Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 120
Filtrar
1.
Nat Biomed Eng ; 5(8): 880-896, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34426676

RESUMO

Fibroblasts can be directly reprogrammed into cardiomyocytes, endothelial cells or smooth muscle cells. Here we report the reprogramming of mouse tail-tip fibroblasts simultaneously into cells resembling these three cell types using the microRNA mimic miR-208b-3p, ascorbic acid and bone morphogenetic protein 4, as well as the formation of tissue-like structures formed by the directly reprogrammed cells. Implantation of the formed cardiovascular tissue into the infarcted hearts of mice led to the migration of reprogrammed cells to the injured tissue, reducing regional cardiac strain and improving cardiac function. The migrated endothelial cells and smooth muscle cells contributed to vessel formation, and the migrated cardiomyocytes, which initially displayed immature characteristics, became mature over time and formed gap junctions with host cardiomyocytes. Direct reprogramming of somatic cells to make cardiac tissue may aid the development of applications in cell therapy, disease modelling and drug discovery for cardiovascular diseases.


Assuntos
Células Endoteliais/transplante , Coração/fisiologia , Infarto do Miocárdio/terapia , Miócitos de Músculo Liso/transplante , Regeneração , Animais , Ácido Ascórbico/farmacologia , Proteína Morfogenética Óssea 4/farmacologia , Reprogramação Celular/efeitos dos fármacos , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Fibroblastos/citologia , Fibroblastos/metabolismo , Junções Comunicantes/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/metabolismo , Miocárdio/citologia , Miocárdio/metabolismo , Miocárdio/patologia , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/metabolismo , Cadeias Pesadas de Miosina/genética , Cadeias Pesadas de Miosina/metabolismo , Neovascularização Fisiológica , Transcriptoma
2.
Cells ; 10(4)2021 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-33918299

RESUMO

Induced pluripotent stem cells (iPSC) represent an innovative, somatic cell-derived, easily obtained and renewable stem cell source without considerable ethical issues. iPSC and their derived cells may have enhanced therapeutic and translational potential compared with other stem cells. We previously showed that human iPSC-derived smooth muscle cells (hiPSC-SMC) promote angiogenesis and wound healing. Accordingly, we hypothesized that hiPSC-SMC may be a novel treatment for human patients with chronic limb-threatening ischemia who have no standard options for therapy. We determined the angiogenic potential of hiPSC-SMC in a murine hindlimb ischemia model. hiPSC-SMC were injected intramuscularly into nude mice after creation of hindlimb ischemia. Functional outcomes and perfusion were measured using standardized scores, laser Doppler imaging, microCT, histology and immunofluorescence. Functional outcomes and blood flow were improved in hiPSC-SMC-treated mice compared with controls (Tarlov score, p < 0.05; Faber score, p < 0.05; flow, p = 0.054). hiPSC-SMC-treated mice showed fewer gastrocnemius fibers (p < 0.0001), increased fiber area (p < 0.0001), and enhanced capillary density (p < 0.01); microCT showed more arterioles (<96 µm). hiPSC-SMC treatment was associated with fewer numbers of macrophages, decreased numbers of M1-type (p < 0.05) and increased numbers of M2-type macrophages (p < 0.0001). Vascular endothelial growth factor (VEGF) expression in ischemic limbs was significantly elevated with hiPSC-SMC treatment (p < 0.05), and inhibition of VEGFR-2 with SU5416 was associated with fewer capillaries in hiPSC-SMC-treated limbs (p < 0.0001). hiPSC-SMC promote VEGF-mediated angiogenesis, leading to improved hindlimb ischemia. Stem cell therapy using iPSC-derived cells may represent a novel and potentially translatable therapy for limb-threatening ischemia.


Assuntos
Membro Posterior/irrigação sanguínea , Células-Tronco Pluripotentes Induzidas/transplante , Isquemia/patologia , Isquemia/terapia , Miócitos de Músculo Liso/transplante , Neovascularização Fisiológica , Animais , Capilares/patologia , Linhagem Celular , Feminino , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Recém-Nascido , Macrófagos/patologia , Masculino , Camundongos Nus , Músculos/irrigação sanguínea , Músculos/patologia , Fator A de Crescimento do Endotélio Vascular/metabolismo
3.
Arterioscler Thromb Vasc Biol ; 41(2): 915-930, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33356390

RESUMO

OBJECTIVE: Circulating progenitor cells possess vasculogenesis property and participate in repair of vascular injury. Cx (connexin) 43-a transmembrane protein constituting gap junctions-is involved in vascular pathology. However, the role of Cx43 in smooth muscle progenitor cells (SPCs) remained unclear. Approach and Results: Human SPCs cultured from CD34+ peripheral blood mononuclear cells expressed smooth muscle cell markers, such as smooth muscle MHC (myosin heavy chain), nonmuscle MHC, calponin, and CD140B, and Cx43 was the most abundant Cx isoform. To evaluate the role of Cx43 in SPCs, short interference RNA was used to knock down Cx43 expression. Cellular activities of SPCs were reduced by Cx43 downregulation. In addition, Cx43 downregulation attenuated angiogenic potential of SPCs in hind limb ischemia mice. Protein array and ELISA of the supernatant from SPCs showed that IL (interleukin)-6, IL-8, and HGF (hepatocyte growth factor) were reduced by Cx43 downregulation. Simultaneously, Cx43 downregulation reduced the phosphorylation of NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells) and Akt (protein kinase B) pathway and reactivation of NF-κB and Akt using betulinic acid, and SC79 could restore the secretion of growth factors and cytokines. Moreover, FAK (focal adhesion kinase)-Src (proto-oncogene tyrosine-protein kinase Src) activation was increased by Cx43 downregulation, and inactivation of Akt-NF-κB could be restored by Src inhibitor (PP2), indicating that Akt-NF-κB inactivated by Cx43 downregulation arose from FAK-Src activation. Finally, the depressed cellular activities and secretion of SPCs after Cx43 downregulation were restored by FAK inhibitor PF-562271 or PP2. CONCLUSIONS: SPCs possess angiogenic potential to repair ischemic tissue mainly through paracrine effects. Gap junction protein Cx43 plays an important role in regulating cellular function and paracrine effects of SPCs through FAK-Src axis.


Assuntos
Conexina 43/metabolismo , Isquemia/cirurgia , Músculo Esquelético/irrigação sanguínea , Miócitos de Músculo Liso/transplante , NF-kappa B/metabolismo , Neovascularização Fisiológica , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Movimento Celular , Proliferação de Células , Células Cultivadas , Conexina 43/genética , Modelos Animais de Doenças , Regulação para Baixo , Feminino , Membro Posterior , Humanos , Mediadores da Inflamação/metabolismo , Isquemia/genética , Isquemia/metabolismo , Isquemia/fisiopatologia , Camundongos Endogâmicos BALB C , Camundongos Nus , Camundongos Transgênicos , Miócitos de Músculo Liso/metabolismo , Fosforilação , Proto-Oncogene Mas , Interferência de RNA , Fluxo Sanguíneo Regional , Transdução de Sinais , Transplante de Células-Tronco
4.
Stem Cells Transl Med ; 10(3): 414-426, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33174379

RESUMO

Critical limb ischemia is a condition in which tissue necrosis occurs due to arterial occlusion, resulting in limb amputation in severe cases. Both endothelial cells (ECs) and vascular smooth muscle cells (SMCs) are needed for the regeneration of peripheral arteries in ischemic tissues. However, it is difficult to isolate and cultivate primary EC and SMC from patients for therapeutic angiogenesis. Induced pluripotent stem cells (iPSCs) are regarded as useful stem cells due to their pluripotent differentiation potential. In this study, we explored the therapeutic efficacy of human iPSC-derived EC and iPSC-derived SMC in peripheral artery disease model. After the induction of mesodermal differentiation of iPSC, CD34+ progenitor cells were isolated by magnetic-activated cell sorting. Cultivation of the CD34+ progenitor cells in endothelial culture medium induced the expression of endothelial markers and phenotypes. Moreover, the CD34+ cells could be differentiated into SMC by cultivation in SMC culture medium. In a murine hindlimb ischemia model, cotransplantation of EC with SMC improved blood perfusion and increased the limb salvage rate in ischemic limbs compared to transplantation of either EC or SMC alone. Moreover, cotransplantation of EC and SMC stimulated angiogenesis and led to the formation of capillaries and arteries/arterioles in vivo. Conditioned medium derived from SMC stimulated the migration, proliferation, and tubulation of EC in vitro, and these effects were recapitulated by exosomes isolated from the SMC-conditioned medium. Together, these results suggest that iPSC-derived SMC enhance the therapeutic efficacy of iPSC-derived EC in peripheral artery disease via an exosome-mediated paracrine mechanism.


Assuntos
Isquemia Crônica Crítica de Membro , Células Endoteliais , Células-Tronco Pluripotentes Induzidas , Miócitos de Músculo Liso , Doença Arterial Periférica , Animais , Antígenos CD34 , Diferenciação Celular , Células Cultivadas , Isquemia Crônica Crítica de Membro/terapia , Meios de Cultivo Condicionados/farmacologia , Células Endoteliais/transplante , Humanos , Camundongos , Miócitos de Músculo Liso/transplante , Doença Arterial Periférica/terapia
5.
Theranostics ; 10(23): 10378-10393, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32929355

RESUMO

Rationale: Construction of functional vascularized three-dimensional tissues has been a longstanding objective in the field of tissue engineering. The efficacy of using a tissue expander capsule as an induced vascular bed to prefabricate functional vascularized smooth muscle tissue flaps for bladder reconstruction in a rabbit model was tested. Methods: Skin tissue expanders were inserted into the groin to induce vascularized capsule pouch formation. Smooth muscle cells and endothelial progenitor cells were harvested and cocultured to form pre-vascularized smooth muscle cell sheet. Then repeated transplantation of triple-layer cell sheet grafts onto the vascularized capsular tissue was performed at 2-day intervals to prefabricate functional vascularized smooth muscle tissue flaps. Bladder muscular wall defects were created and repaired by six-layer cell sheet graft (sheet only), capsule flap (capsule only) and vascularized capsule prelaminated with smooth muscle cell sheet (sheet plus capsule). The animals were followed for 3 months after implantation and their bladders were explanted serially. Results: Bladder capacity and compliance were maintained in sheet plus capsule group throughout the 3 months. Tissue bath stimulation demonstrated that contractile responses to carbachol and KCl among the three groups revealed a significant difference (p < 0.05). Histologically, inflammation was evident in the capsule only group at 1 month and fibrosis was observed in sheet only group at 3 months. The vessel density in capsule only and sheet plus capsule group were significantly higher than in the sheet only group at each time point (p < 0.05). Comparison of the smooth muscle content among the three groups revealed a significant difference (p < 0.05). Conclusion: These results proved that the capsule may serve as an induced vascular bed for vascularized smooth muscle tissue flap prefabrication. The prefabricated functional vascularized smooth muscle tissue flap has the potential for reliable bladder reconstruction and may create new opportunities for vascularization in 3-D tissue engineering.


Assuntos
Miócitos de Músculo Liso/transplante , Procedimentos de Cirurgia Plástica/métodos , Retalhos Cirúrgicos/transplante , Engenharia Tecidual/métodos , Bexiga Urinária/cirurgia , Animais , Carbacol/administração & dosagem , Técnicas de Cultura de Células/métodos , Técnicas de Cocultura , Células Endoteliais , Estudos de Viabilidade , Masculino , Modelos Animais , Contração Muscular/efeitos dos fármacos , Músculo Liso/irrigação sanguínea , Músculo Liso/citologia , Músculo Liso/efeitos dos fármacos , Coelhos , Células-Tronco , Retalhos Cirúrgicos/irrigação sanguínea , Alicerces Teciduais , Transplante Autólogo/métodos , Bexiga Urinária/irrigação sanguínea , Bexiga Urinária/citologia , Bexiga Urinária/efeitos dos fármacos
6.
J Mater Chem B ; 8(8): 1748-1758, 2020 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-32031190

RESUMO

Reconstitution of urethral defects through a tissue-engineered autologous urethra is an exciting area of clinical urology research. Despite rapid advances in this field, a tissue-engineered urethra is still inaccessible to clinical applications because of the poor vascularization of the current scaffold materials, especially for the reconstruction of complex urethral defects. In this study, we report the preparation of multifaceted bio-interfacing tissue-engineered autologous scaffolds based on alternating block polyurethane (abbreviated as PU-alt), a kind of tubular scaffold with a hierarchical nanofiber architecture, flexible mechanical properties and a hydrophilic PEGylation interface capable of promoting adhesion, oriented elongation, and proliferation of New Zealand rabbit autologous urethral epithelial cells (ECs) and smooth muscle cells (SMCs) simultaneously, and also upregulating the expression of keratin (AE1/AE3) in ECs and contractile protein (α-SMA) in SMCs as well as the subsequent synthesis of elastin. Three months in vivo scaffold substitution of rabbit urethras displayed that the engineered autologous PU-alt scaffold grafts, with a coating rich in seed cell-matrix, could induce local neo-vascularization, facilitating oriented SMC remodeling and lumen epithelialization as well as patency. Our findings indicate a central role of the synergistic interplay of seed cell-matrix bio-interface and nano-topographic cues in the vascularized urethral reconstruction.


Assuntos
Nanofibras/química , Engenharia Tecidual , Alicerces Teciduais/química , Uretra/fisiologia , Actinas/metabolismo , Animais , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Células Epiteliais/transplante , Queratinas/metabolismo , Masculino , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/transplante , Poliésteres/química , Polietilenoglicóis/química , Coelhos , Regeneração , Transplante Autólogo , Uretra/patologia
7.
J Cardiovasc Transl Res ; 13(1): 110-119, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31152358

RESUMO

Despite primary percutaneous coronary intervention (PPCI) and the availability of optimal medications, including dual antiplatelet therapy (DAPT), most patients still experience major adverse cardiovascular events (MACEs) due to frequent recurrence of thrombotic complications and myocardial infarction (MI). MI occurs secondary to a massive loss of endothelial cells (ECs), vascular smooth muscle cells (VSMCs), and cardiomyocytes (CMs). The adult cardiovascular system gradually loses the ability to spontaneously and regularly regenerate ECs, VSMCs, and CMs. However, human cells can be induced by cytokines and growth factors to regenerate human-induced pluripotent stem cells (hiPSCs), which progress to produce cardiac trilineage cells (CTCs) such as ECs, VSMCs, and CMs, replacing lost cells and inducing myocardial repair. Nevertheless, the processes and pathways involved in hiPSC-CTC generation and their potential therapeutic effects remain unknown. Herein, we provide evidence of in vitro CTC generation, the pathways involved, in vivo transplantation, and its therapeutic effect, which may provide novel targets in regenerative medicine for the treatment of cardiovascular diseases (CVDs).


Assuntos
Linhagem da Célula , Células Endoteliais/transplante , Células-Tronco Pluripotentes Induzidas/transplante , Infarto do Miocárdio/cirurgia , Miocárdio/patologia , Miócitos Cardíacos/transplante , Miócitos de Músculo Liso/transplante , Regeneração , Animais , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Fenótipo , Recuperação de Função Fisiológica , Fatores de Risco , Transdução de Sinais
8.
Biomed Res Int ; 2019: 8520523, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31828135

RESUMO

Radical prostatectomy causes erectile dysfunction (ED) and irreversible morphologic changes, including induction of endothelial and smooth muscle cell (SMC) apoptosis in the corpus cavernosum (CC). The injection of smooth muscle progenitor cells (SPCs) thickens the vascular intima and has demonstrated therapeutic benefit in cardiovascular disease animal. Herein, we investigated the effect of SPCs on the recovery of erectile function (EF) in rat models with bilateral cavernous nerve (CN) injury. Twenty-four male Sprague-Dawley rats were randomized into sham, vehicle only, or SPC treatment groups. Rats in the SPC treatment and vehicle groups were subjected to bilateral CN injury before intracavernosal injection. Intracavernosal injections of SPCs increased all EF parameters at day 28 after injury and simultaneously reduced apoptosis of the SMCs. Ultrastructural analysis revealed that SPCs maintained the integrity of the CC by preserving the structure of the adherens junctions. Tracking transplanted SPCs labeled with EdU showed that transplanted SPCs remained in the CC 28 days after treatment. Intracavernosal SPC injection restored EF after bilateral CN injury by reducing SMC apoptosis, which favored the maintenance of the structure of adherens junctions and regulated the stability of corporal vessels. These findings demonstrate the therapeutic potential of SPCs for treating ED in humans.


Assuntos
Apoptose/fisiologia , Disfunção Erétil/cirurgia , Miócitos de Músculo Liso , Traumatismos dos Nervos Periféricos/cirurgia , Transplante de Células-Tronco , Animais , Modelos Animais de Doenças , Disfunção Erétil/patologia , Masculino , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/transplante , Ereção Peniana/fisiologia , Pênis/citologia , Pênis/patologia , Pênis/cirurgia , Ratos , Ratos Sprague-Dawley
9.
Sci Rep ; 8(1): 13544, 2018 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-30202095

RESUMO

Oriented smooth muscle layers in the intestine contract rhythmically due to the action of interstitial cells of Cajal (ICC) that serve as pacemakers of the intestine. Disruption of ICC networks has been reported in various intestinal motility disorders, which limit the quality and expectancy of life. A significant challenge in intestinal smooth muscle engineering is the rapid loss of function in cultured ICC and smooth muscle cells (SMC). Here we demonstrate a novel approach to maintain the function of both ICC and SMC in vitro. Primary intestinal SMC mixtures cultured on feeder cells seeded electrospun poly(3-caprolactone) scaffolds exhibited rhythmic contractions with directionality for over 10 weeks in vitro. The simplicity of this system should allow for wide usage in research on intestinal motility disorders and tissue engineering, and may prove to be a versatile platform for generating other types of functional SMC in vitro.


Assuntos
Intestinos/citologia , Contração Muscular/fisiologia , Músculo Liso/fisiologia , Miócitos de Músculo Liso/fisiologia , Engenharia Tecidual/métodos , Animais , Animais Recém-Nascidos , Linhagem Celular , Colonoscopia , Feminino , Fibroblastos , Motilidade Gastrointestinal/fisiologia , Humanos , Enteropatias/fisiopatologia , Enteropatias/terapia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Músculo Liso/citologia , Miócitos de Músculo Liso/transplante , Poliésteres/química , Cultura Primária de Células , Alicerces Teciduais/química
10.
PLoS One ; 13(9): e0204677, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30256839

RESUMO

Cell sheet engineering has recently emerged as a promising strategy for scaffold-free tissue engineering. However, the primary method of harvesting cell sheets using temperature-responsive dishes has potential limitations. Here we report a novel cell sheet technology based on a coculture system in which SMCs are cocultured with EPCs on common polystyrene dishes. We found that an intact and highly viable cell sheet could be harvested using mechanical methods when SMCs and EPCs were cocultured on common polystyrene dishes at a ratio of 6:1 for 5 to 6 days; the method is simple, cost-effective and highly repeatable. Moreover, the cocultured cell sheet contained capillary-like networks and could secrete a variety of angiogenic factors. Finally, in vivo studies proved that the cocultured cell sheets were more favorable for the fabrication of vascularized smooth muscle tissues compared to single SMC sheets. This study provides a promising avenue for smooth muscle tissue engineering.


Assuntos
Técnicas de Cocultura/instrumentação , Células Progenitoras Endoteliais/citologia , Miócitos de Músculo Liso/citologia , Engenharia Tecidual/métodos , Animais , Adesão Celular , Sobrevivência Celular , Técnicas de Cocultura/métodos , Células Progenitoras Endoteliais/transplante , Masculino , Músculo Liso/irrigação sanguínea , Músculo Liso/citologia , Músculo Liso/transplante , Miócitos de Músculo Liso/transplante , Poliestirenos , Coelhos , Técnicas de Cultura de Tecidos/instrumentação , Técnicas de Cultura de Tecidos/métodos
11.
Stem Cell Res Ther ; 9(1): 246, 2018 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-30257719

RESUMO

BACKGROUND: This study investigated the therapeutic effects of MSC-derived exosomes (MSC-Exos) on erectile function in a rat model of cavernous nerve injury (CNI). METHODS: MSCs were isolated from rat bone marrow and exosomes were isolated from the supernatants by ultracentrifugation. The tissue explant adherent method was used to isolate and culture corpus cavernosum smooth muscle cells (CCSMCs). MSCs and CCSMCs were identified by flow cytometry, in vitro differentiation or immunofluorescence staining. Thirty-two 10-week-old male Sprague Dawley (SD) rats were divided into four groups: a sham operation group and bilateral CNI groups that received intracavernosal (IC) injection of either PBS, MSCs or MSC-Exos. Four weeks after CNI and treatment, the erectile function of the rats was measured by electrically stimulating the cavernous nerve. The penile tissues were harvested for blinded histologic analysis and western blotting. H2O2 was used to induce apoptosis in the CCSMCs, and a flow cytometer was used to measure the cell viability of the CCSMCs treated with or without exosomes in vitro. RESULTS: Recovery of erectile function was observed in the MSC-Exos group. The MSC-Exos treatment significantly enhanced smooth muscle content and neuronal nitric oxide synthase in the corpus cavernosum. The ratio of smooth muscle to collagen in the corpus cavernosum was significantly improved in the MSC-Exos treatment group compared to the PBS vehicle group. WB confirmed these biological changes. Cell viability of the CCSMCs was increased in the MSC-Exos-treated groups, and caspase-3 expression was decreased after the MSC-Exos treatment in vivo and in vitro. CONCLUSIONS: Exosomes isolated from MSCs culture supernatants by ultracentrifugation could ameliorate CNI-induced ED in rats by inhibiting apoptosis in CCSMCs, with similar potency to that observed in the MSCs-treated group. Therefore, this cell-free therapy has great potential for application in the treatment of CNI-induced ED for replacing cell therapy. MSC-derived exosomes ameliorate erectile dysfunction in a rat model of cavernous nerve injury.


Assuntos
Disfunção Erétil/terapia , Exossomos/transplante , Transplante de Células-Tronco Mesenquimais , Miócitos de Músculo Liso/transplante , Animais , Apoptose/efeitos dos fármacos , Diferenciação Celular/genética , Modelos Animais de Doenças , Disfunção Erétil/fisiopatologia , Citometria de Fluxo , Humanos , Peróxido de Hidrogênio/farmacologia , Masculino , Células-Tronco Mesenquimais/citologia , Ereção Peniana/fisiologia , Pênis/fisiopatologia , Ratos , Ratos Sprague-Dawley
12.
J Vasc Surg ; 68(6S): 201S-207S, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29804740

RESUMO

OBJECTIVE: The main objective of this study was to define a role of sphingosine-1-phosphate receptor 1 (S1PR1) in the arterial injury response of a human artery. The hypotheses were tested that injury induces an expansion of S1PR1-positive cells and that these cells accumulate toward the lumen because they follow the sphingosine-1-phosphate gradient from arterial wall tissue (low) to plasma (high). METHODS: A humanized rat model was used in which denuded human internal mammary artery (IMA) was implanted into the position of the abdominal aorta of immunosuppressed Rowett nude rats. This injury model is characterized by medial as well as intimal hyperplasia, whereby intimal cells are of human origin. At 7, 14, and 28 days after implantation, grafts were harvested and processed for fluorescent immunostaining for S1PR1 and smooth muscle α-actin. Nuclei were stained with 4',6-diamidine-2'-phenylindole dihydrochloride. Using digitally reconstructed, complete cross sections of grafts, intimal and medial areas were measured, whereby the medial area had virtually been divided into an outer (toward adventitia) and inner (toward lumen) layer. The fraction of S1PR1-positive cells was determined in each layer by counting S1PR1-positive and S1PR1-negative cells. RESULTS: The fraction of S1PR1-postive cells in naive IMA is 58.9% ± 6.0% (mean ± standard deviation). At day 28 after implantation, 81.6% ± 4.4% of medial cells were scored S1PR1 positive (P < .01). At day 14, the ratio between S1PR1-positive and S1PR1-negative cells was significantly higher in the lumen-oriented inner layer (9.3 ± 2.1 vs 6.0 ± 1.0; P < .01). Cells appearing in the intima at day 7 and day 14 were almost all S1PR1 positive. At day 28, however, about one-third of intimal cells were scored S1PR1 negative. CONCLUSIONS: From these data, we conclude that denudation of IMA specifically induces the expansion of S1PR1-positive cells. Based on the nonrandom distribution of S1PR1-positive cells, we consider the possibility that much like lymphocytes, S1PR1-positive smooth muscle cells also use S1PR1 to recognize the sphingosine-1-phosphate gradient from tissue (low) to plasma (high) and so migrate out of the media toward the intima of the injured IMA.


Assuntos
Aorta Abdominal/cirurgia , Oclusão de Enxerto Vascular/metabolismo , Artéria Torácica Interna/transplante , Músculo Liso Vascular/transplante , Miócitos de Músculo Liso/transplante , Neointima , Receptores de Lisoesfingolipídeo/metabolismo , Animais , Movimento Celular , Proliferação de Células , Modelos Animais de Doenças , Oclusão de Enxerto Vascular/etiologia , Oclusão de Enxerto Vascular/patologia , Humanos , Lisofosfolipídeos/metabolismo , Masculino , Artéria Torácica Interna/metabolismo , Artéria Torácica Interna/patologia , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Ratos Nus , Transdução de Sinais , Esfingosina/análogos & derivados , Esfingosina/metabolismo , Receptores de Esfingosina-1-Fosfato , Fatores de Tempo
13.
Microvasc Res ; 118: 101-112, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29550275

RESUMO

Small-diameter vascular grafts are needed for the treatment of coronary artery diseases in the case of limited accessibility of the autologous vessels. Synthetic scaffolds have many disadvantages so in recent years vascular constructs (VCs) made from cellularized natural scaffolds was seen to be very promising but number of studies comprising this area is very limited. In our study, our aim is to generate fully natural triple-layered VC that constitutes all the layers of blood vessel with vascular cells. CD146+ perivascular cells (PCs) were isolated from human umbilical cord vein (HUCV) and differentiated into smooth muscle cells (SMCs) and fibroblasts. They were then combined with collagen type I/elastin/dermatan sulfate and collagen type I/fibrin to form tunica media and tunica adventitia respectively. HUCV endothelial cells (ECs) were seeded on the construct by cell sheet engineering method after fibronectin and heparin coating. Characterization of the VC was performed by immunolabeling, histochemical staining and electron microscopy (SEM and TEM). Differentiated cells were identified by means of immunofluorescent (IF) labeling. SEM and TEM analysis of VCs revealed the presence of three histologic tunicae. Collagen and elastic fibers were observed within the ECM by histochemical staining. The vascular endothelial growth factor receptor expressing ECs in tunica intima; α-SMA expressing SMCs in tunica media and; the tenascin expressing fibroblasts in tunica adventitia were detected by IF labeling. In conclusion, by combining natural scaffolds and vascular cells differentiated from CD146+ PCs, VCs can be generated layer by layer. This study will provide a preliminary blood vessel model for generation of fully natural small-diameter vascular grafts.


Assuntos
Prótese Vascular , Matriz Extracelular/metabolismo , Fibroblastos/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Miócitos de Músculo Liso/metabolismo , Engenharia Tecidual/métodos , Alicerces Teciduais , Implante de Prótese Vascular , Antígeno CD146/metabolismo , Comunicação Celular , Transdiferenciação Celular , Células Cultivadas , Colágeno/metabolismo , Dermatan Sulfato/metabolismo , Elastina/metabolismo , Matriz Extracelular/transplante , Matriz Extracelular/ultraestrutura , Fibroblastos/transplante , Fibroblastos/ultraestrutura , Células Endoteliais da Veia Umbilical Humana/transplante , Células Endoteliais da Veia Umbilical Humana/ultraestrutura , Humanos , Miócitos de Músculo Liso/transplante , Miócitos de Músculo Liso/ultraestrutura , Fenótipo
14.
Cardiovasc Res ; 114(4): 601-610, 2018 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-29373656

RESUMO

Atherosclerosis is the underlying pathology of many cardiovascular diseases. The formation and rupture of atherosclerotic plaques in the coronary arteries results in angina and myocardial infarction. Venous coronary artery bypass grafts are designed to reduce the consequences of atherosclerosis in the coronary arteries by diverting blood flow around the atherosclerotic plaques. However, vein grafts suffer a high failure rate due to intimal thickening that occurs as a result of vascular cell injury and activation and can act as 'a soil' for subsequent atherosclerotic plaque formation. A clinically-proven method for the reduction of vein graft intimal thickening and subsequent major adverse clinical events is currently not available. Consequently, a greater understanding of the underlying mechanisms of intimal thickening may be beneficial for the design of future therapies for vein graft failure. Vein grafting induces inflammation and endothelial cell damage and dysfunction, that promotes vascular smooth muscle cell (VSMC) migration, and proliferation. Injury to the wall of the vein as a result of grafting leads to the production of chemoattractants, remodelling of the extracellular matrix and cell-cell contacts; which all contribute to the induction of VSMC migration and proliferation. This review focuses on the role of altered behaviour of VSMCs in the vein graft and some of the factors which critically lead to intimal thickening that pre-disposes the vein graft to further atherosclerosis and re-occurrence of symptoms in the patient.


Assuntos
Ponte de Artéria Coronária/efeitos adversos , Oclusão de Enxerto Vascular/patologia , Músculo Liso Vascular/patologia , Músculo Liso Vascular/transplante , Miócitos de Músculo Liso/patologia , Miócitos de Músculo Liso/transplante , Veia Safena/patologia , Veia Safena/transplante , Animais , Movimento Celular , Proliferação de Células , Oclusão de Enxerto Vascular/etiologia , Oclusão de Enxerto Vascular/metabolismo , Oclusão de Enxerto Vascular/fisiopatologia , Humanos , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Neointima , Fenótipo , Fatores de Risco , Veia Safena/metabolismo , Transdução de Sinais , Falha de Tratamento , Remodelação Vascular
15.
Circulation ; 137(16): 1712-1730, 2018 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-29233823

RESUMO

BACKGROUND: Here, we generated human cardiac muscle patches (hCMPs) of clinically relevant dimensions (4 cm × 2 cm × 1.25 mm) by suspending cardiomyocytes, smooth muscle cells, and endothelial cells that had been differentiated from human induced-pluripotent stem cells in a fibrin scaffold and then culturing the construct on a dynamic (rocking) platform. METHODS: In vitro assessments of hCMPs suggest maturation in response to dynamic culture stimulation. In vivo assessments were conducted in a porcine model of myocardial infarction (MI). Animal groups included: MI hearts treated with 2 hCMPs (MI+hCMP, n=13), MI hearts treated with 2 cell-free open fibrin patches (n=14), or MI hearts with neither experimental patch (n=15); a fourth group of animals underwent sham surgery (Sham, n=8). Cardiac function and infarct size were evaluated by MRI, arrhythmia incidence by implanted loop recorders, and the engraftment rate by calculation of quantitative polymerase chain reaction measurements of expression of the human Y chromosome. Additional studies examined the myocardial protein expression profile changes and potential mechanisms of action that related to exosomes from the cell patch. RESULTS: The hCMPs began to beat synchronously within 1 day of fabrication, and after 7 days of dynamic culture stimulation, in vitro assessments indicated the mechanisms related to the improvements in electronic mechanical coupling, calcium-handling, and force generation, suggesting a maturation process during the dynamic culture. The engraftment rate was 10.9±1.8% at 4 weeks after the transplantation. The hCMP transplantation was associated with significant improvements in left ventricular function, infarct size, myocardial wall stress, myocardial hypertrophy, and reduced apoptosis in the periscar boarder zone myocardium. hCMP transplantation also reversed some MI-associated changes in sarcomeric regulatory protein phosphorylation. The exosomes released from the hCMP appeared to have cytoprotective properties that improved cardiomyocyte survival. CONCLUSIONS: We have fabricated a clinically relevant size of hCMP with trilineage cardiac cells derived from human induced-pluripotent stem cells. The hCMP matures in vitro during 7 days of dynamic culture. Transplantation of this type of hCMP results in significantly reduced infarct size and improvements in cardiac function that are associated with reduction in left ventricular wall stress. The hCMP treatment is not associated with significant changes in arrhythmogenicity.


Assuntos
Células Endoteliais/transplante , Células-Tronco Pluripotentes Induzidas/transplante , Infarto do Miocárdio/cirurgia , Miocárdio/patologia , Miócitos Cardíacos/transplante , Miócitos de Músculo Liso/transplante , Regeneração , Transplante de Células-Tronco/métodos , Engenharia Tecidual/métodos , Animais , Diferenciação Celular , Células Cultivadas , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Regulação da Expressão Gênica , Humanos , Células-Tronco Pluripotentes Induzidas/fisiologia , Infarto do Miocárdio/genética , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Miócitos Cardíacos/patologia , Miócitos de Músculo Liso/patologia , Recuperação de Função Fisiológica , Regeneração/genética , Sus scrofa , Fatores de Tempo , Alicerces Teciduais , Transplante Heterólogo , Função Ventricular Esquerda , Remodelação Ventricular
16.
Cell Transplant ; 26(10): 1663-1668, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-29251110

RESUMO

One of the serious obstacles of the aortopathies research is a considerable shortage of human aortic smooth muscle cells (SMCs), which can be used to model the disease. SMC in most cases come from the whole aorta of transplant donors, which are rather difficult to access. In the course of coronary artery bypass graft (CABG) surgery, a fragment of aortic tissue is excised to make a bypass root. In this study, we show a possibility to use CABG leftover fragments of thoracic aorta as a source of human SMC for in vitro research. We isolated SMC from the fragments of aortic tissues obtained during CABG procedure and compared these cells to the cells that were isolated from aortic tissue of transplant donors. The content of key SMC contractile markers (SMA, SM22α, and vimentin) as well as proliferation and migration rates, metalloproteases MMP-2 and MMP-9 activities were similar in CABG-derived SMC and in transplant donor-derived SMC. In conclusion, leftovers of ascending thoracic aorta obtained during CABG can be used as a source of human aortic SMCs for in vitro research.


Assuntos
Aorta/transplante , Ponte de Artéria Coronária/métodos , Imuno-Histoquímica/métodos , Miócitos de Músculo Liso/transplante , Proliferação de Células , Humanos
17.
Cardiovasc Diabetol ; 16(1): 142, 2017 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-29096622

RESUMO

BACKGROUND: Diabetes mellitus is a risk factor for coronary artery disease and diabetic cardiomyopathy, and adversely impacts outcomes following coronary artery bypass grafting. Current treatments focus on macro-revascularization and neglect the microvascular disease typical of diabetes mellitus-induced cardiomyopathy (DMCM). We hypothesized that engineered smooth muscle cell (SMC)-endothelial progenitor cell (EPC) bi-level cell sheets could improve ventricular dysfunction in DMCM. METHODS: Primary mesenchymal stem cells (MSCs) and EPCs were isolated from the bone marrow of Wistar rats, and MSCs were differentiated into SMCs by culturing on a fibronectin-coated dish. SMCs topped with EPCs were detached from a temperature-responsive culture dish to create an SMC-EPC bi-level cell sheet. A DMCM model was induced by intraperitoneal streptozotocin injection. Four weeks after induction, rats were randomized into 3 groups: control (no DMCM induction), untreated DMCM, and treated DMCM (cell sheet transplant covering the anterior surface of the left ventricle). RESULTS: SMC-EPC cell sheet therapy preserved cardiac function and halted adverse ventricular remodeling, as demonstrated by echocardiography and cardiac magnetic resonance imaging at 8 weeks after DMCM induction. Myocardial contrast echocardiography demonstrated that myocardial perfusion and microvascular function were preserved in the treatment group compared with untreated animals. Histological analysis demonstrated decreased interstitial fibrosis and increased microvascular density in the SMC-EPC cell sheet-treated group. CONCLUSIONS: Treatment of DMCM with tissue-engineered SMC-EPC bi-level cell sheets prevented cardiac dysfunction and microvascular disease associated with DMCM. This multi-lineage cellular therapy is a novel, translatable approach to improve microvascular disease and prevent heart failure in diabetic patients.


Assuntos
Diabetes Mellitus Tipo 1/terapia , Cardiomiopatias Diabéticas/prevenção & controle , Células Progenitoras Endoteliais/transplante , Microvasos , Miócitos de Músculo Liso/transplante , Engenharia Tecidual/métodos , Animais , Células Cultivadas , Diabetes Mellitus Tipo 1/diagnóstico por imagem , Diabetes Mellitus Tipo 1/fisiopatologia , Cardiomiopatias Diabéticas/diagnóstico por imagem , Cardiomiopatias Diabéticas/fisiopatologia , Modelos Animais de Doenças , Progressão da Doença , Fibrose , Microvasos/fisiopatologia , Ratos , Ratos Sprague-Dawley , Ratos Transgênicos , Ratos Wistar , Roedores
18.
Arterioscler Thromb Vasc Biol ; 37(11): 2114-2127, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28935755

RESUMO

OBJECTIVE: Leptin is an adipokine initially thought to be a metabolic factor. Recent publications have shown its roles in inflammation and vascular disease, to which Sca-1+ vascular progenitor cells within the vessel wall may contribute. We sought to elucidate the effects of leptin on Sca-1+ progenitor cells migration and neointimal formation and to understand the underlying mechanisms. APPROACH AND RESULTS: Sca-1+ progenitor cells from the vessel wall of Lepr+/+ and Lepr-/- mice were cultured and purified. The migration of Lepr+/+ Sca-1+ progenitor cells in vitro was markedly induced by leptin. Western blotting and kinase assays revealed that leptin induced the activation of phosphorylated signal transducer and activator of transcription 3, phosphorylated extracellular signal-regulated kinases 1/2, pFAK (phosphorylated focal adhesion kinase), and Rac1 (ras-related C3 botulinum toxin substrate 1)/Cdc42 (cell division control protein 42 homolog). In a mouse femoral artery guidewire injury model, an increased expression of leptin in both injured vessels and serum was observed 24 hours post-surgery. RFP (red fluorescent protein)-Sca-1+ progenitor cells in Matrigel were applied to the adventitia of the injured femoral artery. RFP+ cells were observed in the intima 24 hours post-surgery, subsequently increasing neointimal lesions at 2 weeks when compared with the arteries without seeded cells. This increase was reduced by pre-treatment of Sca-1+ cells with a leptin antagonist. Guidewire injury could only induce minor neointima in Lepr-/- mice 2 weeks post-surgery. However, transplantation of Lepr+/+ Sca-1+ progenitor cells into the adventitial side of injured artery in Lepr-/- mice significantly enhanced neointimal formation. CONCLUSIONS: Upregulation of leptin levels in both the vessel wall and the circulation after vessel injury promoted the migration of Sca-1+ progenitor cells via leptin receptor-dependent signal transducer and activator of transcription 3- Rac1/Cdc42-ERK (extracellular signal-regulated kinase)-FAK pathways, which enhanced neointimal formation.


Assuntos
Antígenos Ly/metabolismo , Movimento Celular , Leptina/metabolismo , Proteínas de Membrana/metabolismo , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Neointima , Células-Tronco/metabolismo , Lesões do Sistema Vascular/metabolismo , Animais , Células Cultivadas , Modelos Animais de Doenças , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Artéria Femoral/lesões , Artéria Femoral/metabolismo , Artéria Femoral/patologia , Quinase 1 de Adesão Focal/metabolismo , Predisposição Genética para Doença , Masculino , Camundongos Knockout , Músculo Liso Vascular/lesões , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/patologia , Miócitos de Músculo Liso/transplante , Neuropeptídeos/metabolismo , Fenótipo , Fosforilação , Receptores para Leptina/deficiência , Receptores para Leptina/genética , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , Transplante de Células-Tronco , Células-Tronco/patologia , Fatores de Tempo , Regulação para Cima , Lesões do Sistema Vascular/genética , Lesões do Sistema Vascular/patologia , Proteína cdc42 de Ligação ao GTP/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo
19.
Arterioscler Thromb Vasc Biol ; 37(11): 2026-2037, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28860223

RESUMO

Vascular smooth muscle cells (VSMCs) play a role in the development of vascular disease, for example, neointimal formation, arterial aneurysm, and Marfan syndrome caused by genetic mutations in VSMCs, but little is known about the mechanisms of the disease process. Advances in induced pluripotent stem cell technology have now made it possible to derive VSMCs from several different somatic cells using a selection of protocols. As such, researchers have set out to delineate key signaling processes involved in triggering VSMC gene expression to grasp the extent of gene regulatory networks involved in phenotype commitment. This technology has also paved the way for investigations into diseases affecting VSMC behavior and function, which may be treatable once an identifiable culprit molecule or gene has been repaired. Moreover, induced pluripotent stem cell-derived VSMCs are also being considered for their use in tissue-engineered blood vessels as they may prove more beneficial than using autologous vessels. Finally, while several issues remains to be clarified before induced pluripotent stem cell-derived VSMCs can become used in regenerative medicine, they do offer both clinicians and researchers hope for both treating and understanding vascular disease. In this review, we aim to update the recent progress on VSMC generation from stem cells and the underlying molecular mechanisms of VSMC differentiation. We will also explore how the use of induced pluripotent stem cell-derived VSMCs has changed the game for regenerative medicine by offering new therapeutic avenues to clinicians, as well as providing researchers with a new platform for modeling of vascular disease.


Assuntos
Diferenciação Celular , Células-Tronco Pluripotentes Induzidas/fisiologia , Desenvolvimento Muscular , Músculo Liso Vascular/fisiologia , Miócitos de Músculo Liso/fisiologia , Aneurisma/genética , Aneurisma/metabolismo , Aneurisma/patologia , Aneurisma/cirurgia , Animais , Linhagem Celular , Linhagem da Célula , Modelos Animais de Doenças , Genótipo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/transplante , Síndrome de Marfan/genética , Síndrome de Marfan/metabolismo , Síndrome de Marfan/patologia , Síndrome de Marfan/cirurgia , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/transplante , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/transplante , Neointima , Fenótipo , Medicina Regenerativa , Transplante de Células-Tronco , Engenharia Tecidual
20.
J Thorac Cardiovasc Surg ; 154(3): 955-963, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28651946

RESUMO

OBJECTIVE: The angiogenic potential of endothelial progenitor cells (EPCs) may be limited by the absence of their natural biologic foundation, namely smooth muscle pericytes. We hypothesized that joint delivery of EPCs and smooth muscle cells (SMCs) in a novel, totally bone marrow-derived cell sheet will mimic the native architecture of a mature blood vessel and act as an angiogenic construct to limit post infarction ventricular remodeling. METHODS: Primary EPCs and mesenchymal stem cells were isolated from bone marrow of Wistar rats. Mesenchymal stem cells were transdifferentiated into SMCs by culture on fibronectin-coated culture dishes. Confluent SMCs topped with confluent EPCs were detached from an Upcell dish to create a SMC-EPC bi-level cell sheet. A rodent model of ischemic cardiomyopathy was then created by ligating the left anterior descending artery. Rats were randomized into 3 groups: cell sheet transplantation (n = 9), no treatment (n = 12), or sham surgery control (n = 7). RESULTS: Four weeks postinfarction, mature vessel density tended to increase in cell sheet-treated animals compared with controls. Cell sheet therapy significantly attenuated the extent of cardiac fibrosis compared with that of the untreated group (untreated vs cell sheet, 198 degrees [interquartile range (IQR), 151-246 degrees] vs 103 degrees [IQR, 92-113 degrees], P = .04). Furthermore, EPC-SMC cell sheet transplantation attenuated myocardial dysfunction, as evidenced by an increase in left ventricular ejection fraction (untreated vs cell sheet vs sham, 33.5% [IQR, 27.8%-35.7%] vs 45.9% [IQR, 43.6%-48.4%] vs 59.3% [IQR, 58.8%-63.5%], P = .001) and decreases in left ventricular dimensions. CONCLUSIONS: The bone marrow-derived, spatially arranged SMC-EPC bi-level cell sheet is a novel, multilineage cellular therapy obtained from a translationally practical source. Interactions between SMCs and EPCs augment mature neovascularization, limit adverse remodeling, and improve ventricular function after myocardial infarction.


Assuntos
Transdiferenciação Celular , Transplante de Células/métodos , Células Progenitoras Endoteliais/citologia , Células-Tronco Mesenquimais/citologia , Infarto do Miocárdio/terapia , Miócitos de Músculo Liso/transplante , Animais , Células Cultivadas , Fibrose/terapia , Ventrículos do Coração/diagnóstico por imagem , Imageamento por Ressonância Magnética , Miocárdio/patologia , Neovascularização Fisiológica , Ratos Wistar , Volume Sistólico , Remodelação Ventricular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA