , Arsênio/metabolismo
5.
J Nat Prod ; 87(4): 798-809, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38412432

RESUMO

Structural and functional studies of the carminomycin 4-O-methyltransferase DnrK are described, with an emphasis on interrogating the acceptor substrate scope of DnrK. Specifically, the evaluation of 100 structurally and functionally diverse natural products and natural product mimetics revealed an array of pharmacophores as productive DnrK substrates. Representative newly identified DnrK substrates from this study included anthracyclines, angucyclines, anthraquinone-fused enediynes, flavonoids, pyranonaphthoquinones, and polyketides. The ligand-bound structure of DnrK bound to a non-native fluorescent hydroxycoumarin acceptor, 4-methylumbelliferone, along with corresponding DnrK kinetic parameters for 4-methylumbelliferone and native acceptor carminomycin are also reported for the first time. The demonstrated unique permissivity of DnrK highlights the potential for DnrK as a new tool in future biocatalytic and/or strain engineering applications. In addition, the comparative bioactivity assessment (cancer cell line cytotoxicity, 4E-BP1 phosphorylation, and axolotl embryo tail regeneration) of a select set of DnrK substrates/products highlights the ability of anthracycline 4-O-methylation to dictate diverse functional outcomes.


Assuntos
Metiltransferases , Metiltransferases/metabolismo , Metiltransferases/química , Estrutura Molecular , Produtos Biológicos/farmacologia , Produtos Biológicos/química , Humanos , Antraciclinas/química , Antraciclinas/farmacologia , Especificidade por Substrato
6.
Genome Biol Evol ; 16(2)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38290535

RESUMO

We investigated the flowering plant salicylic acid methyl transferase (SAMT) enzyme lineage to understand the evolution of substrate preference change. Previous studies indicated that a single amino acid replacement to the SAMT active site (H150M) was sufficient to change ancestral enzyme substrate preference from benzoic acid to the structurally similar substrate, salicylic acid (SA). Yet, subsequent studies have shown that the H150M function-changing replacement did not likely occur during the historical episode of enzymatic divergence studied. Therefore, we reinvestigated the origin of SA methylation preference here and additionally assessed the extent to which epistasis may act to limit mutational paths. We found that the SAMT lineage of enzymes acquired preference to methylate SA from an ancestor that preferred to methylate benzoic acid as previously reported. In contrast, we found that a different amino acid replacement, Y267Q, was sufficient to change substrate preference with others providing small positive-magnitude epistatic improvements. We show that the kinetic basis for the ancestral enzymatic change in substate preference by Y267Q appears to be due to both a reduced specificity constant, kcat/KM, for benzoic acid and an improvement in KM for SA. Therefore, this lineage of enzymes appears to have had multiple mutational paths available to achieve the same evolutionary divergence. While the reasons remain unclear for why one path was taken, and the other was not, the mutational distance between ancestral and descendant codons may be a factor.


Assuntos
Metiltransferases , Ácido Salicílico , Metiltransferases/química , Metiltransferases/genética , Metiltransferases/metabolismo , Sequência de Aminoácidos , Ácido Salicílico/metabolismo , Plantas , Ácido Benzoico/metabolismo , Aminoácidos/genética , Evolução Molecular , Especificidade por Substrato
7.
Spectrochim Acta A Mol Biomol Spectrosc ; 309: 123816, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38198991

RESUMO

S-adenosyl-L-methionine (SAM) is an abundant biomolecule used by methyltransferases to regulate a wide range of essential cellular processes such as gene expression, cell signaling, protein functions, and metabolism. Despite considerable effort, there remain many specificity challenges associated with designing small molecule inhibitors for methyltransferases, most of which exhibit off-target effects. Interestingly, NMR evidence suggests that SAM undergoes conformeric exchange between several states when free in solution. Infrared spectroscopy can detect different conformers of molecules if present in appreciable populations. When SAM is noncovalently bound within enzyme active sites, the nature and the number of different conformations of the molecule are likely to be altered from when it is free in solution. If there are unique structures or different numbers of conformers between different methyltransferase active sites, solution-state information may provide promising structural leads to increase inhibitor specificity for a particular methyltransferase. Toward this goal, frequencies measured in SAM's infrared spectra must be assigned to the motions of specific atoms via isotope incorporation at discrete positions. The incorporation of isotopes into SAM's structure can be accomplished via an established enzymatic synthesis using isotopically labeled precursors. However, published protocols produced an intense and highly variable IR signal which overlapped with many of the signals from SAM rendering comparison between isotopes challenging. We observed this intense absorption to be from co-purifying salts and the SAM counterion, producing a strong, broad signal at 1100 cm-1. Here, we report a revised SAM purification protocol that mitigates the contaminating salts and present the first IR spectra of isotopically labeled CD3-SAM. These results provide a foundation for isotopic labeling experiments of SAM that will define which atoms participate in individual molecular vibrations, as a means to detect specific molecular conformations.


Assuntos
Metionina , S-Adenosilmetionina , S-Adenosilmetionina/química , S-Adenosilmetionina/metabolismo , Sais , Metiltransferases/química , Metiltransferases/metabolismo , Racemetionina , Isótopos
8.
Environ Sci Technol ; 58(4): 1934-1943, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38180751

RESUMO

Antimony (Sb) biomethylation is an important but uninformed process in Sb biogeochemical cycling. Methylated Sb species have been widely detected in the environment, but the gene and enzyme for Sb methylation remain unknown. Here, we found that arsenite S-adenosylmethionine methyltransferase (ArsM) is able to catalyze Sb(III) methylation. The stepwise methylation by ArsM forms mono-, di-, and trimethylated Sb species. Sb(III) is readily coordinated with glutathione, forming the preferred ArsM substrate which is anchored on three conserved cysteines. Overexpressing arsM in Escherichia coli AW3110 conferred resistance to Sb(III) by converting intracellular Sb(III) into gaseous methylated species, serving as a detoxification process. Methylated Sb species were detected in paddy soil cultures, and phylogenetic analysis of ArsM showed its great diversity in ecosystems, suggesting a high metabolic potential for Sb(III) methylation in the environment. This study shows an undiscovered microbial process methylating aqueous Sb(III) into the gaseous phase, mobilizing Sb on a regional and even global scale as a re-emerging contaminant.


Assuntos
Arsênio , Arsenitos , Nostoc , Arsenitos/metabolismo , S-Adenosilmetionina/metabolismo , Antimônio , Arsênio/química , Nostoc/metabolismo , Ecossistema , Filogenia , Metiltransferases/química , Metiltransferases/genética , Metiltransferases/metabolismo
9.
J Biomol Struct Dyn ; 42(4): 1999-2012, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37129206

RESUMO

With the advent of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) outbreak, efforts are still in progress to find out a functional cure for the infection. Among the various protein targets, nsp16 capping protein is one of the vital targets for drug development as it protects the virus against the host cell nucleases and evading innate immunity. The nsp16 protein forms a heterodimer with a co-factor nsp10 and triggers 2'-O-methyltransferase activity which catalyzes the conversion of S-adenosyl methionine into S-adenosyl homocysteine. The free methyl group is transferred to the 2'-O position on ribose sugar at the 5' end of mRNA to form the cap-1 structure which is essential for replication of the virus and evading the innate immunity of the host. In this study, we identify a potential lead natural bioactive compound against nsp16 protein by systematic cheminformatic analysis of more than 144k natural compounds. Virtual screening, molecular docking interactions, ADMET profiling, molecular dynamics (MD) simulations, molecular mechanics-generalized born surface area (MM-GBSA), free energy analysis and density functional theory analysis were used to discover the potential lead compound. Our investigation revealed that ZINC8952607 (methyl-[(6-methyl-2,3,4,9-tetrahydro-1H-carbazol-1-yl)aminomethyl]BLAHone) has the greatest binding affinity and best pharmacokinetic parameters due to presence of carbazol and BLAHone (biaryl moiety). Further, time-dependent MD simulation analysis substantiates the stability and rigidness of nsp16 protein even after interaction with the lead compound. We believe that the compound ZINC8952607 might establish as a novel natural drug candidate against CoVID-19 infection.Communicated by Ramaswamy H. Sarma.


Assuntos
COVID-19 , Metiltransferases , Humanos , Metiltransferases/química , SARS-CoV-2/metabolismo , Simulação de Acoplamento Molecular , S-Adenosilmetionina/metabolismo , Simulação de Dinâmica Molecular
10.
J Biomol Struct Dyn ; 42(6): 3166-3176, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37261836

RESUMO

The switching on or off of methylation, a change from a normal methylation to hyper or hypo methylation is implicated in many diseases that include cancers, infectious, neurodegenerative diseases and others. Methyltransferases are one of the most sought targets that have diversified for the methylation of a variety of substrates. However, without S-adenosyl-l-methionine (SAM), the universal methyl donor, the majority of the methyltransferases remain functionally inactive. In this article, we did a comprehensive analysis of all available SAM-receptor crystal structures at atom, moiety and structure levels to gain deeper insights into the structure and function of SAM. SAM demonstrated flexibility in binding to a variety of receptors irrespective of the size of the binding pockets. Further analysis of the binding pockets resulted in all SAM conformations clustering into four natural shapes. The conserved interaction analysis provides an unambiguous orientation of SAM binding to receptors which has been elusive till now. SAM peptide moiety (SPM) and SAM nucleobase moiety (SNM) show up to 89% interactions with receptors whereas only 11% interactions with SAM ribose moiety (SRM). It is found that SPM and SNM terminal atoms anchor to the highly conserved receptor subsites creating a workbench for catalysis. It is seen that every interacting atom and its position is crucial in the methyl transfer phenomenon. A very unique observation is that the methyl group of SAM does not have even one interaction with the receptor. The deep insights gained help in the design and development of novel drugs against the methyltransferases.Communicated by Ramaswamy H. Sarma.


Assuntos
Metiltransferases , S-Adenosilmetionina , Metiltransferases/química , S-Adenosilmetionina/química , S-Adenosilmetionina/metabolismo , Metilação , Catálise
11.
J Biomol Struct Dyn ; 42(4): 1711-1724, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37325855

RESUMO

Zika virus (ZIKV) spread is considered a major public health threat by the World Health Organization (WHO). There are no vaccines or drugs available to control the infection of the Zika virus, therefore a highly effective medicinal molecule is urgently required. In this study, a computationally intensive investigation was performed to identify a potent natural compound that could inhibit the ZIKV NS5 methyltransferase. This research approach is based on target-based drug identification principles where the native inhibitor SAH (S-adenosylhomocysteine) of ZIKV NS5 methyltransferase was selected as a reference. High-throughput virtual screening and tanimoto similarity coefficient were applied to the natural compound library for ranking the potential candidates. The top five compounds were selected for interaction analysis, MD simulation, total binding free energy through MM/GBSA, and steered MD simulation. Among these compounds, Adenosine 5'-monophosphate monohydrate, Tubercidin, and 5-Iodotubercidin showed stable binding to the protein compared to the native compound, SAH. These three compounds also showed less fluctuations in RMSF in contrast to native compound. Additionally, the same interacting residues observed in SAH also made strong interactions with these three compounds. Adenosine 5'-monophosphate monohydrate and 5-Iodotubercidin had greater total binding free energies than the reference ligand. Moreover, the dissociation resistance of all three compounds was equivalent to that of the reference ligand. This study suggested binding properties of three-hit compounds that could be used to develop drugs against Zika virus infections.Communicated by Ramaswamy H. Sarma.


Assuntos
Infecção por Zika virus , Zika virus , Humanos , Simulação de Dinâmica Molecular , Ligantes , Proteínas não Estruturais Virais/química , Adenosina , Metiltransferases/química , Transferases/metabolismo , Transferases/farmacologia , Simulação de Acoplamento Molecular , Antivirais/farmacologia , Antivirais/química
12.
J Biol Chem ; 300(1): 105507, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38029966

RESUMO

Cystargolides are natural products originally isolated from Kitasatospora cystarginea NRRL B16505 as inhibitors of the proteasome. They are composed of a dipeptide backbone linked to a ß-lactone warhead. Recently, we identified the cystargolide biosynthetic gene cluster, but systematic genetic analyses had not been carried out because of the lack of a heterologous expression system. Here, we report the discovery of a homologous cystargolide biosynthetic pathway in Streptomyces durhamensis NRRL-B3309 by genome mining. The gene cluster was cloned via transformation-associated recombination and heterologously expressed in Streptomyces coelicolor M512. We demonstrate that it contains all genes necessary for the production of cystargolide A and B. Single gene deletion experiments reveal that only five of the eight genes from the initially proposed gene cluster are essential for cystargolide synthesis. Additional insights into the cystargolide pathway could be obtained from in vitro assays with CysG and chemical complementation of the respective gene knockout. This could be further supported by the in vitro investigation of the CysG homolog BelI from the belactosin biosynthetic gene cluster. Thereby, we confirm that CysG and BelI catalyze a cryptic SAM-dependent transfer of a methyl group that is critical for the construction of the cystargolide and belactosin ß-lactone warheads.


Assuntos
Dipeptídeos , Metiltransferases , Streptomycetaceae , Vias Biossintéticas , Dipeptídeos/metabolismo , Lactonas/metabolismo , Metiltransferases/química , Metiltransferases/genética , Metiltransferases/metabolismo , Família Multigênica , Streptomyces coelicolor/genética , Streptomycetaceae/enzimologia , Streptomycetaceae/genética
13.
Toxicol In Vitro ; 93: 105707, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37805018

RESUMO

Arsenic (+3 oxidation state) methyltransferase is an enzyme responsible for arsenic methylation, and it requires S-adenosyl-methionine (SAM) as a coenzyme. We here generated two mutants to clarify the role of the highly conserved 83rd arginine residue (Arg83) in Motif I, the SAM-binding domain, of human AS3MT. When the AS3MT activity was compared between the mutants and the wild type (WT) recombinant protein, little activity was detected in the glycine mutant (Arg83Gly) or lysine mutant (Arg83Lys). When we examined the ability of transfected HEK293 cells exposed to arsenite to methylate arsenic, the methylation ability was significantly reduced in Arg83Gly compared to the WT, but was not significantly different between Arg83Lys and WT. Western blot analysis of the recombinant WT and Arg83Gly with an antibody that recognizes methylated Arg showed that an Arg residue in the WT was mono- and di-methylated, but not in Arg83Gly. Furthermore, a peptide containing dimethylated Arg83 was detected by MALDI-TOF/MS of the WT digested with chymotrypsin. These results indicate that AS3MT maintains its enzymatic activity through the methyl modification of Arg83.


Assuntos
Arsênio , Metiltransferases , Humanos , Metiltransferases/genética , Metiltransferases/química , Metiltransferases/metabolismo , Metilação , Arginina/metabolismo , Células HEK293 , S-Adenosilmetionina/metabolismo
14.
Int J Biol Macromol ; 253(Pt 8): 127565, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37866584

RESUMO

In July 2022, the World Health Organization announced monkeypox as a public health emergency of international concern (PHEIC), and over 85,000 global cases have been reported currently. However, preventive and therapeutic treatments for the monkeypox virus (MPXV) remain limited. MPXV mRNA cap N7 methyltransferase (MTase) is composed of two subunits (E1 C-terminal domain (E1CTD) and E12) which are essential for the replication of MPXV. Here, we solved a 2.16 Å crystal structure of E12. We also docked the D1CTD of the vaccinia virus (VACV) corresponding to the E1CTD in MPXV with E12 and found critical residues at their interface. These residues were further used for drug screening. After virtual screening, the top 347 compounds were screened out and a list of top 20 potential MPXV E12 inhibitors were discovered, including Rutin, Quercitrin, Epigallocatechin, Rosuvastatin, 5-hydroxy-L-Tryptophan, and Deferasirox, etc., which were potential E12 inhibitors. Taking the advantage of the previously unrecognized special structure of MPXV MTase composing of E1CTD and E12 heterodimer, we screened for inhibitors targeting MTase for the first time based on the interface between the heterodimer of MPXV MTase. Our study may provide insights into the development of anti-MPXV drugs.


Assuntos
Metiltransferases , Monkeypox virus , RNA Mensageiro , Metiltransferases/genética , Metiltransferases/química , Monkeypox virus/genética , Guanina
15.
Int J Biol Macromol ; 253(Pt 3): 126763, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37703985

RESUMO

Rhamnose methylation of spinosyn critical for insecticidal activity is orchestrated by substrate specificity of three S-adenosyl-L-methionine (SAM) dependent methyltransferases (MTs). Previous in vitro enzymatic assays indicate that 3'-O-MT SpnK accepts the rhamnosylated aglycone (RAGL) and 2'-O-methylated RAGL as substrates, but does not tolerate the presence of a methoxy moiety at the O-4' position of the rhamnose unit. Here we solved the crystal structures of apo and ligand-bound SpnK, and used molecular dynamic (MD) simulations to decipher the molecular basis of substrate specificity. SpnK assembles into a tetramer, with each set of three monomers forming an integrated substrate binding pocket. The MD simulations of SpnK complexed with RAGL or 2'-O-methylated RAGL revealed that the 4'-hydroxyl of the rhamnose unit formed a hydrogen bond with a conserved Asp299 of the catalytic center, which is disrupted in structures of SpnK complexed with 4'-O-methylated RAGL or 2',4'-di-O-methylated RAGL. Comparison with SpnI methylating the C2'-hydroxyl of RAGL reveals a correlation between a DLQT/DLWT motif and the selectivity of rhamnose O-MTs. Together, our structural and computational results revealed the structural basis of substrate specificity of rhamnose O-MTs and would potentially help the engineering of spinosyn derivatives.


Assuntos
Metiltransferases , Ramnose , Metilação , Ramnose/química , Metiltransferases/química , Catálise , Simulação de Dinâmica Molecular , Especificidade por Substrato
16.
Antiviral Res ; 216: 105663, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37421984

RESUMO

Mpox is a zoonotic disease caused by the mpox virus (MPXV), which has gained attention due to its rapid and widespread transmission, with reports from more than 100 countries. The virus belongs to the Orthopoxvirus genus, which also includes variola virus and vaccinia virus. In poxviruses, the RNA cap is crucial for the translation and stability of viral mRNAs and also for immune evasion. This study presents the crystal structure of the mpox 2'-O-methyltransfarase VP39 in complex with a short cap-0 RNA. The RNA substrate binds to the protein without causing any significant changes to its overall fold and is held in place by a combination of electrostatic interactions, π-π stacking and hydrogen bonding. The structure also explains the mpox VP39 preference for a guanine base at the first position; it reveals that guanine forms a hydrogen bond that an adenine would not be able to form.


Assuntos
Mpox , Capuzes de RNA , Humanos , Capuzes de RNA/metabolismo , Metilação , Metiltransferases/química , Sítios de Ligação , Proteínas Virais/genética
17.
Protein Sci ; 32(7): e4690, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37278582

RESUMO

S-adenosyl methionine (SAM)-dependent methyl transferases (MTases) are a ubiquitous class of enzymes catalyzing dozens of essential life processes. Despite targeting a large space of substrates with diverse intrinsic reactivity, SAM MTases have similar catalytic efficiency. While understanding of MTase mechanism has grown tremendously through the integration of structural characterization, kinetic assays, and multiscale simulations, it remains elusive how these enzymes have evolved to fit the diverse chemical needs of their respective substrates. In this work, we performed a high-throughput molecular modeling analysis of 91 SAM MTases to better understand how their properties (i.e., electric field [EF] strength and active site volumes) help achieve similar catalytic efficiency toward substrates of different reactivity. We found that EF strengths have largely adjusted to make the target atom a better methyl acceptor. For MTases that target RNA/DNA and histone proteins, our results suggest that EF strength accommodates formal hybridization state and variation in cavity volume trends with diversity of substrate classes. Metal ions in SAM MTases contribute negatively to EF strength for methyl donation and enzyme scaffolds tend to offset these contributions.


Assuntos
Metiltransferases , S-Adenosilmetionina , Metiltransferases/química , Eletricidade Estática , Modelos Moleculares , Domínio Catalítico , S-Adenosilmetionina/metabolismo
18.
Curr Protoc ; 3(6): e799, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37327316

RESUMO

S-Adenosyl-L-methionine (AdoMet) is a ubiquitous methyl donor for a variety of biological methylation reactions catalyzed by methyltransferases (MTases). AdoMet analogs with extended propargylic chains replacing the sulfonium-bound methyl group can serve as surrogate cofactors for many DNA and RNA MTases, enabling covalent derivatization and subsequent labeling of their cognate target sites in DNA or RNA. Although AdoMet analogs with saturated aliphatic chains are less popular than propargylic ones, they can be useful for dedicated studies that require certain chemical derivatization. Here we describe synthetic procedures for the preparation of two AdoMet analogs, one with a transferable 6-azidohex-2-ynyl group (carrying an activating C≡C triple bond and a terminal azide functionality), and the other one with a transferable ethyl-2,2,2-d3 group (an isotope-labeled aliphatic moiety). Our synthetic approach is based on direct chemoselective alkylation of S-adenosyl-L-homocysteine at sulfur with a corresponding nosylate or triflate, respectively, under acidic conditions. We also describe synthetic routes to 6-azidohex-2-yn-1-ol and conversion of the alcohols to corresponding nosylate and triflate alkylators. Using these protocols, the synthetic AdoMet analogs can be prepared within 1 to 2 weeks. © 2023 Wiley Periodicals LLC. Basic Protocol 1: Synthesis of 6-azidohex-2-yn-1-ol Basic Protocol 2: Synthesis of 4-nitrobenzenesulfonate Basic Protocol 3: Synthesis of trifluoromethanesulfonates Basic Protocol 4: S-Alkylation of AdoHcy with sulfonates Basic Protocol 5: Purification and characterization of AdoMet analogs.


Assuntos
Metiltransferases , S-Adenosilmetionina , Metiltransferases/química , S-Adenosilmetionina/química , Metionina , RNA/química , DNA/química , Racemetionina
19.
Environ Sci Technol ; 57(26): 9754-9761, 2023 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-37327778

RESUMO

Arsenic is methylated by arsenite (As(III)) S-adenosylmethionine (SAM) methyltransferases (ArsMs). ArsM crystal structures show three domains (an N-terminal SAM binding domain (A domain), a central arsenic binding domain (B domain), and a C-terminal domain of unknown function (C domain)). In this study, we performed a comparative analysis of ArsMs and found a broad diversity in structural domains. The differences in the ArsM structure enable ArsMs to have a range of methylation efficiencies and substrate selectivities. Many small ArsMs with 240-300 amino acid residues have only A and B domains, represented by RpArsM from Rhodopseudomonas palustris. These small ArsMs have higher methylation activity than larger ArsMs with 320-400 residues such as Chlamydomonas reinhardtii CrArsM, which has A, B, and C domains. To examine the role of the C domain, the last 102 residues in CrArsM were deleted. This CrArsM truncation exhibited higher As(III) methylation activity than the wild-type enzyme, suggesting that the C-terminal domain has a role in modulating the rate of catalysis. In addition, the relationship of arsenite efflux systems and methylation was examined. Lower rates of efflux led to higher rates of methylation. Thus, the rate of methylation can be modulated in multiple ways.


Assuntos
Arsênio , Arsenitos , Metilação , Arsenitos/metabolismo , Metiltransferases/química , Metiltransferases/metabolismo
20.
Mol Cell ; 83(14): 2464-2477.e5, 2023 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-37369200

RESUMO

Co-transcriptional capping of the nascent pre-mRNA 5' end prevents degradation of RNA polymerase (Pol) II transcripts and suppresses the innate immune response. Here, we provide mechanistic insights into the three major steps of human co-transcriptional pre-mRNA capping based on six different cryoelectron microscopy (cryo-EM) structures. The human mRNA capping enzyme, RNGTT, first docks to the Pol II stalk to position its triphosphatase domain near the RNA exit site. The capping enzyme then moves onto the Pol II surface, and its guanylyltransferase receives the pre-mRNA 5'-diphosphate end. Addition of a GMP moiety can occur when the RNA is ∼22 nt long, sufficient to reach the active site of the guanylyltransferase. For subsequent cap(1) methylation, the methyltransferase CMTR1 binds the Pol II stalk and can receive RNA after it is grown to ∼29 nt in length. The observed rearrangements of capping factors on the Pol II surface may be triggered by the completion of catalytic reaction steps and are accommodated by domain movements in the elongation factor DRB sensitivity-inducing factor (DSIF).


Assuntos
Processamento Pós-Transcricional do RNA , RNA Mensageiro , Humanos , RNA Mensageiro/química , RNA Mensageiro/metabolismo , RNA Mensageiro/ultraestrutura , Microscopia Crioeletrônica , RNA Polimerase II/química , RNA Polimerase II/metabolismo , RNA Polimerase II/ultraestrutura , Transcrição Gênica , Metiltransferases/química , Metiltransferases/metabolismo , Metiltransferases/ultraestrutura , Modelos Químicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA