Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 786
Filtrar
1.
Chem Biol Drug Des ; 103(5): e14532, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38725089

RESUMO

Nonalcoholic steatohepatitis (NASH) is a progressive form of nonalcoholic fatty liver disease (NAFLD) that causes severe liver damage, fibrosis, and scarring. Despite its potential to progress to cirrhosis or hepatic failure, approved drugs or treatments are currently unavailable. We developed 4,4-diallyl curcumin bis(2,2-hydroxymethyl)propanoate, also known as 35e, which induces upregulation of mitochondrial proteins including carnitine palmitoyltransferase I (CPT-I), carnitine palmitoyltransferase II, heat shock protein 60, and translocase of the outer mitochondrial membrane 20. Among these proteins, the upregulated expression of CPT-I was most prominent. CPT-I plays a crucial role in transporting carnitine across the mitochondrial inner membrane, thereby initiating mitochondrial ß-oxidation of fatty acids. Given recent research showing that CPT-I activation could be a viable pathway for NASH treatment, we hypothesized that 35e could serve as a potential agent for treating NASH. The efficacy of 35e in treating NASH was evaluated in methionine- and choline-deficient (MCD) diet- and Western diet (WD)-induced models that mimic human NASH. In the MCD diet-induced model, both short-term (2 weeks) and long-term (7 weeks) treatment with 35e effectively regulated elevated serum alanine aminotransferase (ALT)/aspartate aminotransferase (AST) concentrations and histological inflammation. However, the antisteatotic effect of 35e was obtained only in the short-term treatment group. As a comparative compound in the MCD diet-induced model, curcumin treatment did not produce significant regulatory effects on the liver triglyceride/total cholesterol, serum ALT/AST, or hepatic steatosis. In the WD-induced model, 35e ameliorated hepatic steatosis and hepatic inflammation, while increasing serum AST and hepatic lipid content. A decrease in epididymal adipose tissue weight and serum free fatty acid concentration suggested that 35e may promote lipid metabolism or impede lipid accumulation. Overall, 35e displayed significant antilipid accumulation and antifibrotic effects in the two complementary mice models. The development of new curcumin derivatives with the ability to induce CPT-I upregulation could further underscore their efficacy as anti-NASH agents.


Assuntos
Curcumina , Modelos Animais de Doenças , Metionina , Hepatopatia Gordurosa não Alcoólica , Animais , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismo , Metionina/metabolismo , Metionina/deficiência , Curcumina/farmacologia , Curcumina/química , Curcumina/uso terapêutico , Camundongos , Masculino , Dieta Ocidental/efeitos adversos , Camundongos Endogâmicos C57BL , Carnitina O-Palmitoiltransferase/metabolismo , Fígado/metabolismo , Fígado/efeitos dos fármacos , Fígado/patologia , Propionatos/farmacologia , Propionatos/uso terapêutico , Propionatos/metabolismo , Humanos , Colina/metabolismo , Colina/farmacologia
2.
Cell Death Dis ; 15(5): 349, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38769167

RESUMO

Osteosarcoma is a malignant bone tumor that primarily inflicts the youth. It often metastasizes to the lungs after chemotherapy failure, which eventually shortens patients' lives. Thus, there is a dire clinical need to develop a novel therapy to tackle osteosarcoma metastasis. Methionine dependence is a special metabolic characteristic of most malignant tumor cells that may offer a target pathway for such therapy. Herein, we demonstrated that methionine deficiency restricted the growth and metastasis of cultured human osteosarcoma cells. A genetically engineered Salmonella, SGN1, capable of overexpressing an L-methioninase and hydrolyzing methionine led to significant reduction of methionine and S-adenosyl-methionine (SAM) specifically in tumor tissues, drastically restricted the growth and metastasis in subcutaneous xenograft, orthotopic, and tail vein-injected metastatic models, and prolonged the survival of the model animals. SGN1 also sharply suppressed the growth of patient-derived organoid and xenograft. Methionine restriction in the osteosarcoma cells initiated severe mitochondrial dysfunction, as evident in the dysregulated gene expression of respiratory chains, increased mitochondrial ROS generation, reduced ATP production, decreased basal and maximum respiration, and damaged mitochondrial membrane potential. Transcriptomic and molecular analysis revealed the reduction of C1orf112 expression as a primary mechanism underlies methionine deprivation-initiated suppression on the growth and metastasis as well as mitochondrial functions. Collectively, our findings unraveled a molecular linkage between methionine restriction, mitochondrial function, and osteosarcoma growth and metastasis. A pharmacological agent, such as SGN1, that can achieve tumor specific deprivation of methionine may represent a promising modality against the metastasis of osteosarcoma and potentially other types of sarcomas as well.


Assuntos
Neoplasias Ósseas , Metionina , Mitocôndrias , Osteossarcoma , Osteossarcoma/patologia , Osteossarcoma/metabolismo , Osteossarcoma/genética , Osteossarcoma/tratamento farmacológico , Metionina/deficiência , Metionina/metabolismo , Humanos , Animais , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Linhagem Celular Tumoral , Camundongos , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/patologia , Neoplasias Ósseas/genética , Neoplasias Ósseas/tratamento farmacológico , Proliferação de Células/efeitos dos fármacos , Metástase Neoplásica , S-Adenosilmetionina/metabolismo , S-Adenosilmetionina/farmacologia , Camundongos Nus , Espécies Reativas de Oxigênio/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos
3.
In Vivo ; 38(3): 1199-1202, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38688645

RESUMO

BACKGROUND/AIM: Hair-follicle keratinocytes contain high levels of cysteine, which is derived from methionine, rapidly proliferate, and form the hair shaft. The high proliferation rate of hair-follicle keratinocytes resembles that of aggressive cancer cells. In the present study, we determined the effect of a methionine-deficient diet on hair loss (alopecia) in mice with or without homocysteine supplementation. MATERIALS AND METHODS: Mice were fed a normal rodent diet (2020X, ENVIGO) (Group 1); a methionine-choline-deficient diet (TD.90262, ENVIGO) (Group 2); a methionine-choline-deficient diet with a 10 mg/kg/day supply of homocysteine administered by intra-peritoneal (i.p.) injection for 2 weeks (Group 3). In Group 2, mice were fed a methionine-choline-deficient diet for an additional 2 weeks but with 10 mg/kg/day of i.p. l-homocysteine and the mice were observed for two additional weeks. Subsequently, the mice were fed a standard diet that included methionine. Hair loss was monitored by photography. RESULTS: After 14 days, hair loss was observed in Group 2 mice on a methionine-restricted diet but not in Group 3 mice on the methionine-restricted diet which received i.p. homocysteine. In Group 2, at 2 weeks after methionine restriction, hair loss was not rescued by homocysteine supplementation. However, after restoration of methionine in the diet, hair growth resumed. Thus, after 2 weeks of methionine restriction, only methionine restored hair loss, not homocysteine. CONCLUSION: Hair maintenance requires methionine in the diet. Future experiments will determine the effects of methionine restriction on hair-follicle stem cells.


Assuntos
Folículo Piloso , Cabelo , Homocisteína , Metionina , Animais , Metionina/deficiência , Metionina/metabolismo , Metionina/administração & dosagem , Camundongos , Cabelo/crescimento & desenvolvimento , Cabelo/metabolismo , Homocisteína/metabolismo , Folículo Piloso/metabolismo , Folículo Piloso/efeitos dos fármacos , Folículo Piloso/crescimento & desenvolvimento , Camundongos Endogâmicos C57BL , Alopecia/metabolismo , Alopecia/etiologia , Alopecia/patologia , Modelos Animais de Doenças , Dieta , Queratinócitos/metabolismo
4.
Animal ; 18(5): 101143, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38640782

RESUMO

Methionine (Met) supplementation is common practice in broilers to support nutrition, yet there are gaps in the understanding of its role in systemic physiology. Furthermore, several different Met sources are available that may have different physiological effects. This study evaluated the mode of action of Met deficiency (no Met-supplementation) and supplementation (0.25% DL- or L-Met, 0.41% liquid methionine hydroxy analog-free acid (MHA-FA)), and of Met source (DL-, L- or MHA-FA) in broiler chickens, via host transcriptomics. Biological pathway activation modeling was performed to predict the likely phenotypic effects of differentially expressed genes (DEGs) in tissue samples from the jejunum, liver and breast obtained at 10, 21 and 34/35 d of age from three experiments in a combined analysis. Animal performance data showed that Met deficiency reduced BW, daily BW gain, daily feed intake, and breast yield, and increased feed conversion ratio in all experiments (P < 0.05). Effects of Met deficiency on gene expression were least evident in the jejunum and most evident in the liver and breast, as evidenced by the number of DEG and activated pathways. Activated pathways suggested Met deficiency was associated with inhibited protein turnover, gut barrier integrity, and adaptive immunity functions in the jejunum, that predicted reduced breast yield. There was an interaction with age; in Met-deficient birds, there were 333 DEGs in the jejunum of starter vs finisher birds suggesting young birds were more sensitive to Met deficiency than older birds. In the liver, Met deficiency activated pathways associated with lipid turnover, amino acid metabolism, oxidative stress, and the immune system, whereas in breast, it activated pathways involved in metabolic regulation, hemostasis, the neuronal system, and oxidative stress, again predicting a negative impact on breast yield. In the starter phase, supplementation with DL-Met compared to MHA-FA inhibited gamma-aminobutyric acid activity and oxidative stress in breast tissue. When data from all tissues were integrated, increased expression of a liver gene (ENSGALG00000042797) was found to be correlated with the expression of several genes that best explained variation due to the Met deficiency in jejunum and breast muscle. Some of these genes were involved in anti-oxidant systems. Overall, the findings indicate that impaired growth performance due to Met deficiency results from an array of tissue-specific molecular mechanisms in which oxidative stress plays a key systemic role. Young birds are more sensitive to Met-deficiency and DL-Met was a preferential source of Met than L- or MHA-FA during the starter phase.


Assuntos
Ração Animal , Galinhas , Suplementos Nutricionais , Fígado , Metionina , Animais , Galinhas/genética , Galinhas/fisiologia , Metionina/deficiência , Metionina/metabolismo , Metionina/administração & dosagem , Ração Animal/análise , Suplementos Nutricionais/análise , Fígado/metabolismo , Transcriptoma , Jejuno/metabolismo , Dieta/veterinária , Masculino , Fenômenos Fisiológicos da Nutrição Animal , Perfilação da Expressão Gênica/veterinária
5.
Cancer Genomics Proteomics ; 19(3): 299-304, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35430564

RESUMO

BACKGROUND/AIM: Methionine addiction is a fundamental and general hallmark of cancer cells, which require exogenous methionine, despite large amounts of methionine synthesized endogenously. 5-Methylthioadenosine phosphorylase (MTAP) plays a principal role as an enzyme in the methionine-salvage pathway, which produces methionine and adenine from methylthioadenosine and is deleted in 27.5% to 37.5% of osteosarcoma patients. MATERIALS AND METHODS: Human osteosarcoma cell lines U2OS, SaOS2, MNNG/HOS (HOS) and 143B, were used. The MTAP gene was knocked out in U2OS with CRISPR/Cas9. 143B and HOS have an MTAP deletion and SaOS2 is positive for MTAP. MTAP was determined by western blotting. The four cell lines were compared for sensitivity to recombinant methioninase (rMETase). RESULTS: MTAP-deleted osteosarcoma cell lines MNNG/HOS and 143B were significantly more sensitive to rMETase than MTAP-positive osteosarcoma cell lines U2OS and SaOS2. In addition, MTAP knock-out U2OS cells were more sensitive to rMETase than the parental MTAP-positive U2OS cells. CONCLUSION: The present results demonstrated that the absence of MTAP sensitizes osteosarcoma cells to methionine restriction by rMETase, a promising clinical strategy.


Assuntos
Neoplasias Ósseas , Metionina , Osteossarcoma , Purina-Núcleosídeo Fosforilase , Neoplasias Ósseas/genética , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/terapia , Liases de Carbono-Enxofre/genética , Liases de Carbono-Enxofre/metabolismo , Linhagem Celular Tumoral , Humanos , Metionina/deficiência , Metionina/metabolismo , Metionina/farmacologia , Metilnitronitrosoguanidina , Osteossarcoma/genética , Osteossarcoma/metabolismo , Osteossarcoma/terapia , Purina-Núcleosídeo Fosforilase/deficiência , Purina-Núcleosídeo Fosforilase/genética , Purina-Núcleosídeo Fosforilase/metabolismo , Proteínas Recombinantes/farmacologia
6.
J Immunol ; 208(4): 881-897, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35101891

RESUMO

Diet plays an important role in lifestyle disorders associated with the disturbed immune system. During the study of methionine- and choline-deficient diet-induced nonalcoholic fatty liver disease, we observed a specific decrease in the plasmacytoid dendritic cell (pDC) fraction from murine spleens. While delineating the role for individual components, we identified that l-methionine supplementation correlates with representation of the pDC fraction. S-adenosylmethionine (SAM) is a key methyl donor, and we demonstrate that supplementation of methionine-deficient medium with SAM but not homocysteine reverses the defect in pDC development. l-Methionine has been implicated in maintenance of methylation status in the cell. Based on our observed effect of SAM and zebularine on DC subset development, we sought to clarify the role of DNA methylation in pDC biology. Whole-genome bisulfite sequencing analysis from the splenic DC subsets identified that pDCs display differentially hypermethylated regions in comparison with classical DC (cDC) subsets, whereas cDC1 and cDC2 exhibited comparable methylated regions, serving as a control in our study. We validated differentially methylated regions in the sorted pDC, CD8α+ cDC1, and CD4+ cDC2 subsets from spleens as well as FL-BMDC cultures. Upon analysis of genes linked with differentially methylated regions, we identified that differential DNA methylation is associated with the MAPK pathway such that its inhibition guides DC development toward the pDC subtype. Overall, our study identifies an important role for methionine in pDC biology.


Assuntos
Colina/metabolismo , Metilação de DNA , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Dieta , Metionina/metabolismo , Animais , Biomarcadores , Diferenciação Celular/genética , Diferenciação Celular/imunologia , Biologia Computacional/métodos , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Homeostase , Imunidade Inata , Imunofenotipagem , Sistema de Sinalização das MAP Quinases , Metionina/deficiência , Camundongos , Mapeamento de Interação de Proteínas , Transcriptoma
7.
Molecules ; 27(3)2022 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-35164140

RESUMO

Non-alcoholic fatty liver disease (NAFLD) embraces several forms of liver disorders involving fat disposition in hepatocytes ranging from simple steatosis to the severe stage, namely, non-alcoholic steatohepatitis (NASH). Recently, several experimental in vivo animal models for NAFLD/NASH have been established. However, no reproducible experimental animal model displays the full spectrum of pathophysiological, histological, molecular, and clinical features associated with human NAFLD/NASH progression. Although methionine-choline-deficient (MCD) diet and high-fat diet (HFD) models can mimic histological and metabolic abnormalities of human disease, respectively, the molecular signaling pathways are extremely important for understanding the pathogenesis of the disease. This review aimed to assess the differences in gene expression patterns and NAFLD/NASH progression pathways among the most common dietary animal models, i.e., HFD- and MCD diet-fed animals. Studies showed that the HFD and MCD diet could induce either up- or downregulation of the expression of genes and proteins that are involved in lipid metabolism, inflammation, oxidative stress, and fibrogenesis pathways. Interestingly, the MCD diet model could spontaneously develop liver fibrosis within two to four weeks and has significant effects on the expression of genes that encode proteins and enzymes involved in the liver fibrogenesis pathway. However, such effects in the HFD model were found to occur after 24 weeks with insulin resistance but appear to cause less severe fibrosis. In conclusion, assessing the abnormal gene expression patterns caused by different diet types provides valuable information regarding the molecular mechanisms of NAFLD/NASH and predicts the clinical progression of the disease. However, expression profiling studies concerning genetic variants involved in the development and progression of NAFLD/NASH should be conducted.


Assuntos
Deficiência de Colina , Dieta Hiperlipídica/efeitos adversos , Hepatócitos/metabolismo , Metionina/deficiência , Hepatopatia Gordurosa não Alcoólica , Transcriptoma , Animais , Colina , Deficiência de Colina/induzido quimicamente , Deficiência de Colina/genética , Deficiência de Colina/metabolismo , Modelos Animais de Doenças , Humanos , Camundongos , Hepatopatia Gordurosa não Alcoólica/induzido quimicamente , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo
8.
Nutrients ; 14(2)2022 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-35057502

RESUMO

Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) result in high mortality, whereas effective treatments are limited. Methionine restriction (MR) has been reported to offer various benefits against multiple pathological processes of organ injuries. However, it remains unknown whether MR has any potential therapeutic value for ALI/ARDS. The current study was set to investigate the therapeutic potential of MR on lipopolysaccharide (LPS)-induced ALI and its underlying mechanisms. We found that MR attenuated LPS-induced pulmonary edema, hemorrhage, atelectasis, and alveolar epithelial cell injuries in mice. MR upregulated cystathionine-gamma-lyase (CSE) expression and enhanced the production of hydrogen sulfide (H2S). MR also inhibited the activation of Toll-like receptors 4 (TLR4)/NF-κB/NOD-like receptor protein 3 (NLRP3), then reduced IL-1ß, IL-6, and TNF-α release and immune cell infiltration. Moreover, the protective effects of MR on LPS-induced ALI were abrogated by inhibiting CSE, whereas exogenous H2S treatment alone mimicked the protective effects of MR in Cse-/- mice after LPS administration. In conclusion, our findings showed that MR attenuated LPS-induced lung injury through CSE and H2S modulation. This work suggests that developing MR towards clinical use for ALI/ARDS patients may be a valuable strategy.


Assuntos
Lesão Pulmonar Aguda/prevenção & controle , Cistationina gama-Liase/metabolismo , Sulfeto de Hidrogênio/metabolismo , Lipopolissacarídeos/metabolismo , Metionina/deficiência , Lesão Pulmonar Aguda/metabolismo , Ração Animal , Animais , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Endogâmicos C57BL
9.
Sci Rep ; 12(1): 1024, 2022 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-35046474

RESUMO

Non-alcoholic fatty liver disease (NAFLD) is currently a growing epidemic disease that can lead to cirrhosis and hepatic cancer when it evolves into non-alcoholic steatohepatitis (NASH), a gap not well understood. To characterize this disease, pigs, considered to be one of the most similar to human experimental animal models, were used. To date, all swine-based settings have been carried out using rare predisposed breeds or long-term experiments. Herein, we fully describe a new experimental swine model for initial and reversible NASH using cross-bred animals fed on a high saturated fat, fructose, cholesterol, cholate, choline and methionine-deficient diet. To gain insight into the hepatic transcriptome that undergoes steatosis and steatohepatitis, we used RNA sequencing. This process significantly up-regulated 976 and down-regulated 209 genes mainly involved in cellular processes. Gene expression changes of 22 selected transcripts were verified by RT-qPCR. Lipid droplet area was positively associated with CD68, GPNMB, LGALS3, SLC51B and SPP1, and negatively with SQLE expressions. When these genes were tested in a second experiment of NASH reversion, LGALS3, SLC51B and SPP1 significantly decreased their expression. However, only LGALS3 was associated with lipid droplet areas. Our results suggest a role for LGALS3 in the transition of NAFLD to NASH.


Assuntos
Dieta Hiperlipídica , Modelos Animais de Doenças , Galectina 3/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Sus scrofa , Animais , Colina , Carboidratos da Dieta , Gorduras na Dieta , Galectina 3/genética , Perfilação da Expressão Gênica , Gotículas Lipídicas/patologia , Fígado/metabolismo , Fígado/patologia , Masculino , Metionina/deficiência , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/genética
10.
Sci Rep ; 11(1): 23843, 2021 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-34903775

RESUMO

A 75-day rearing trial was designed to study the response of juvenile Megalobrama amblycephala to dietary methionine (Met) levels. Three practical diets with graded Met levels (0.40%, 0.84% and 1.28% dry matter) were prepared to feed the juvenile fish. The results showed that the 0.84% Met diet significantly improved the growth compared with 0.40% diets. Compared with 0.84% and 1.28% Met, 0.40% Met significantly increased the hepatic lipid content, while decreasing the muscular lipid and glycogen contents. 0.40% Met decreased the protein levels of phospho-Eukaryotic initiation factor 4E binding protein-1 (p-4e-bp1), 4e-bp1 and Ribosomal protein S6 kinase 1 in the liver, compared with 0.84% diet, while an increasing trend was observed in the muscle. Met supplementation tended to decrease and increase lipid synthesis in the liver and muscle, respectively, via changing mRNA levels of sterol regulatory element-binding protein 1, fatty acid synthetase and acetyl-CoA carboxylase. 1.28% dietary Met promoted fatty acid ß-oxidation and lipolysis in both the liver and muscle by increasing carnitine palmitoyl transferase 1, peroxisome proliferator activated receptor alpha, lipoprotein lipase and lipase mRNA levels. Compared with 0.40% and 0.84% dietary Met, 1.28% Met enhanced the mRNA levels of hepatic gluconeogenesis related genes phosphoenolpyruvate carboxykinase (pepck), and glucose-6-phosphatase, and muscular glycolysis related genes phosphofructokinase (pfk), and pyruvate kinase (pk). The mRNA levels of hepatic pfk, pk and glucokinase were markedly downregulated by 1.28% Met compared with 0.84% level. Muscular pepck, glycogen synthase, and hepatic glucose transporters 2 mRNA levels were induced by 1.28% Met. Generally, deficient Met level decreased the growth of juvenile Megalobrama amblycephala, and the different nutrient metabolism responses to dietary Met were revealed in the liver and muscle.


Assuntos
Cyprinidae/metabolismo , Dieta , Fígado/metabolismo , Metionina/metabolismo , Músculo Esquelético/metabolismo , Animais , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Glicogênio/metabolismo , Metabolismo dos Lipídeos , Metionina/deficiência
11.
Int J Mol Sci ; 22(24)2021 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-34948174

RESUMO

Methionine restriction reduces animal lipid deposition. However, the molecular mechanism underlying how the body reacts to the condition and regulates lipid metabolism remains unknown. In this study, a feeding trial was performed on rice field eel Monopterus albus with six isonitrogenous and isoenergetic feeds that included different levels of methionine (0, 2, 4, 6, 8, and 10 g/kg). Compared with M0 (0 g/kg), the crude lipid and crude protein of M. albus increased markedly in M8 (8 g/kg) (p < 0.05), serum (total cholesterol, triglyceride, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, and non-esterified free fatty acids), and hepatic contents (hepatic lipase, apolipoprotein-A, fatty acid synthetase, total cholesterol, triglyceride, and lipoprteinlipase). However, in the serum, very-low-density lipoprotein and hepatic contents (hormone-sensitive triglyceride lipase, Acetyl CoA carboxylase, carnitine palmitoyltransterase, and mirosomal triglygeride transfer protein) decreased markedly in M8 (p < 0.05). The contents of hepatic C18:2n-6, C22:6n-3, and n-3PUFA in the M8 group were significantly higher than those in M0 (p < 0.05), and the contents of lipid droplets in M8 were higher than those in M0. Compared with M0, the hepatic gcn2, eif2α, hsl, mttp, ldlrap, pparα, cpt1, and cpt2 were remarkably downregulated in M8, while srebf2, lpl, moat2, dgat2, hdlbp, srebf1, fas, fads2, me1, pfae, and icdh were markedly upregulated in M8. Moreover, hepatic SREBP1 and FAS protein expression were upregulated significantly in M8 (p < 0.01). In short, methionine restriction decreased the lipid deposition of M. albus, especially for hepatic lipid deposition, and mainly downregulated hepatic fatty acid metabolism. Besides, gcn2 could be activated under methionine restriction.


Assuntos
Metabolismo dos Lipídeos/efeitos dos fármacos , Metionina/farmacologia , Smegmamorpha/metabolismo , Acetil-CoA Carboxilase/metabolismo , Animais , China , Dieta , Suplementos Nutricionais , Ácidos Graxos/metabolismo , Fígado Gorduroso/metabolismo , Metabolismo dos Lipídeos/fisiologia , Lipídeos/fisiologia , Lipoproteínas VLDL/metabolismo , Fígado/metabolismo , Metionina/deficiência , Metionina/metabolismo , RNA Mensageiro/metabolismo , Esterol Esterase/metabolismo , Triglicerídeos/metabolismo
12.
ACS Appl Mater Interfaces ; 13(46): 54690-54705, 2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34761894

RESUMO

During rapid proliferation and metabolism, tumor cells show a high dependence on methionine. The deficiency of methionine exhibits significant inhibition on tumor growth, which provides a potential therapeutic target in tumor therapy. Herein, ClO2-loaded nanoparticles (fluvastatin sodium&metformin&bupivacaine&ClO2@CaSiO3@MnO2-arginine-glycine-aspatic acid (RGD) (MFBC@CMR) NPs) were prepared for synergistic chlorine treatment and methionine-depletion starvation therapy. After outer layer MnO2 was degraded in the high glutathione (GSH) tumor microenvironment (TME), MFBC@CMR NPs released metformin (Me) to target the mitochondria, thus interfering with the tricarboxylic acid (TCA) cycle and promoting the production of lactate. In addition, released fluvastatin sodium (Flu) by the NPs acted on monocarboxylic acid transporter 4 (MCT4) in the cell membrane to inhibit lactate leakage and induce a decrease of intracellular pH, further prompting the NPs to release chlorine dioxide (ClO2), which then oxidized methionine, inhibited tumor growth, and produced large numbers of Cl- in the cytoplasm. Cl- could enter mitochondria through the voltage-dependent anion channel (VDAC) channel, which was opened by bupivacaine (Bup). The disruption of Cl- homeostasis promotes mitochondrial damage and membrane potential decline, leading to the release of cytochrome C (Cyt-C) and apoptosis inducing factor (AIF) and further inducing cell apoptosis. To sum up, the pH-regulating and ClO2-loaded MFBC@CMR nanoplatform can achieve cascade chlorine treatment and methionine-depletion starvation therapy toward tumor cells, which is of great significance for improving the clinical tumor treatment effect.


Assuntos
Antineoplásicos/farmacologia , Compostos Clorados/farmacologia , Metionina/deficiência , Óxidos/farmacologia , Animais , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Concentração de Íons de Hidrogênio , Neoplasias Mamárias Experimentais/diagnóstico por imagem , Neoplasias Mamárias Experimentais/tratamento farmacológico , Neoplasias Mamárias Experimentais/metabolismo , Metionina/análise , Metionina/metabolismo , Camundongos , Camundongos Endogâmicos , Imagem Óptica
13.
Nutrients ; 13(10)2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34684455

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is one of the most common liver diseases with no approved treatment. Zonarol, an extract from brown algae, has been proven to have anti-inflammatory and antioxidant effects. In this study, we investigated the role of zonarol in the progression of methionine- and choline-deficiency (MCD) diet-induced NAFLD in mice. After oral treatment with zonarol, a lighter body weight was observed in zonarol group (ZG) mice in comparison to control group (CG) mice. The NAFLD scores of ZG mice were lower than those of CG mice. Hepatic and serum lipid levels were also lower in ZG mice with the reduced expression of lipid metabolism-related factors. Furthermore, ZG mice showed less lipid deposition, less inflammatory cell infiltration and lower inflammatory cytokine levels in comparison to CG mice. Moreover, the numbers of 8-hydroxy-20-deoxyguanosine (8-OHdG)-positive hepatocytes and levels of hepatic and serum thiobarbituric acid reactive substances (TBARS) were significantly lower in comparison to CG mice. The expression levels of nuclear factor erythroid 2 related factor 2 (Nrf2), as well as its upstream and downstream molecules, changed in ZG mice. Zonarol could prevent the progression of NAFLD by decreasing inflammatory responses, oxidative stress and improving lipid metabolism. Meanwhile the Nrf2 pathway may play an important role in these effects.


Assuntos
Deficiência de Colina/complicações , Dieta , Metionina/deficiência , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Substâncias Protetoras/farmacologia , Sesquiterpenos/farmacologia , Animais , Biomarcadores , Dieta/efeitos adversos , Modelos Animais de Doenças , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Imuno-Histoquímica , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Camundongos , Modelos Biológicos , Fator 2 Relacionado a NF-E2/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Estresse Oxidativo/efeitos dos fármacos , Transdução de Sinais
14.
J Lipid Res ; 62: 100123, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34563519

RESUMO

Regulating dietary fat absorption may impact progression of nonalcoholic fatty liver disease (NAFLD). Here, we asked if inducible inhibition of chylomicron assembly, as observed in intestine-specific microsomal triglyceride (TG) transfer protein knockout mice (Mttp-IKO), could retard NAFLD progression and/or reverse established fibrosis in two dietary models. Mttp-IKO mice fed a methionine/choline-deficient (MCD) diet exhibited reduced hepatic TGs, inflammation, and fibrosis, associated with reduced oxidative stress and downstream activation of c-Jun N-terminal kinase and nuclear factor kappa B signaling pathways. However, when Mttpflox mice were fed an MCD for 5 weeks and then administered tamoxifen to induce Mttp-IKO, hepatic TG was reduced, but inflammation and fibrosis were increased after 10 days of reversal along with adaptive changes in hepatic lipogenic mRNAs. Extending the reversal time, following 5 weeks of MCD feeding to 30 days led to sustained reductions in hepatic TG, but neither inflammation nor fibrosis was decreased, and both intestinal permeability and hepatic lipogenesis were increased. In a second model, similar reductions in hepatic TG were observed when mice were fed a high-fat/high-fructose/high-cholesterol (HFFC) diet for 10 weeks, then switched to chow ± tamoxifen (HFFC → chow) or (HFFC → Mttp-IKO chow), but again neither inflammation nor fibrosis was affected. In conclusion, we found that blocking chylomicron assembly attenuates MCD-induced NAFLD progression by reducing steatosis, oxidative stress, and inflammation. In contrast, blocking chylomicron assembly in the setting of established hepatic steatosis and fibrosis caused increased intestinal permeability and compensatory shifts in hepatic lipogenesis that mitigate resolution of inflammation and fibrogenic signaling despite 50-90-fold reductions in hepatic TG.


Assuntos
Quilomícrons/metabolismo , Fígado Gorduroso/metabolismo , Fibrose/metabolismo , Inflamação/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Animais , Deficiência de Colina , Quilomícrons/antagonistas & inibidores , Dieta/efeitos adversos , Feminino , Intestinos/efeitos dos fármacos , Intestinos/metabolismo , Masculino , Metionina/deficiência , Camundongos , Camundongos Knockout , Camundongos Transgênicos
15.
J Biochem Mol Toxicol ; 35(10): e22876, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34369032

RESUMO

Shc expression rises in human nonalcoholic steatohepatitis (NASH) livers, and Shc-deficient mice are protected from NASH-thus Shc inhibition could be a novel therapeutic strategy for NASH. Idebenone was recently identified as the first small-molecule Shc inhibitor drug. We tested idebenone in the fibrotic methionine-choline deficient (MCD) diet and the metabolic fast food diet (FFD) mouse models of NASH. In the fibrotic MCD NASH model, idebenone reduced Shc expression and phosphorylation in peripheral blood mononuclear cells and Shc expression in the liver; decreased serum alanine aminotransferase and aspartate aminotransferase; and attenuated liver fibrosis as observed by quantitative polymerase chain reaction (qPCR) and hydroxyproline quantification. In the metabolic FFD model, idebenone administration improved insulin resistance, and reduced inflammation and fibrosis shown with qPCR, hydroxyproline measurement, and histology. Thus, idebenone ameliorates NASH in two mouse models. As an approved drug with a benign safety profile, Idebenone could be a reasonable human NASH therapy.


Assuntos
Dieta/efeitos adversos , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/etiologia , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/etiologia , Substâncias Protetoras/administração & dosagem , Proteínas Adaptadoras da Sinalização Shc/antagonistas & inibidores , Proteínas Adaptadoras da Sinalização Shc/metabolismo , Transdução de Sinais/efeitos dos fármacos , Ubiquinona/análogos & derivados , Alanina Transaminase/sangue , Animais , Aspartato Aminotransferases/sangue , Deficiência de Colina/complicações , Modelos Animais de Doenças , Fast Foods/efeitos adversos , Leucócitos Mononucleares/metabolismo , Fígado/lesões , Fígado/metabolismo , Cirrose Hepática/sangue , Cirrose Hepática/complicações , Masculino , Metionina/deficiência , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/sangue , Hepatopatia Gordurosa não Alcoólica/complicações , Fosforilação/efeitos dos fármacos , Terapêutica , Ubiquinona/administração & dosagem
16.
Am J Pathol ; 191(10): 1743-1753, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34242656

RESUMO

Inflammation drives the pathogenesis of nonalcoholic steatohepatitis (NASH). The current study examined changes in intestinal inflammation during NASH. In male C57BL/6J mice, feeding a methionine- and choline-deficient diet (MCD) resulted in severe hepatic steatosis and inflammation relative to feeding a chow diet (CD). MCD-fed mice exhibited characteristics of mucosal and submucosal inflammatory responses compared with CD-fed mice. Moreover, intestinal phosphorylation states of c-Jun N-terminal protein kinase p46 and mRNA levels of IL-1B, IL-6, tumor necrosis factor alpha, and monocyte chemoattractant protein-1 were significantly higher and intestinal mRNA levels of IL-4 and IL-13 were significantly lower in MCD-fed mice compared with those in CD mice. Surprisingly, upon treatment with MCD-mimicking media, the proinflammatory responses in cultured intestinal epithelial CMT-93 cells did not differ significantly from those in CMT-93 cells treated with control media. In contrast, in RAW264.7 macrophages, MCD-mimicking media significantly increased the phosphorylation states of c-Jun N-terminal protein kinase p46 and mitogen-activated protein kinases p38 and mRNA levels of IL-1B, IL-6, IL-10, and tumor necrosis factor alpha under either basal or lipopolysaccharide-stimulated conditions. Collectively, these results suggest that increased intestinal inflammation is associated with NASH phenotype. Thus, elevated proinflammatory responses in macrophages likely contribute to, in large part, increased intestinal inflammation in NASH.


Assuntos
Colina/metabolismo , Dieta , Inflamação/patologia , Intestinos/patologia , Metionina/deficiência , Hepatopatia Gordurosa não Alcoólica/patologia , Animais , Linhagem Celular Tumoral , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Comportamento Alimentar , Humanos , Macrófagos/patologia , Camundongos , Camundongos Endogâmicos C57BL , Fenótipo , Células RAW 264.7 , Redução de Peso
17.
Lipids Health Dis ; 20(1): 78, 2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34320998

RESUMO

BACKGROUND: Waiting lists that continue to grow and the lack of organs available for transplantation necessitate the use of marginal livers, such as fatty livers. Since steatotic livers are more susceptible to damage from ischemia and reperfusion, it was investigated whether fatty livers with different lipidomic profiles show a different outcome when subjected to long-term cold storage preservation. METHODS: Eight-week-old male Wistar rats fed for 2 weeks by a methionine-choline-deficient (MCD) diet or control diet were employed in this study. Livers were preserved in a University of Wisconsin (UW) solution at 4 °C for 6, 12 or 24 h and, after washout, reperfused for 2 h with a Krebs-Henseleit buffer at 37 °C. Hepatic enzyme release, bile production, O2-uptake, and portal venous pressure (PVP) were evaluated. The liver fatty acid profile was evaluated by a gas chromatography-mass spectrometry (GC/MS). RESULTS: MCD rats showed higher LDH and AST levels with respect to the control group. When comparing MCD livers preserved for 6, 12 or 24 h, no differences in enzyme release were found during both the washout or the reperfusion period. The same trend occurred for O2-uptake, PVP, and bile flow. A general decrease in SFA and MUFA, except for oleic acid, and a decrease in PUFA, except for arachidonic, eicosadienoic, and docosahexanaeoic acids, were found in MCD rats when compared with control rats. Moreover, the ratio between SFA and the various types of unsaturated fatty acids (UFA) was significantly lower in MCD rats. CONCLUSIONS: Although prolonged cold ischemia negatively affects the graft outcome, our data suggest that the quality of lipid constituents could influence liver injury during cold storage: the lack of an increased hepatic injury in MCD may be justified by low SFA, which likely reduces the deleterious tendency toward lipid crystallization occurring under cold ischemia.


Assuntos
Deficiência de Colina/complicações , Fígado Gorduroso/patologia , Metionina/deficiência , Preservação de Tecido , Animais , Colina/administração & dosagem , Deficiência de Colina/patologia , Dieta , Fígado/patologia , Masculino , Ratos , Ratos Wistar , Preservação de Tecido/métodos
18.
Nutrients ; 13(6)2021 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-34073838

RESUMO

The principal sensing of dietary methionine restriction (MR) occurs in the liver, where it activates multiple transcriptional programs that mediate various biological components of the response. Hepatic Fgf21 is a key target and essential endocrine mediator of the metabolic phenotype produced by dietary MR. The transcription factor, Nfe2l2, is also activated by MR and functions in tandem with hepatic Atf4 to transactivate multiple, antioxidative components of the integrated stress response. However, it is unclear whether the transcriptional responses linked to Nfe2l2 activation by dietary MR are essential to the biological efficacy of the diet. Using mice with liver-specific deletion of Nfe2l2 (Nfe2l2fl/(Alb)) and their floxed littermates (Nfe2l2fl/fl) fed either Control or MR diets, the absence of hepatic Nfe2l2 had no effect on the ability of the MR diet to increase FGF21, reduce body weight and adiposity, and increase energy expenditure. Moreover, the primary elements of the hepatic transcriptome were similarly affected by MR in both genotypes, with the only major differences occurring in induction of the P450-associated drug metabolism pathway and the pentose glucuronate interconversion pathway. The biological significance of these pathways is uncertain but we conclude that hepatic Nfe2l2 is not essential in mediating the metabolic effects of dietary MR.


Assuntos
Fígado/metabolismo , Metionina/deficiência , Fator 2 Relacionado a NF-E2/metabolismo , Adiposidade , Animais , Peso Corporal , Metabolismo Energético , Fatores de Crescimento de Fibroblastos/metabolismo , Genótipo , Masculino , Metionina/administração & dosagem , Metionina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Fator 2 Relacionado a NF-E2/genética , Obesidade/dietoterapia , Fenótipo
19.
PLoS One ; 16(6): e0253810, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34166453

RESUMO

Maternal nutrition during gestation can cause epigenetic effects that translate to alterations in gene expression in offspring. This 2-year study employed RNA-sequencing technology to evaluate the pre- and post-vaccination muscle transcriptome of early-weaned Bos indicus-influenced beef calves born from dams offered different supplementation strategies from 57 ± 5 d prepartum until 17 ± 5 d postpartum. Seventy-two Brangus heifers (36 heifers/yr) were stratified by body weight and body condition score and assigned to bahiagrass pastures (3 heifers/pasture/yr). Treatments were randomly assigned to pastures and consisted of (i) no pre- or postpartum supplementation (NOSUP), (ii) pre- and postpartum supplementation of protein and energy using 7.2 kg of dry matter/heifer/wk of molasses + urea (MOL), or (iii) MOL fortified with 105 g/heifer/wk of methionine hydroxy analog (MOLMET). Calves were weaned on d 147 of the study. On d 154, 24 calves/yr (8 calves/treatment) were randomly selected and individually limit-fed a high-concentrate diet until d 201. Calves were vaccinated on d 160. Muscle biopsies were collected from the same calves (4 calves/treatment/day/yr) on d 154 (pre-vaccination) and 201 (post-vaccination) for gene expression analysis using RNA sequencing. Molasses maternal supplementation led to a downregulation of genes associated with muscle cell differentiation and development along with intracellular signaling pathways (e.g., Wnt and TGF-ß signaling pathway) compared to no maternal supplementation. Maternal fortification with methionine altered functional gene-sets involved in amino acid transport and metabolism and the one-carbon cycle. In addition, muscle transcriptome was impacted by vaccination with a total of 2,396 differentially expressed genes (FDR ≤ 0.05) on d 201 vs. d 154. Genes involved in cell cycle progression, extracellular matrix, and collagen formation were upregulated after vaccination. This study demonstrated that maternal supplementation of energy and protein, with or without, methionine has long-term implications on the muscle transcriptome of offspring and potentially influence postnatal muscle development.


Assuntos
Ração Animal , Suplementos Nutricionais , Epigênese Genética , Metionina , Músculo Esquelético , Efeitos Tardios da Exposição Pré-Natal , Vacinas/farmacologia , Via de Sinalização Wnt , Animais , Bovinos , Epigênese Genética/efeitos dos fármacos , Epigênese Genética/imunologia , Feminino , Masculino , Metionina/deficiência , Metionina/farmacologia , Músculo Esquelético/imunologia , Músculo Esquelético/metabolismo , Gravidez , Efeitos Tardios da Exposição Pré-Natal/imunologia , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Transcriptoma , Vacinas/imunologia , Via de Sinalização Wnt/efeitos dos fármacos , Via de Sinalização Wnt/imunologia
20.
J Am Soc Nephrol ; 32(8): 1898-1912, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33958489

RESUMO

BACKGROUND: Low nephron number at birth is associated with a high risk of CKD in adulthood because nephrogenesis is completed in utero. Poor intrauterine environment impairs nephron endowment via an undefined molecular mechanism. A calorie-restricted diet (CRD) mouse model examined the effect of malnutrition during pregnancy on nephron progenitor cells (NPCs). METHODS: Daily caloric intake was reduced by 30% during pregnancy. mRNA expression, the cell cycle, and metabolic activity were evaluated in sorted Six2 NPCs. The results were validated using transgenic mice, oral nutrient supplementation, and organ cultures. RESULTS: Maternal CRD is associated with low nephron number in offspring, compromising kidney function at an older age. RNA-seq identified cell cycle regulators and the mTORC1 pathway, among other pathways, that maternal malnutrition in NPCs modifies. Metabolomics analysis of NPCs singled out the methionine pathway as crucial for NPC proliferation and maintenance. Methionine deprivation reduced NPC proliferation and lowered NPC number per tip in embryonic kidney cultures, with rescue from methionine metabolite supplementation. Importantly, in vivo, the negative effect of caloric restriction on nephrogenesis was prevented by adding methionine to the otherwise restricted diet during pregnancy or by removing one Tsc1 allele in NPCs. CONCLUSIONS: These findings show that mTORC1 signaling and methionine metabolism are central to the cellular and metabolic effects of malnutrition during pregnancy on NPCs, contributing to nephrogenesis and later, to kidney health in adulthood.


Assuntos
Desnutrição/fisiopatologia , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Metionina/metabolismo , Néfrons/embriologia , Células-Tronco/metabolismo , Animais , Restrição Calórica , Ciclo Celular , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Feminino , Expressão Gênica , Proteínas de Homeodomínio/genética , Desnutrição/metabolismo , Metabolômica , Metionina/administração & dosagem , Metionina/deficiência , Metionina/farmacologia , Camundongos , Camundongos Transgênicos , Néfrons/metabolismo , Néfrons/patologia , Técnicas de Cultura de Órgãos , Gravidez , RNA Mensageiro , RNA-Seq , Transdução de Sinais , Células-Tronco/fisiologia , Fatores de Transcrição/genética , Proteína 1 do Complexo Esclerose Tuberosa/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA