Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
PLoS One ; 19(5): e0300883, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38758927

RESUMO

Development of novel biodosimetry assays and medical countermeasures is needed to obtain a level of radiation preparedness in the event of malicious or accidental mass exposures to ionizing radiation (IR). For biodosimetry, metabolic profiling with mass spectrometry (MS) platforms has identified several small molecules in easily accessible biofluids that are promising for dose reconstruction. As our microbiome has profound effects on biofluid metabolite composition, it is of interest how variation in the host microbiome may affect metabolomics based biodosimetry. Here, we 'knocked out' the microbiome of male and female C57BL/6 mice (Abx mice) using antibiotics and then irradiated (0, 3, or 8 Gy) them to determine the role of the host microbiome on biofluid radiation signatures (1 and 3 d urine, 3 d serum). Biofluid metabolite levels were compared to a sham and irradiated group of mice with a normal microbiome (Abx-con mice). To compare post-irradiation effects in urine, we calculated the Spearman's correlation coefficients of metabolite levels with radiation dose. For selected metabolites of interest, we performed more detailed analyses using linear mixed effect models to determine the effects of radiation dose, time, and microbiome depletion. Serum metabolite levels were compared using an ANOVA. Several metabolites were affected after antibiotic administration in the tryptophan and amino acid pathways, sterol hormone, xenobiotic and bile acid pathways (urine) and lipid metabolism (serum), with a post-irradiation attenuative effect observed for Abx mice. In urine, dose×time interactions were supported for a defined radiation metabolite panel (carnitine, hexosamine-valine-isoleucine [Hex-V-I], creatine, citric acid, and Nε,Nε,Nε-trimethyllysine [TML]) and dose for N1-acetylspermidine, which also provided excellent (AUROC ≥ 0.90) to good (AUROC ≥ 0.80) sensitivity and specificity according to the area under the receiver operator characteristic curve (AUROC) analysis. In serum, a panel consisting of carnitine, citric acid, lysophosphatidylcholine (LysoPC) (14:0), LysoPC (20:3), and LysoPC (22:5) also gave excellent to good sensitivity and specificity for identifying post-irradiated individuals at 3 d. Although the microbiome affected the basal levels and/or post-irradiation levels of these metabolites, their utility in dose reconstruction irrespective of microbiome status is encouraging for the use of metabolomics as a novel biodosimetry assay.


Assuntos
Camundongos Endogâmicos C57BL , Animais , Camundongos , Feminino , Masculino , Exposição à Radiação , Microbiota/efeitos da radiação , Metabolômica/métodos , Metaboloma/efeitos da radiação , Radiação Ionizante
2.
Int J Mol Sci ; 23(3)2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-35163296

RESUMO

Photobiomodulation (PBM) consists of a photon energy transfer to the cell, employing non-ionizing light sources belonging to the visible and infrared spectrum. PBM acts on some intrinsic properties of molecules, energizing them through specific light wavelengths. During the evolution of life, semiconducting minerals were energized by sun radiation. The molecules that followed became photoacceptors and were expressed into the first proto-cells and prokaryote membranes. Afterward, the components of the mitochondria electron transport chain influenced the eukaryotic cell physiology. Therefore, although many organisms have not utilized light as an energy source, many of the molecules involved in their physiology have retained their primordial photoacceptive properties. Thus, in this review, we discuss how PBM can affect the oral microbiota through photo-energization and the non-thermal effect of light on photoacceptors (i.e., cytochromes, flavins, and iron-proteins). Sometimes, the interaction of photons with pigments of an endogenous nature is followed by thermal or photodynamic-like effects. However, the preliminary data do not allow determining reliable therapies but stress the need for further knowledge on light-bacteria interactions and microbiota management in the health and illness of patients through PBM.


Assuntos
Terapia com Luz de Baixa Intensidade/tendências , Microbiota/efeitos da radiação , Doenças Periodontais/microbiologia , Bactérias , Humanos , Raios Infravermelhos , Luz , Terapia com Luz de Baixa Intensidade/métodos , Mitocôndrias , Doenças Periodontais/radioterapia , Fototerapia/métodos , Fototerapia/tendências , Estomatite/radioterapia
3.
Microbiol Spectr ; 10(1): e0223221, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-34985332

RESUMO

In densely populated cities with limited land, storage of surface water in underground spaces is a potential solution to meet the rising demand of clean water. In addition, due to the imperative need of renewable solar energy and limited land resources, the deployment of floating solar photovoltaic (PV) systems over water has risen exponentially. In both scenarios, microbial communities in the water do not have access to sunlight. How the absence of sunlight influences microbial community function and the water quality is largely unknown. The objective of this study was to reveal microbial processes in surface water stored in the dark and water quality dynamics. Water from a freshwater reservoir was stored in the dark or light (control) for 6 months. Water quality was monitored at regular intervals. RNA sequencing was performed on the Illumina MiSeq platform and qPCR was used to substantiate the findings arising from the sequencing data. Our results showed that storage of surface water in the dark resulted in the accumulation of nitrate in the water. Storage in the dark promoted the decay of algal cells, increasing the amount of free nitrogen in the water. Most of the free nitrogen was eventually transformed into nitrate through microbial processes. RNA sequencing-based microbial community analyses and pure culture experiments using nitrifying bacteria Nitrosomonas europaea and Nitrobacter sp. revealed that the accumulation of nitrate in the dark was likely due to an increase in nitrification rate and a decrease in the assimilation rate of nitrate back into the biomass. IMPORTANCE Microbial communities play an essential role in maintaining a healthy aquatic ecosystem. For example, in surface water reservoirs, microorganisms produce oxygen, break down toxic contaminants and remove excess nitrogen. In densely populated cities with limited land, storing surface water in underground spaces and deploying floating solar photovoltaic (PV) systems over water are potential solutions to address water and energy sustainability challenges. In both scenarios, surface water is kept in the dark. In this work, we revealed how the absence of sunlight influences microbial community function and water quality. We showed that storage of surface water in the dark affected bacterial activities responsible for nitrogen transformation, resulting in the accumulation of nitrate in the water. Our findings highlight the importance of monitoring nitrate closely if raw surface water is to be stored in the dark and the potential need of downstream treatment to remove nitrate.


Assuntos
Bactérias/metabolismo , Água Doce/microbiologia , Nitratos/análise , Bactérias/classificação , Bactérias/efeitos dos fármacos , Bactérias/genética , Escuridão , Água Doce/química , Microbiota/efeitos da radiação , Nitratos/metabolismo , Nitrogênio/metabolismo , Qualidade da Água
4.
Dermatology ; 238(1): 109-120, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33887725

RESUMO

BACKGROUND: The pathophysiology in atopic dermatitis (AD) is not fully understood, but immune dysfunction, skin barrier defects, and alterations of the skin microbiota are thought to play important roles. AD skin is frequently colonized with Staphylococcus aureus (S. aureus) and microbial diversity on lesional skin (LS) is reduced compared to on healthy skin. Treatment with narrow-band ultraviolet B (nb-UVB) leads to clinical improvement of the eczema and reduced abundance of S. aureus. However, in-depth knowledge of the temporal dynamics of the skin microbiota in AD in response to nb-UVB treatment is lacking and could provide important clues to decipher whether the microbial changes are primary drivers of the disease, or secondary to the inflammatory process. OBJECTIVES: To map the temporal shifts in the microbiota of the skin, nose, and throat in adult AD patients after nb-UVB treatment. METHODS: Skin swabs were taken from lesional AD skin (n = 16) before and after 3 treatments of nb-UVB, and after 6-8 weeks of full-body treatment. We also obtained samples from non-lesional skin (NLS) and from the nose and throat. All samples were characterized by 16S rRNA gene sequencing. RESULTS: We observed shifts towards higher diversity in the microbiota of lesional AD skin after 6-8 weeks of treatment, while the microbiota of NLS and of the nose/throat remained unchanged. After only 3 treatments with nb-UVB, there were no significant changes in the microbiota. CONCLUSION: Nb-UVB induces changes in the skin microbiota towards higher diversity, but the microbiota of the nose and throat are not altered.


Assuntos
Dermatite Atópica/microbiologia , Dermatite Atópica/radioterapia , Microbiota/efeitos da radiação , Pele/microbiologia , Terapia Ultravioleta , Adulto , Idoso , Biodiversidade , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Nariz/microbiologia , Faringe/microbiologia , Staphylococcus aureus/crescimento & desenvolvimento , Staphylococcus aureus/efeitos da radiação , Resultado do Tratamento , Adulto Jovem
5.
Environ Pollut ; 294: 118646, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34896224

RESUMO

With the rapidly increasing popularity of 5G mobile technology, the effect of radiofrequency radiation on human health has caused public concern. This study explores the effects of a simulated 3.5 GHz radiofrequency electromagnetic radiation (RF-EMF) environment on the development and microbiome of flies under intensities of 0.1 W/m2, 1 W/m2 and 10 W/m2. We found that the pupation percentages in the first 3 days and eclosion rate in the first 2 days were increased under exposure to RF-EMF, and the mean development time was shortened. In a study on third-instar larvae, the expression levels of the heat shock protein genes hsp22, hsp26 and hsp70 and humoral immune system genes AttC, TotC and TotA were all significantly increased. In the oxidative stress system, DuoX gene expression was decreased, sod2 and cat gene expression levels were increased, and SOD and CAT enzyme activity also showed a significant increase. According to the 16S rDNA results, the diversity and species abundance of the microbial community decreased significantly, and according to the functional prediction analysis, the genera Acetobacter and Lactobacillus were significantly increased. In conclusion, 3.5 GHz RF-EMF may enhance thermal stress, oxidative stress and humoral immunity, cause changes in the microbial community, and regulate the insulin/TOR and ecdysteroid signalling pathways to promote fly development.


Assuntos
Drosophila melanogaster , Campos Eletromagnéticos , Microbiota/efeitos da radiação , Ondas de Rádio , Animais , Telefone Celular , Drosophila melanogaster/embriologia , Drosophila melanogaster/microbiologia , Drosophila melanogaster/efeitos da radiação , Expressão Gênica , Proteínas de Choque Térmico , Larva/efeitos da radiação
6.
Sci Rep ; 11(1): 5179, 2021 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-33664352

RESUMO

Radiotherapy-induced dermatitis (RID) is an inflammatory cutaneous disorder that is acquired as an adverse effect of undergoing radiotherapy. Skin microbiome dysbiosis has been linked to the outcomes of several dermatological diseases. To explore the skin microbiota of RID and deduce their underlying impact on the outcome of RID, cutaneous microbiomes of 78 RID patients and 20 healthy subjects were characterized by sequencing V1-V3 regions of 16S rRNA gene. In total, a significantly apparent reduction in bacterial diversity was detected in microbiomes of RID in comparison to controls. Overall, the raised Proteobacteria/ Firmicutes ratio was significantly linked to delayed recovery or tendency toward the permanence of RID (Kruskal Wallis: P = 2.66 × 10-4). Moreover, applying enterotyping on our samples stratified microbiomes into A, B, and C dermotypes. Dermotype C included overrepresentation of Pseudomonas, Staphylococcus and Stenotrophomonas and was markedly associated with delayed healing of RID. Strikingly, coexistence of diabetes mellitus and RID was remarkably correlated with a significant overrepresentation of Klebsiella or Pseudomonas and Staphylococcus. Metabolic abilities of skin microbiome could support their potential roles in the pathogenesis of RID. Cutaneous microbiome profiling at the early stages of RID could be indicative of prospective clinical outcomes and maybe a helpful guide for personalized therapy.


Assuntos
Bactérias/genética , Disbiose/microbiologia , Radiodermite/microbiologia , Pele/microbiologia , Adulto , Bactérias/classificação , Bactérias/efeitos da radiação , Disbiose/etiologia , Disbiose/genética , Disbiose/patologia , Feminino , Humanos , Inflamação/etiologia , Inflamação/microbiologia , Inflamação/patologia , Masculino , Microbiota/efeitos da radiação , Pessoa de Meia-Idade , Prognóstico , RNA Ribossômico 16S/genética , Radiodermite/genética , Radiodermite/patologia
7.
Photochem Photobiol Sci ; 20(3): 451-473, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33721277

RESUMO

Bacteria and fungi of the plant microbiota can be phytopathogens, parasites or symbionts that establish mutually advantageous relationships with plants. They are often rich in photoreceptors for UVA-Visible light, and in many cases, they exhibit light regulation of growth patterns, infectivity or virulence, reproductive traits, and production of pigments and of metabolites. In addition to the light-driven effects, often demonstrated via the generation of photoreceptor gene knock-outs, microbial photoreceptors can exert effects also in the dark. Interestingly, some fungi switch their attitude towards plants in dependence of illumination or dark conditions in as much as they may be symbiotic or pathogenic. This review summarizes the current knowledge about the roles of light and photoreceptors in plant-associated bacteria and fungi aiming at the identification of common traits and general working ideas. Still, reports on light-driven infection of plants are often restricted to the description of macroscopically observable phenomena, whereas detailed information on the molecular level, e.g., protein-protein interaction during signal transduction or induction mechanisms of infectivity/virulence initiation remains sparse. As it becomes apparent from still only few molecular studies, photoreceptors, often from the red- and the blue light sensitive groups interact and mutually modulate their individual effects. The topic is of great relevance, even in economic terms, referring to plant-pathogen or plant-symbionts interactions, considering the increasing usage of artificial illumination in greenhouses, the possible light-regulation of the synthesis of plant-growth stimulating substances or herbicides by certain symbionts, and the biocontrol of pests by selected fungi and bacteria in a sustainable agriculture.


Assuntos
Luz , Microbiota/efeitos da radiação , Plantas/microbiologia , Bactérias/metabolismo , Bactérias/patogenicidade , Fungos/metabolismo , Fungos/patogenicidade , Fotorreceptores Microbianos/química , Fotorreceptores Microbianos/metabolismo , Fitocromo/química , Fitocromo/metabolismo
8.
Int J Food Microbiol ; 343: 109105, 2021 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-33636589

RESUMO

In this study the suitability of a thin-film reactor (TFR) equipped with special flow guiding elements (FGE) was examined to analyse its capability to inactivate microorganisms in milk. Experiments were carried out with UHT-milk inoculated with Escherichia coli (E. coli), DH5α and Listeria innocua (L. innocua) WS 2258. Furthermore, the inactivation of microorganisms originally occurring in raw milk was investigated. E. coli, DH5α and L. innocua serving as biodosimeter were reduced by 4.58-log and 3.19-log, respectively. In milk, the original microorganisms showed a 4-log reduction. Without FGE the reduction was below 0.13-log. Thus, it can be derived that the efficacy of a UV-C thin-film reactor processing absorptive media like milk can be highly improved using FGE.


Assuntos
Escherichia coli/efeitos da radiação , Irradiação de Alimentos/métodos , Listeria/efeitos da radiação , Leite/microbiologia , Animais , Contagem de Colônia Microbiana , Escherichia coli/crescimento & desenvolvimento , Irradiação de Alimentos/instrumentação , Microbiologia de Alimentos , Listeria/crescimento & desenvolvimento , Microbiota/efeitos da radiação , Leite/química , Raios Ultravioleta
9.
Int J Radiat Oncol Biol Phys ; 109(1): 145-150, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-32866565

RESUMO

PURPOSE: The human commensal microbiome has been suggested to be involved in the regulation of response to anticancer therapies. However, little is known regarding changes in commensal microbes in patients with cancer during radiation therapy. We conducted a prospective, longitudinal proof-of-concept cohort study with patients with newly diagnosed nasopharyngeal carcinoma (NPC) who underwent radiation therapy-based treatment. METHODS AND MATERIALS: Nasopharyngeal swabs were collected before radiation therapy, twice per week during radiation therapy, and after radiation therapy. The nasopharyngeal microbiome was assessed using 16S rRNA amplicon sequencing. A patient's response to treatment was measured 3 months after the completion of radiation therapy as a short-term clinical outcome. In total, 39 NPC patients with 445 nasopharyngeal samples were analyzed. RESULTS: There was stable temporal change in the community structure of the nasopharyngeal microbiome among patients with NPC during treatment (P = .0005). Among 73 abundant amplicon sequence variants (ASVs), 7 ASVs assigned to genus Corynebacterium decreased significantly during the treatment (W-statistic >80%); 23 ASVs showed statistically significant changes in the ratio of abundance between early and late responders during treatment (false discovery rate <0.05). CONCLUSIONS: This study addressed stable temporal change in the nasopharyngeal microbiome among patients with NPC during radiation therapy-based treatment and provided preliminary evidence of an association with a short-term clinical outcome.


Assuntos
Microbiota/efeitos da radiação , Carcinoma Nasofaríngeo/microbiologia , Carcinoma Nasofaríngeo/radioterapia , Nasofaringe/microbiologia , Nasofaringe/efeitos da radiação , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
10.
PLoS One ; 15(10): e0239051, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33006995

RESUMO

A large body of ongoing research focuses on understanding the mechanisms and processes underlying host-microbiome interactions, and predicting their ecological and evolutionary outcomes. To draw general conclusions about such interactions and understand how they are established, we must synthesize information from a diverse set of species. We analysed the microbiome of an important insect model-the red flour beetle Tribolium castaneum-which is a widespread generalist pest of stored cereals. The beetles complete their entire life cycle in flour, which thus serves multiple functions: habitat, food, and a source of microbes. We determined key factors that shape the T. castaneum microbiome, established protocols to manipulate it, and tested its consequences for host fitness. We show that the T. castaneum microbiome is derived from flour-acquired microbes, and varies as a function of (flour) resource and beetle density. Beetles gain multiple fitness benefits from their microbiome, such as higher fecundity, egg survival, and lifespan; and reduced cannibalism. In contrast, the microbiome has a limited effect on development rate, and does not enhance pathogen resistance. Importantly, the benefits are derived only from microbes in the ancestral resource (wheat flour), and not from novel resources such as finger millet, sorghum, and corn. Notably, the microbiome is not essential for beetle survival and development under any of the tested conditions. Thus, the red flour beetle is a tractable model system to understand the ecology, evolution and mechanisms of host-microbiome interactions, while closely mimicking the host species' natural niche.


Assuntos
Interações entre Hospedeiro e Microrganismos , Modelos Biológicos , Tribolium/microbiologia , Animais , Antibacterianos/farmacologia , Bacillus thuringiensis/patogenicidade , Canibalismo , Feminino , Fertilidade , Farinha/microbiologia , Farinha/parasitologia , Aptidão Genética , Longevidade , Masculino , Microbiota/efeitos dos fármacos , Microbiota/genética , Microbiota/efeitos da radiação , Tribolium/crescimento & desenvolvimento , Tribolium/fisiologia , Raios Ultravioleta
11.
Sci Rep ; 10(1): 16582, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-33024215

RESUMO

Squamous cell carcinoma is the most common type of throat cancer. Treatment options comprise surgery, radiotherapy, and/or chemo(immuno)therapy. The salivary microbiome is shaped by the disease, and likely by the treatment, resulting in side effects caused by chemoradiation that severely impair patients' well-being. High-throughput amplicon sequencing of the 16S rRNA gene provides an opportunity to investigate changes in the salivary microbiome in health and disease. In this preliminary study, we investigated alterations in the bacterial, fungal, and archaeal components of the salivary microbiome between healthy subjects and patients with head and neck squamous cell carcinoma before and close to the end point of chemoradiation ("after"). We enrolled 31 patients and 11 healthy controls, with 11 patients providing samples both before and after chemoradiation. Analysis revealed an effect on the bacterial and fungal microbiome, with a partial antagonistic reaction but no effects on the archaeal microbial community. Specifically, we observed an individual increase in Candida signatures following chemoradiation, whereas the overall diversity of the microbial and fungal signatures decreased significantly after therapy. Thus, our study indicates that the patient microbiome reacts individually to chemoradiation but has potential for future optimization of disease diagnostics and personalized treatments.


Assuntos
Quimiorradioterapia , Neoplasias de Cabeça e Pescoço/microbiologia , Neoplasias de Cabeça e Pescoço/terapia , Microbiota/efeitos dos fármacos , Microbiota/efeitos da radiação , Saliva/microbiologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/microbiologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/terapia , Adulto , Idoso , Candida/genética , Candida/isolamento & purificação , Feminino , Voluntários Saudáveis , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Microbiota/genética , Pessoa de Meia-Idade , RNA Ribossômico 16S/genética
12.
Biomarkers ; 25(8): 677-684, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32960109

RESUMO

INTRODUCTION: Oral mucositis (OM) is a severe side effect in patients undergoing anticancer therapies, which negatively impacts on their quality of life often leading to either the interruption of the therapy. Photobiomodulation (PBM) is emerging as an effective strategy allowing a faster wound healing. OBJECTIVES: This pilot study aims at verifying whether PBM modulates the inflammatory response in patients and its effect on the oral microbiome composition. MATERIALS AND METHODS: Buccal swabs were collected from four patients affected by OM, both on ulcerated and clinically healthy areas, before and on the last day of PBM therapy, as well as on the first day after treatment discontinuation. The concentration of 38 cytokines and the composition of oral microbiome were measured. RESULTS: Most of the pro-inflammatory cytokines were reduced, whereas anti-inflammatory cytokines resulted up-regulated by PBM. In addition, PBM influenced the composition of oral microbiome, by decreasing the amount of pathogenic species and promoting the growth of commensal bacteria. These changes were even more evident when separately analysing patients who clinically responded to PBM and the only patient who did not respond. CONCLUSIONS: PBM reduces inflammatory burden in patients affected by OM and positively influences the composition of the oral microbiome.


Assuntos
Bactérias/efeitos da radiação , Citocinas/metabolismo , Mediadores da Inflamação/metabolismo , Terapia com Luz de Baixa Intensidade , Microbiota/efeitos da radiação , Mucosa Bucal/efeitos da radiação , Estomatite/radioterapia , Bactérias/crescimento & desenvolvimento , Disbiose , Humanos , Mucosa Bucal/metabolismo , Mucosa Bucal/microbiologia , Mucosa Bucal/patologia , Projetos Piloto , Estomatite/metabolismo , Estomatite/microbiologia , Estomatite/patologia , Resultado do Tratamento
13.
Cancer ; 126(23): 5124-5136, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32888342

RESUMO

BACKGROUND: Oral mucositis (OM) is a debilitating sequela for patients treated for squamous cell carcinoma of the head and neck (HNSCC). This study investigated whether oral microbial features before treatment or during treatment are associated with the time to onset of severe OM in patients with HNSCC. METHODS: This was a cohort study of newly diagnosed patients with locoregional HNSCC who received chemotherapy with or without radiotherapy from April 2016 to September 2017. OM was based on the National Cancer Institute's Common Terminology Criteria for Adverse Events, version 4.0. The oral microbiome was characterized on the basis of the 16S ribosomal RNA V4 region with the Illumina platform. A mixture cure model was used to generate hazard ratios for the onset of severe OM. RESULTS: Eighty-six percent of the patients developed OM (n = 57 [33 nonsevere cases and 24 severe cases]) with a median time to onset of OM of 21 days. With adjustments for age, sex, and smoking status, genera abundance was associated with the hazard for the onset of severe OM as follows: 1) at the baseline (n = 66), Cardiobacterium (P = .03) and Granulicatella (P = .04); 2) immediately before the development of OM (n = 57), Prevotella (P = .03), Fusobacterium (P = .03), and Streptococcus (P = .01); and 3) immediately before the development of severe OM (n = 24), Megasphaera (P = .0001) and Cardiobacterium (P = .03). There were no differences in α-diversity between the baseline samples and Human Microbiome Project data. CONCLUSIONS: Changes in the abundance of genera over the course of treatment were associated with the onset of severe OM. The mechanism and therapeutic implications of these findings need to be investigated in future studies.


Assuntos
Neoplasias de Cabeça e Pescoço/terapia , Microbiota , Carcinoma de Células Escamosas de Cabeça e Pescoço/terapia , Estomatite/etiologia , Idoso , Feminino , Neoplasias de Cabeça e Pescoço/microbiologia , Humanos , Masculino , Microbiota/efeitos dos fármacos , Microbiota/efeitos da radiação , Pessoa de Meia-Idade , RNA Ribossômico 16S , Carcinoma de Células Escamosas de Cabeça e Pescoço/microbiologia , Estomatite/microbiologia , Fatores de Tempo
14.
PLoS One ; 15(8): e0235948, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32785216

RESUMO

INTRODUCTION: Surgical site infection is one of the most severe complications of surgical treatments. However, the optimal procedure to prevent such infections remains uninvestigated. Ultraviolet radiation C (UVC) with a short wavelength has a high bactericidal effect; however, it is cytotoxic. Nonetheless, given that UVC with a wavelength of 222 nm reaches only the stratum corneum, it does not affect the skin cells. This study aimed to investigate the safety of 222-nm UVC irradiation and to examine its skin sterilization effect in healthy volunteers. METHODS: This trial was conducted on 20 healthy volunteers. The back of the subject was irradiated with 222-nm UVC at 50-500 mJ/cm2, and the induced erythema (redness of skin) was evaluated. Subsequently, the back was irradiated with a maximum amount of UVC not causing erythema, and the skin swabs before and after the irradiation were cultured. The number of colonies formed after 24 hours was measured. In addition, cyclobutene pyrimidine dimer (CPD) as an indicator of DNA damage was measured using skin tissues of the nonirradiated and irradiated regions. RESULTS: All subjects experienced no erythema at all doses. The back of the subject was irradiated at 500 mJ/cm2, and the number of bacterial colonies in the skin swab culture was significantly decreased by 222-nm UVC irradiation. The CPD amount produced in the irradiated region was slightly but significantly higher than that of the non-irradiated region. CONCLUSION: A 222-nm UVC at 500 mJ/cm2 was a safe irradiation dose and possessed bactericidal effects. In the future, 222-nm UVC irradiation is expected to contribute to the prevention of perioperative infection.


Assuntos
Dano ao DNA/efeitos da radiação , Microbiota/efeitos da radiação , Pele/efeitos da radiação , Esterilização/métodos , Raios Ultravioleta/efeitos adversos , Adulto , Dorso , Biópsia , Contagem de Colônia Microbiana , Eritema/diagnóstico , Eritema/etiologia , Voluntários Saudáveis , Humanos , Masculino , Dímeros de Pirimidina/análise , Dímeros de Pirimidina/efeitos da radiação , Pele/microbiologia , Infecção da Ferida Cirúrgica/microbiologia , Infecção da Ferida Cirúrgica/prevenção & controle , Resultado do Tratamento
15.
Microbiome ; 8(1): 116, 2020 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-32772914

RESUMO

BACKGROUND: Cold environments dominate the Earth's biosphere and microbial activity drives ecosystem processes thereby contributing greatly to global biogeochemical cycles. Polar environments differ to all other cold environments by experiencing 24-h sunlight in summer and no sunlight in winter. The Vestfold Hills in East Antarctica contains hundreds of lakes that have evolved from a marine origin only 3000-7000 years ago. Ace Lake is a meromictic (stratified) lake from this region that has been intensively studied since the 1970s. Here, a total of 120 metagenomes representing a seasonal cycle and four summers spanning a 10-year period were analyzed to determine the effects of the polar light cycle on microbial-driven nutrient cycles. RESULTS: The lake system is characterized by complex sulfur and hydrogen cycling, especially in the anoxic layers, with multiple mechanisms for the breakdown of biopolymers present throughout the water column. The two most abundant taxa are phototrophs (green sulfur bacteria and cyanobacteria) that are highly influenced by the seasonal availability of sunlight. The extent of the Chlorobium biomass thriving at the interface in summer was captured in underwater video footage. The Chlorobium abundance dropped from up to 83% in summer to 6% in winter and 1% in spring, before rebounding to high levels. Predicted Chlorobium viruses and cyanophage were also abundant, but their levels did not negatively correlate with their hosts. CONCLUSION: Over-wintering expeditions in Antarctica are logistically challenging, meaning insight into winter processes has been inferred from limited data. Here, we found that in contrast to chemolithoautotrophic carbon fixation potential of Southern Ocean Thaumarchaeota, this marine-derived lake evolved a reliance on photosynthesis. While viruses associated with phototrophs also have high seasonal abundance, the negative impact of viral infection on host growth appeared to be limited. The microbial community as a whole appears to have developed a capacity to generate biomass and remineralize nutrients, sufficient to sustain itself between two rounds of sunlight-driven summer-activity. In addition, this unique metagenome dataset provides considerable opportunity for future interrogation of eukaryotes and their viruses, abundant uncharacterized taxa (i.e. dark matter), and for testing hypotheses about endemic species in polar aquatic ecosystems. Video Abstract.


Assuntos
Lagos/microbiologia , Lagos/virologia , Microbiota/efeitos da radiação , Fotoperíodo , Estações do Ano , Regiões Antárticas , Organismos Aquáticos/efeitos da radiação , Organismos Aquáticos/virologia , Ecossistema
16.
Philos Trans A Math Phys Eng Sci ; 378(2179): 20190523, 2020 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-32762429

RESUMO

The persistent motility of individual constituents in microbial suspensions represents a prime example of the so-called active matter systems. Cells consume energy, exert forces and move, overall releasing the constraints of equilibrium statistical mechanics of passive elements and allowing for complex spatio-temporal patterns to emerge. Moreover, when subject to physico-chemical stimuli their collective behaviour often drives large-scale instabilities of a hydrodynamic nature, with implications for biomixing in natural environments and incipient industrial applications. In turn, our ability to exert external control of these driving stimuli could be used to govern the emerging patterns. Light, being easily manipulable and, at the same time, an important stimulus for a wide variety of microorganisms, is particularly well suited to this end. In this paper, we will discuss the current state, developments and some of the emerging advances in the fundamentals and applications of light-induced bioconvection with a focus on recent experimental realizations and modelling efforts. This article is part of the theme issue 'Stokes at 200 (part 2)'.


Assuntos
Luz , Microbiota/fisiologia , Microbiota/efeitos da radiação , Modelos Biológicos , Fototaxia/fisiologia , Fenômenos Biofísicos , Chlamydomonas/fisiologia , Chlamydomonas/efeitos da radiação , Hidrodinâmica , Conceitos Matemáticos
17.
Food Microbiol ; 91: 103511, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32539943

RESUMO

The present study investigated the effects of CS@Fe3O4 nanoparticles combined with microwave or far infrared thawing on microbial diversity of red seabream (Pagrus major) fillets in terms of thawing loss, pH, TVB-N, classical microbiological enumeration and high-throughput sequencing, and the same parameters were also studied for 24 h after thawing. Four thawing methods were used: microwave thawing (MT), far-infrared thawing (FT), CS@Fe3O4 nanoparticles combined with microwave thawing (CMT) and CS@Fe3O4 nanoparticles combined with far-infrared thawing (CFT). The results showed that CFT and CMT had lower values of pH and TVB-N compared to the FT and MT. Based on conventional microbial count analysis, CFT and CMT samples also maintained lower TVC, pseudomonas and LAB counts. Using high-throughput sequencing analysis, Compared with FT and MT, CFT and CMT samples showed a significant decrease in the proportion of the Pseudomonadaceae flora. However, the proportion of Pseudomonas, Bacillaceae and Thermaceae also increased significantly after 24 h of storage, which indicated that become the predominant microbiota in red seabream (Pagrus major) fillets.


Assuntos
Conservação de Alimentos/métodos , Nanopartículas Magnéticas de Óxido de Ferro/química , Microbiota/efeitos da radiação , Perciformes/microbiologia , Alimentos Marinhos/microbiologia , Animais , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/efeitos da radiação , Quitosana/química , Concentração de Íons de Hidrogênio , Raios Infravermelhos , Micro-Ondas , Nitrogênio/análise , Alimentos Marinhos/análise
18.
Proc Natl Acad Sci U S A ; 117(25): 14552-14560, 2020 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-32513689

RESUMO

Both inorganic fertilizer inputs and crop yields have increased globally, with the concurrent increase in the pollution of water bodies due to nitrogen leaching from soils. Designing agroecosystems that are environmentally friendly is urgently required. Since agroecosystems are highly complex and consist of entangled webs of interactions between plants, microbes, and soils, identifying critical components in crop production remain elusive. To understand the network structure in agroecosystems engineered by several farming methods, including environmentally friendly soil solarization, we utilized a multiomics approach on a field planted with Brassica rapa We found that the soil solarization increased plant shoot biomass irrespective of the type of fertilizer applied. Our multiomics and integrated informatics revealed complex interactions in the agroecosystem showing multiple network modules represented by plant traits heterogeneously associated with soil metabolites, minerals, and microbes. Unexpectedly, we identified soil organic nitrogen induced by soil solarization as one of the key components to increase crop yield. A germ-free plant in vitro assay and a pot experiment using arable soils confirmed that specific organic nitrogen, namely alanine and choline, directly increased plant biomass by acting as a nitrogen source and a biologically active compound. Thus, our study provides evidence at the agroecosystem level that organic nitrogen plays a key role in plant growth.


Assuntos
Brassica rapa/crescimento & desenvolvimento , Produção Agrícola , Produtos Agrícolas/crescimento & desenvolvimento , Nitrogênio/metabolismo , Solo/química , Alanina/química , Alanina/metabolismo , Biomassa , Brassica rapa/metabolismo , Colina/química , Colina/metabolismo , Produtos Agrícolas/metabolismo , Conjuntos de Dados como Assunto , Redes e Vias Metabólicas/efeitos da radiação , Metabolômica , Microbiota/fisiologia , Microbiota/efeitos da radiação , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/metabolismo , Rizosfera , Microbiologia do Solo , Luz Solar
19.
Int J Radiat Biol ; 96(8): 961-971, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32420768

RESUMO

Purpose: Rapid developments in high throughput screening technology for the detection and identification of the human microbiota have helped in understanding its influence on human health and disease. In the recent past, several seminal studies have demonstrated the influence of microbiota on outcomes of therapy-associated radiation exposure. In this review, we highlight the concepts related to the mechanisms by which radiation alters the microbiota composition linked with radiation-associated toxicity in head and neck and pelvic regions. We further discuss specific microbial changes that can be employed as a biomarker for radiation and tumor response.Conclusion: Knowledge of the influence of microbiota in radiation response and advances in microbiota manipulation techniques would help to design personalized treatment augmenting the efficacy of radiotherapy.


Assuntos
Cabeça , Microbiota/efeitos da radiação , Pescoço , Pelve/efeitos da radiação , Radioterapia/efeitos adversos , Humanos
20.
Trends Cancer ; 6(3): 192-204, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32101723

RESUMO

The collection of microbes that live in and on the human body - the human microbiome - can impact on cancer initiation, progression, and response to therapy, including cancer immunotherapy. The mechanisms by which microbiomes impact on cancers can yield new diagnostics and treatments, but much remains unknown. The interactions between microbes, diet, host factors, drugs, and cell-cell interactions within the cancer itself likely involve intricate feedbacks, and no single component can explain all the behavior of the system. Understanding the role of host-associated microbial communities in cancer systems will require a multidisciplinary approach combining microbial ecology, immunology, cancer cell biology, and computational biology - a systems biology approach.


Assuntos
Microbiota , Neoplasias/microbiologia , Analgésicos Opioides/uso terapêutico , Animais , Bactérias/metabolismo , Sistema Nervoso Central/fisiologia , Sinergismo Farmacológico , Microbiologia Ambiental , Gastrite/microbiologia , Microbioma Gastrointestinal , Infecções por Helicobacter/complicações , Interações Hospedeiro-Patógeno , Humanos , Imunoterapia , Camundongos , Microbiota/efeitos dos fármacos , Microbiota/efeitos da radiação , Neoplasias/etiologia , Neoplasias/terapia , Neoplasias/virologia , Vírus Oncogênicos/patogenicidade , Probióticos , Neoplasias Gástricas/etiologia , Neoplasias Gástricas/microbiologia , Simbiose , Infecções Tumorais por Vírus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA