Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 473
Filtrar
1.
Int J Mol Sci ; 22(17)2021 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-34502474

RESUMO

Glycosphingolipids (GSLs), together with cholesterol, sphingomyelin (SM), and glycosylphosphatidylinositol (GPI)-anchored and membrane-associated signal transduction molecules, form GSL-enriched microdomains. These specialized microdomains interact in a cis manner with various immune receptors, affecting immune receptor-mediated signaling. This, in turn, results in the regulation of a broad range of immunological functions, including phagocytosis, cytokine production, antigen presentation and apoptosis. In addition, GSLs alone can regulate immunological functions by acting as ligands for immune receptors, and exogenous GSLs can alter the organization of microdomains and microdomain-associated signaling. Many pathogens, including viruses, bacteria and fungi, enter host cells by binding to GSL-enriched microdomains. Intracellular pathogens survive inside phagocytes by manipulating intracellular microdomain-driven signaling and/or sphingolipid metabolism pathways. This review describes the mechanisms by which GSL-enriched microdomains regulate immune signaling.


Assuntos
Glicoesfingolipídeos/imunologia , Microdomínios da Membrana/imunologia , Fagócitos/imunologia , Transdução de Sinais/imunologia , Animais , Apresentação de Antígeno/imunologia , Apoptose/imunologia , Humanos , Fagocitose/imunologia
2.
Front Immunol ; 12: 687367, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34394081

RESUMO

The essential microelement zinc plays immunoregulatory roles via its ability to influence signaling pathways. Zinc deficiency impairs overall immune function and resultantly increases susceptibility to infection. Thus, zinc is considered as an immune-boosting supplement for populations with hypozincemia at high-risk for infection. Besides its role as a structural cofactor of many proteins, zinc also acts as an intracellular messenger in immune cell signaling. T-cell activation instructs zinc influx from extracellular and subcellular sources through the Zip6 and Zip8 zinc transporters, respectively. Increased cytoplasmic zinc participates in the regulation of T-cell responses by modifying activation signaling. However, the mechanism underlying the activation-dependent movement of zinc ions by Zip transporters in T cells remains elusive. Here, we demonstrate that Zip6, one of the most abundantly expressed Zip transporters in T cells, is mainly localized to lipid rafts in human T cells and is recruited into the immunological synapse in response to TCR stimulation. This was demonstrated through confocal imaging of the interaction between CD4+ T cells and antigen-presenting cells. Further, immunoprecipitation assays show that TCR triggering induces tyrosine phosphorylation of Zip6, which has at least three putative tyrosine motifs in its long cytoplasmic region, and this phosphorylation is coupled with its physical interaction with Zap70. Silencing Zip6 reduces zinc influx from extracellular sources and suppresses T-cell responses, suggesting an interaction between Zip6-mediated zinc influx and TCR activation. These results provide new insights into the mechanism through which Zip6-mediated zinc influx occurs in a TCR activation-dependent manner in human CD4+ T cells.


Assuntos
Células Apresentadoras de Antígenos/metabolismo , Linfócitos T CD4-Positivos/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Sinapses Imunológicas/metabolismo , Microdomínios da Membrana/metabolismo , Proteínas de Neoplasias/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Proteína-Tirosina Quinase ZAP-70/metabolismo , Células Apresentadoras de Antígenos/imunologia , Linfócitos T CD4-Positivos/imunologia , Proteínas de Transporte de Cátions/genética , Humanos , Sinapses Imunológicas/imunologia , Células Jurkat , Ativação Linfocitária , Microdomínios da Membrana/imunologia , Proteínas de Neoplasias/genética , Fosforilação , Transdução de Sinais , Tirosina
3.
Cells ; 10(5)2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-34064516

RESUMO

Sphingolipids are important structural membrane components and, together with cholesterol, are often organized in lipid rafts, where they act as signaling molecules in many cellular functions. They play crucial roles in regulating pathobiological processes, such as cancer, inflammation, and infectious diseases. The bioactive metabolites ceramide, sphingosine-1-phosphate, and sphingosine have been shown to be involved in the pathogenesis of several microbes. In contrast to ceramide, which often promotes bacterial and viral infections (for instance, by mediating adhesion and internalization), sphingosine, which is released from ceramide by the activity of ceramidases, kills many bacterial, viral, and fungal pathogens. In particular, sphingosine is an important natural component of the defense against bacterial pathogens in the respiratory tract. Pathologically reduced sphingosine levels in cystic fibrosis airway epithelial cells are normalized by inhalation of sphingosine, and coating plastic implants with sphingosine prevents bacterial infections. Pretreatment of cells with exogenous sphingosine also prevents the viral spike protein of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) from interacting with host cell receptors and inhibits the propagation of herpes simplex virus type 1 (HSV-1) in macrophages. Recent examinations reveal that the bactericidal effect of sphingosine might be due to bacterial membrane permeabilization and the subsequent death of the bacteria.


Assuntos
Infecções Bacterianas/imunologia , Micoses/imunologia , Transdução de Sinais/imunologia , Esfingosina/metabolismo , Viroses/imunologia , Animais , Infecções Bacterianas/tratamento farmacológico , Infecções Bacterianas/metabolismo , Infecções Bacterianas/microbiologia , Parede Celular/efeitos dos fármacos , Ceramidas/metabolismo , Modelos Animais de Doenças , Herpesvirus Humano 1/imunologia , Humanos , Lisofosfolipídeos/metabolismo , Microdomínios da Membrana/imunologia , Microdomínios da Membrana/metabolismo , Micoses/tratamento farmacológico , Micoses/metabolismo , Micoses/microbiologia , SARS-CoV-2/imunologia , Esfingolipídeos/metabolismo , Esfingosina/análogos & derivados , Esfingosina/farmacologia , Esfingosina/uso terapêutico , Viroses/tratamento farmacológico , Viroses/metabolismo , Viroses/virologia
4.
FASEB J ; 35(5): e21509, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33813781

RESUMO

Extracellular adenosine plays important roles in modulating the immune responses. We have previously demonstrated that infection of dendritic cells (DC) by Leishmania amazonensis leads to increased expression of CD39 and CD73 and to the selective activation of the low affinity A2B receptors (A2B R), which contributes to DC inhibition, without involvement of the high affinity A2A R. To understand this apparent paradox, we now characterized the alterations of both adenosine receptors in infected cells. With this aim, bone marrow-derived DC from C57BL/6J mice were infected with metacyclic promastigotes of L. amazonensis. Fluorescence microscopy revealed that L. amazonensis infection stimulates the recruitment of A2B R, but not of A2A R, to the surface of infected DC, without altering the amount of mRNA or the total A2B R density, an effect dependent on lipophosphoglycan (LPG). Log-phase promastigotes or axenic amastigotes of L. amazonensis do not stimulate A2B R recruitment. A2B R clusters are localized in caveolin-rich lipid rafts and the disruption of these membrane domains impairs A2B R recruitment and activation. More importantly, our results show that A2B R co-localize with CD39 and CD73 forming a "purinergic cluster" that allows for the production of extracellular adenosine in close proximity with these receptors. We conclude that A2B R activation by locally produced adenosine constitutes an elegant and powerful evasion mechanism used by L. amazonensis to down-modulate the DC activation.


Assuntos
5'-Nucleotidase/metabolismo , Antígenos CD/metabolismo , Apirase/metabolismo , Caveolina 1/metabolismo , Células Dendríticas/imunologia , Leishmaniose/imunologia , Microdomínios da Membrana/imunologia , Receptor A2B de Adenosina/metabolismo , Animais , Células Dendríticas/metabolismo , Células Dendríticas/parasitologia , Células Dendríticas/patologia , Imunidade , Imunomodulação , Leishmania/imunologia , Leishmaniose/metabolismo , Leishmaniose/parasitologia , Leishmaniose/patologia , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/parasitologia , Macrófagos/patologia , Masculino , Microdomínios da Membrana/parasitologia , Microdomínios da Membrana/patologia , Camundongos , Camundongos Endogâmicos C57BL
5.
Front Immunol ; 12: 600961, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33767692

RESUMO

Lymphocytes must strike a delicate balance between activating in response to signals from potentially pathogenic organisms and avoiding activation from stimuli emanating from the body's own cells. For cells, such as T or B cells, maximizing the efficiency and fidelity, whilst minimizing the crosstalk, of complex signaling pathways is crucial. One way of achieving this control is by carefully orchestrating the spatiotemporal organization of signaling molecules, thereby regulating the rates of protein-protein interactions. This is particularly true at the plasma membrane where proximal signaling events take place and the phenomenon of protein microclustering has been extensively observed and characterized. This review will focus on what is known about the heterogeneous distribution of proteins and lipids at the cell surface, illustrating how such distributions can influence signaling in health and disease. We particularly focus on nanoscale molecular organization, which has recently become accessible for study through advances in microscope technology and analysis methodology.


Assuntos
Linfócitos B/imunologia , Lipídeos/imunologia , Ativação Linfocitária , Microdomínios da Membrana/imunologia , Proteínas de Membrana/imunologia , Transdução de Sinais/imunologia , Linfócitos T/imunologia , Animais , Humanos
7.
Front Immunol ; 11: 1675, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32849582

RESUMO

Clostridium difficile, an obligate anaerobic gram-positive bacillus, generates spores and is commonly found colonizing the human gut. Patients with C. difficile infection (CDI) often exhibit clinical manifestations of pseudomembranous colitis or antibiotic-associated diarrhea. Surface layer proteins (SLPs) are the most abundant proteins in the C. difficile cell wall, suggesting that they might involve in immune recognition. Our previous results demonstrated that C. difficile triggers inflammasome activation. Here, we found SLPs as well as C. difficile induced inflammasome activation, and in a dose-dependent manner. In addition, the cholesterol-rich microdomains on the cell membrane (also referred to as lipid rafts) are thought to be crucial for bacterial adhesion and signal transduction. We demonstrated that lipid rafts participated in C. difficile SLPs binding to the cell membrane. Fluorescence microscopy showed that membrane cholesterol depletion by methyl-ß-cyclodextrin (MßCD) reduced the association of SLPs with the cell surface. The coalescence of SLPs in the cholesterol-rich microdomains was confirmed in C. difficile-infected cells. Furthermore, the inflammasome activations induced by SLPs or C. difficile were abrogated by MßCD. Our results demonstrate that SLPs recruit the lipid rafts, which may be a key step for C. difficile colonization and inducing inflammasome activation.


Assuntos
Colesterol/metabolismo , Infecções por Clostridium/metabolismo , Inflamassomos/imunologia , Glicoproteínas de Membrana/metabolismo , Microdomínios da Membrana/metabolismo , Colesterol/imunologia , Clostridioides difficile/imunologia , Clostridioides difficile/patogenicidade , Infecções por Clostridium/imunologia , Humanos , Inflamassomos/metabolismo , Lipídeos de Membrana/imunologia , Lipídeos de Membrana/metabolismo , Microdomínios da Membrana/imunologia , Ligação Proteica , Células THP-1
8.
Front Immunol ; 11: 1305, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32655573

RESUMO

The high mobility group box 1 (HMGB1) is a well-known late mediator of sepsis, secreted by multiple stimuli, involving pathways, such as the mitogen-activated protein kinase (MAPK) and nuclear factor kappa B (NF-κB) pathways, and reactive oxygen species (ROS) under inflammation. Sulfatide, in contrast, is a sphingolipid commonly found in myelin sheets with a disputed immunological role. We sought to determine the immunological characteristics of sulfatide in the periphery by analyzing the secretion of HMGB1 triggered by lipopolysaccharide (LPS) stimulation in Raw 264.7 cells. Suppression of HMGB1 secretion by inhibiting its cytosolic translocation was observed after pre-treatment with sulfatide before LPS stimulation. Further analysis of the downstream molecules of toll-like receptor (TLR) signaling revealed suppression of c-Jun N-terminal kinase (JNK) phosphorylation and p65 translocation. LPS-mediated ROS production was also decreased when sulfatide pre-treatment was provided, caused by the down-regulation of the phosphorylation of activators, such as IRAK4 and TBK1. Investigation of the upstream mechanism that encompasses all the aforementioned inhibitory characteristics unveiled the involvement of lipid rafts. In addition to the co-localization of biotinylated sulfatide and monosialotetrahexosylganglioside, a decrease in LPS-induced co-localization of TLR4 and lipid raft markers was observed when sulfatide treatment was given before LPS stimulation. Overall, sulfatide was found to exert its anti-inflammatory properties by hindering the co-localization of TLR4 and lipid rafts, nullifying the effect of LPS on TLR4 signaling. Similar effects of sulfatide were also confirmed in the LPS-mediated murine experimental sepsis model, showing decreased levels of serum HMGB1, increased survivability, and reduced pathological severity.


Assuntos
Proteína HMGB1/imunologia , Microdomínios da Membrana/imunologia , Sulfoglicoesfingolipídeos/imunologia , Receptor 4 Toll-Like/imunologia , Animais , Feminino , Lipopolissacarídeos/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Células RAW 264.7 , Espécies Reativas de Oxigênio/metabolismo
9.
Med Microbiol Immunol ; 209(4): 545-552, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32440787

RESUMO

Tetraspanins are membrane organizing proteins that play a role in organizing the cell surface through the formation of subcellular domains consisting of tetraspanins and their partner proteins. These complexes are referred to as tetraspanin enriched microdomains (TEMs) or the tetraspanin web. The formation of TEMs allows for the regulation of a variety of cellular processes such as adhesion, migration, signaling, and cell fusion. Tetraspanin CD53 is a member of the tetraspanin superfamily expressed exclusively within the immune compartment. Amongst others, B cells, CD4+ T cells, CD8+ T cells, dendritic cells, macrophages, and natural killer cells have all been found to express high levels of this protein on their surface. Almost three decades ago it was reported that patients who lacked CD53 suffered from an increased susceptibility to pathogens resulting in the clinical manifestation of recurrent viral, bacterial, and fungal infections. This clearly suggests a vital and non-redundant role for CD53 in immune function. Yet, despite this striking finding, the specific functional roles of CD53 within the immune system have remained elusive. This review aims to provide a concise overview of the published literature concerning CD53 and reflect on the underappreciated role of this protein in immune cell regulation and function.


Assuntos
Células Dendríticas/fisiologia , Linfócitos/fisiologia , Macrófagos/fisiologia , Tetraspanina 25/imunologia , Adesão Celular , Regulação da Expressão Gênica/imunologia , Humanos , Microdomínios da Membrana/imunologia , Transdução de Sinais/imunologia
10.
Immunology ; 159(4): 441-449, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31957000

RESUMO

Signaling by Kit has been extensively studied in hematopoietic cells and is essential for the survival, proliferation and maintenance of hematopoietic stem and progenitor cells. In addition to the activation of intrinsic signaling pathways, Kit has been shown to interact with lineage-restricted type I cytokine receptors and produce cross signals, e.g. erythropoietin receptor, interleukin-7 receptor (IL-7R), IL-3R. Based on the earlier studies, we hypothesize that Kit activate other type I cytokine receptors in a cell-specific manner and execute cell-specific function. To investigate other Kit-activated receptors, we tested Kit and IL-4R cross-receptor activation in murine bone-marrow-derived mast cells, which express both Kit and IL-4R at the surface level. Kit upon activation by Kit ligand (KL), activated IL-4Rα, γC , and signal transducer and activator of transcription 6 independent of its cognate ligand IL-4. Though KL and IL-4 are individually mitogenic, combinations of KL and IL-4 synergistically promoted mast cell proliferation. Furthermore, inhibition of lipid raft formation by methyl-ß-cyclodextrin resulted in loss of synergistic proliferation. Together the data suggest IL-4R as a novel Kit-activated receptor. Such cross-receptor activations are likely to be a universal mechanism of Kit signaling in hematopoiesis.


Assuntos
Interleucina-4/farmacologia , Mastócitos/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-kit/genética , Receptores de Interleucina-4/genética , Fator de Transcrição STAT6/genética , Fator de Células-Tronco/farmacologia , Animais , Células da Medula Óssea/citologia , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/imunologia , Proliferação de Células/efeitos dos fármacos , Regulação da Expressão Gênica , Hematopoese/efeitos dos fármacos , Hematopoese/genética , Hematopoese/imunologia , Interleucina-4/genética , Interleucina-4/imunologia , Mastócitos/citologia , Mastócitos/imunologia , Microdomínios da Membrana/efeitos dos fármacos , Microdomínios da Membrana/imunologia , Microdomínios da Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Cultura Primária de Células , Proteínas Proto-Oncogênicas c-kit/imunologia , Receptores da Eritropoetina/genética , Receptores da Eritropoetina/imunologia , Receptores de Interleucina-3/genética , Receptores de Interleucina-3/imunologia , Receptores de Interleucina-4/imunologia , Receptores de Interleucina-7/genética , Receptores de Interleucina-7/imunologia , Fator de Transcrição STAT6/imunologia , Transdução de Sinais , Fator de Células-Tronco/genética , Fator de Células-Tronco/imunologia , beta-Ciclodextrinas/farmacologia
11.
Cardiovasc Res ; 116(5): 1006-1020, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-31399738

RESUMO

AIMS: Adaptive immunity contributes to the pathogenesis of cardiovascular metabolic disorders (CVMD). The omega-3 polyunsaturated fatty acids (n-3PUFA) are beneficial for cardiovascular health, with potential to improve the dysregulated adaptive immune responses associated with metabolic imbalance. We aimed to explore the mechanisms through which n-3PUFA may alter T cell motility and tissue distribution to promote a less inflammatory environment and improve lymphocyte function in CVMD. METHODS AND RESULTS: Using mass spectrometry lipidomics, cellular, biochemical, and in vivo and ex vivo analyses, we investigated how eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), the main n-3PUFA, modify the trafficking patterns of activated CD4+ T cells. In mice subjected to allogeneic immunization, a 3-week n-3PUFA-enriched diet reduced the number of effector memory CD4+ T cells found in adipose tissue, and changed the profiles of eicosanoids, octadecanoids, docosanoids, endocannabinoids, 2-monoacylglycerols, N-acyl ethanolamines, and ceramides, in plasma, lymphoid organs, and fat tissues. These bioactive lipids exhibited differing chemotactic properties when tested in chemotaxis assays with activated CD4+ T cells in vitro. Furthermore, CD4+ T cells treated with EPA and DHA showed a significant reduction in chemokinesis, as assessed by trans-endothelial migration assays, and, when implanted in recipient mice, demonstrated less efficient migration to the inflamed peritoneum. Finally, EPA and DHA treatments reduced the number of polarized CD4+ T cells in vitro, altered the phospholipid composition of membrane microdomains and decreased the activity of small Rho GTPases, Rhoα, and Rac1 instrumental in cytoskeletal dynamics. CONCLUSIONS: Our findings suggest that EPA and DHA affect the motility of CD4+ T cells and modify their ability to reach target tissues by interfering with the cytoskeletal rearrangements required for cell migration. This can explain, at least in part, the anti-inflammatory effects of n-3PUFA supporting their potential use in interventions aiming to address adipocyte low-grade inflammation associated with cardiovascular metabolic disease.


Assuntos
Imunidade Adaptativa/efeitos dos fármacos , Tecido Adiposo/efeitos dos fármacos , Linfócitos T CD4-Positivos/efeitos dos fármacos , Quimiotaxia de Leucócito/efeitos dos fármacos , Ácidos Docosa-Hexaenoicos/farmacologia , Ácido Eicosapentaenoico/farmacologia , Ativação Linfocitária/efeitos dos fármacos , Migração Transendotelial e Transepitelial/efeitos dos fármacos , Tecido Adiposo/imunologia , Tecido Adiposo/metabolismo , Animais , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD4-Positivos/transplante , Células Cultivadas , Microambiente Celular , Citoesqueleto/efeitos dos fármacos , Citoesqueleto/imunologia , Citoesqueleto/metabolismo , Feminino , Glicerofosfolipídeos/metabolismo , Microdomínios da Membrana/efeitos dos fármacos , Microdomínios da Membrana/imunologia , Microdomínios da Membrana/metabolismo , Camundongos Endogâmicos C57BL , Neuropeptídeos/metabolismo , Transdução de Sinais , Esfingomielinas/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo
12.
Curr Opin Lipidol ; 30(6): 462-469, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31577612

RESUMO

PURPOSE OF REVIEW: Cellular cholesterol content influences the structure and function of lipid rafts, plasma membrane microdomains essential for cell signaling and activation. HDL modulate cellular cholesterol efflux, thus limiting cholesterol accumulation and controlling immune cell activation. Aim of this review is to discuss the link between HDL and cellular cholesterol metabolism in immune cells and the therapeutic potential of targeting cholesterol removal from cell membranes. RECENT FINDINGS: The inverse relationship between HDL-cholesterol (HDL-C) levels and the risk of cardiovascular disease has been recently challenged by observations linking elevated levels of HDL-C with increased risk of all-cause mortality, infections and autoimmune diseases, paralleled by the failure of clinical trials with HDL-C-raising therapies. These findings suggest that improving HDL function might be more important than merely raising HDL-C levels. New approaches aimed at increasing the ability of HDL to remove cellular cholesterol have been assessed for their effect on immune cells, and the results have suggested that this could be a new effective approach. SUMMARY: Cholesterol removal from plasma membrane by different means affects the activity of immune cells, suggesting that approaches aimed at increasing the ability of HDL to mobilize cholesterol from cells would represent the next step in HDL biology.


Assuntos
Doenças Autoimunes/imunologia , Doenças Cardiovasculares/imunologia , HDL-Colesterol/imunologia , Infecções/imunologia , Microdomínios da Membrana/imunologia , Animais , Doenças Autoimunes/patologia , Doenças Cardiovasculares/patologia , Humanos , Infecções/patologia , Microdomínios da Membrana/patologia
13.
Biochem Biophys Res Commun ; 514(3): 875-880, 2019 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-31084930

RESUMO

In addition to a role in translation, AIMP1 is secreted to affect various immune cells, such as macrophages, dendritic cells, B cells, and natural killer cells. However, the direct effects of AIMP1 on T cells have not yet been reported. In this study, we investigated whether AIMP1 could modulate T cell responses directly. Results revealed that AIMP1 significantly inhibited T cell receptor (TCR)-dependent activation and proliferation of CD4 T cells, as well as decreased TCR stimuli-induced Ca2+ influx in CD4 T cells. In addition, microscopic analysis revealed that lipid raft association in response to TCR engagement was significantly reduced in the presence of AIMP1, and the phosphorylation of PLCγ and PI3K was also down-regulated in CD4 T cells by AIMP1. Furthermore, AIMP1 specifically enhanced the differentiation of regulatory T (Treg) cells, while it had no effect on T helper type 1 (Th1), type 2 (Th2), and type 17 (Th17) cell differentiation. Collectively, these results indicate that AIMP1 affects T cells directly by down-regulating TCR signaling complex formation and inducing Treg cell differentiation in CD4 T cells.


Assuntos
Citocinas/farmacologia , Ativação Linfocitária/efeitos dos fármacos , Microdomínios da Membrana/efeitos dos fármacos , Receptores de Antígenos de Linfócitos T/genética , Transdução de Sinais/efeitos dos fármacos , Linfócitos T Reguladores/efeitos dos fármacos , Animais , Cálcio/imunologia , Cálcio/metabolismo , Diferenciação Celular/efeitos dos fármacos , Citocinas/genética , Citocinas/imunologia , Feminino , Regulação da Expressão Gênica , Imunofenotipagem , Transporte de Íons/efeitos dos fármacos , Microdomínios da Membrana/imunologia , Microdomínios da Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Fosfatidilinositol 3-Quinase/genética , Fosfatidilinositol 3-Quinase/imunologia , Fosfolipase C gama/genética , Fosfolipase C gama/imunologia , Fosforilação/efeitos dos fármacos , Cultura Primária de Células , Receptores de Antígenos de Linfócitos T/antagonistas & inibidores , Receptores de Antígenos de Linfócitos T/imunologia , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Linfócitos T Auxiliares-Indutores/citologia , Linfócitos T Auxiliares-Indutores/efeitos dos fármacos , Linfócitos T Auxiliares-Indutores/imunologia , Linfócitos T Reguladores/citologia , Linfócitos T Reguladores/imunologia
14.
Cell Signal ; 58: 9-19, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30840855

RESUMO

There is evidence that B cells from patients with Systemic Lupus Erythematosus (SLE) could be hyperactivated due to changes in their lipid rafts (LR) composition, leading to altered BCR-dependent signals. This study aimed to characterize possible alterations in the recruitment of protein tyrosine kinases (PTK) into B cells LR from SLE patients. Fifteen patients with SLE and ten healthy controls were included. Circulating B cells were isolated by negative selection and stimulated with goat Fab´2 anti-human IgM/IgG. LR were isolated with a non-ionic detergent and ultracentrifuged on 5-45% discontinuous sucrose gradients. Proteins from each fraction were analyzed by Western Blot. Total levels of Lyn, Syk, and ZAP-70 in resting B cells were similar in SLE patients and healthy controls. Upon BCR activation, Lyn, Syk and ZAP-70 recruitment into LR increased significantly in B cells of healthy controls and patients with inactive SLE. In contrast, in active SLE patients there was a great heterogeneity in the recruitment of signaling molecules and the recruitment of ZAP-70 was mainly observed in patients with decreased Syk recruitment into LR of activated B cells. The reduction in Flotilin-1 and Lyn recruitment in SLE patients seem to be associated with disease activity. These findings suggest that in SLE patients the PTK recruitment into B cell LR is dysregulated and that B cells are under constant activation through BCR signaling. The decrease of Lyn and Syk, the expression of ZAP-70 by B cells and the increase in Calcium fluxes in response to BCR stimulation in active SLE patients, further support that B cells from SLE patients are under constant activation through BCR signaling, as has been proposed.


Assuntos
Lúpus Eritematoso Sistêmico/imunologia , Ativação Linfocitária , Quinase Syk/imunologia , Proteína-Tirosina Quinase ZAP-70/imunologia , Quinases da Família src/imunologia , Adulto , Linfócitos B/imunologia , Feminino , Humanos , Microdomínios da Membrana/imunologia , Pessoa de Meia-Idade , Adulto Jovem
15.
Commun Biol ; 2: 59, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30775460

RESUMO

Bacterial pore-forming toxin aerolysin-like proteins (ALPs) are widely distributed in animals and plants. However, functional studies on these ALPs remain in their infancy. ßγ-CAT is the first example of a secreted pore-forming protein that functions to modulate the endolysosome pathway via endocytosis and pore formation on endolysosomes. However, the specific cell surface molecules mediating the action of ßγ-CAT remain elusive. Here, the actions of ßγ-CAT were largely attenuated by either addition or elimination of acidic glycosphingolipids (AGSLs). Further study revealed that the ALP and trefoil factor (TFF) subunits of ßγ-CAT bind to gangliosides and sulfatides, respectively. Additionally, disruption of lipid rafts largely impaired the actions of ßγ-CAT. Finally, the ability of ßγ-CAT to clear pathogens was attenuated in AGSL-eliminated frogs. These findings revealed a previously unknown double binding pattern of an animal-secreted ALP in complex with TFF that initiates ALP-induced endolysosomal pathway regulation, ultimately leading to effective antimicrobial responses.


Assuntos
Glicoesfingolipídeos Acídicos/química , Proteínas de Anfíbios/imunologia , Toxinas Bacterianas/imunologia , Infecções por Bactérias Gram-Negativas/imunologia , Lisossomos/imunologia , Complexos Multiproteicos/imunologia , Proteínas Citotóxicas Formadoras de Poros/imunologia , Fator Trefoil-3/imunologia , Glicoesfingolipídeos Acídicos/antagonistas & inibidores , Glicoesfingolipídeos Acídicos/biossíntese , Aeromonas hydrophila/crescimento & desenvolvimento , Aeromonas hydrophila/patogenicidade , Proteínas de Anfíbios/genética , Proteínas de Anfíbios/metabolismo , Animais , Anuros , Toxinas Bacterianas/genética , Toxinas Bacterianas/metabolismo , Ceramidas/antagonistas & inibidores , Ceramidas/biossíntese , Ceramidas/química , Cerebrosídeos/antagonistas & inibidores , Cerebrosídeos/biossíntese , Cerebrosídeos/química , Gangliosídeos/antagonistas & inibidores , Gangliosídeos/biossíntese , Gangliosídeos/química , Expressão Gênica , Infecções por Bactérias Gram-Negativas/genética , Infecções por Bactérias Gram-Negativas/microbiologia , Humanos , Interleucina-1beta/biossíntese , Lisossomos/efeitos dos fármacos , Lisossomos/microbiologia , Microdomínios da Membrana/efeitos dos fármacos , Microdomínios da Membrana/imunologia , Microdomínios da Membrana/microbiologia , Meperidina/análogos & derivados , Meperidina/farmacologia , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Proteínas Citotóxicas Formadoras de Poros/genética , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Esfingosina/antagonistas & inibidores , Esfingosina/biossíntese , Esfingosina/química , Células THP-1 , Fator Trefoil-3/genética , Fator Trefoil-3/metabolismo
16.
FEBS Lett ; 592(23): 3921-3942, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30320884

RESUMO

Lipid rafts formed by glycosphingolipids (GSLs) on cellular membranes play important roles in innate and adaptive immunity. Lactosylceramide (LacCer) forms lipid rafts on plasma and granular membranes of human neutrophils. These LacCer-enriched lipid rafts bind directly to pathogenic components, such as pathogenic fungi-derived ß-glucan and Mycobacteria-derived lipoarabinomannan via carbohydrate-carbohydrate interactions, and mediate innate immune responses to these pathogens. In contrast, a-series and o-series gangliosides form distinct rafts on CD4+ and CD8+ T cell subsets, respectively, contributing to the respective functions of these cells and stimulating adaptive immune responses through T cell receptors. These findings suggest that gangliosides play indispensable roles in T cell selection and activation. This Review introduces the involvement of GSL-enriched lipid rafts in innate and adaptive immunity.


Assuntos
Fungos/imunologia , Glicoesfingolipídeos/imunologia , Sistema Imunitário/imunologia , Microdomínios da Membrana/imunologia , Mycobacterium/imunologia , Animais , Fungos/metabolismo , Fungos/fisiologia , Glicoesfingolipídeos/metabolismo , Humanos , Sistema Imunitário/metabolismo , Sistema Imunitário/microbiologia , Lipopolissacarídeos/imunologia , Lipopolissacarídeos/metabolismo , Microdomínios da Membrana/metabolismo , Microdomínios da Membrana/microbiologia , Mycobacterium/metabolismo , Mycobacterium/fisiologia , Neutrófilos/imunologia , Neutrófilos/metabolismo , Neutrófilos/microbiologia , beta-Glucanas/imunologia , beta-Glucanas/metabolismo
17.
Med Mycol J ; 59(3): J51-J61, 2018.
Artigo em Japonês | MEDLINE | ID: mdl-30175814

RESUMO

More than 100 years have passed since Elie Metchnikoff discovered phagocytes. As molecular biological techniques have been developed and improved, we have gained deeper knowledge about the molecular mechanisms of immunological responses to invasion. The innate immune system is the inborn defense mechanism and the first line of defense against all kinds of pathogenic organisms, including bacteria, fungi, viruses, etc. Innate immunity was originally considered to comprise non-specific reactions. However, we now know that innate immune systems develop molecular mechanisms specific to pathogenic microorganisms. In the 1970s, a neutral glycosphingolipid lactosylceramide (LacCer) was found to bind specifically to several kinds of microorganisms. LacCer is highly expressed in phagocytes and epithelial cells. LacCer forms lipid rafts on human neutrophils and is involved in neutrophil migration, phagocytosis, and superoxide generation. In contrast, mouse neutrophils express relatively little LacCer on their cell surfaces. Thus, it is difficult to observe LacCer-mediated innate immunological reactions in mice. Mycobacterium tuberculosis is a typical pathogen for humans but not mice in general. Interestingly, M. tuberculosis can escape killing by neutrophils through regulation of the LacCer-enriched lipid raft-mediated immunological reactions of these cells. These observations indicate that LacCer-enriched lipid rafts play an essential role in human innate immunity. This review describes LacCer-mediated innate immunity in humans.


Assuntos
Antígenos CD/imunologia , Imunidade Inata/imunologia , Infecções/imunologia , Lactosilceramidas/imunologia , Microdomínios da Membrana/imunologia , Neutrófilos/imunologia , Animais , Antígenos CD/metabolismo , Humanos , Lactosilceramidas/metabolismo , Microdomínios da Membrana/metabolismo , Camundongos , Mycobacterium tuberculosis/imunologia , Neutrófilos/metabolismo , Fagocitose/imunologia , Espécies Reativas de Oxigênio/metabolismo
18.
Pathog Dis ; 76(4)2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29762679

RESUMO

The mycobacterial cell envelope is a complex multilayered structure that provides the strength to the rod-shaped cell and creates the permeability barrier against antibiotics and host immune attack. In this review, we will discuss the spatial coordination of cell envelope biosynthesis and how plasma membrane compartmentalization plays a role in this process. The spatial organization of cell envelope biosynthetic enzymes as well as other membrane-associated proteins is crucial for cellular processes such as polar growth and midcell septum formation. We will highlight metabolic enzymes involved in the localized biosynthesis of envelope components such as peptidoglycan, arabinogalactan and outer/inner membrane lipids. The known and potential roles of cytoskeletal and coiled coil proteins in driving subcellular protein localization will also be summarized. Finally, we provide a comprehensive overview of known lateral heterogeneities in mycobacterial plasma membrane, with a particular focus on the intracellular membrane domain, recently revealed by biochemical fractionation and fluorescence microscopy. We consider how this dynamic and multifunctional membrane microdomain contributes to the subcellular localization of membrane proteins and spatially restricted cell envelope biosynthesis in mycobacteria.


Assuntos
Proteínas de Bactérias/química , Membrana Celular/química , Parede Celular/química , Microdomínios da Membrana/química , Proteínas de Membrana/química , Mycobacterium tuberculosis/química , Proteínas de Bactérias/imunologia , Sequência de Carboidratos , Divisão Celular , Membrana Celular/imunologia , Membrana Celular/metabolismo , Membrana Celular/ultraestrutura , Parede Celular/imunologia , Parede Celular/metabolismo , Parede Celular/ultraestrutura , Galactanos/química , Galactanos/imunologia , Interações Hospedeiro-Patógeno/imunologia , Humanos , Imunidade Inata , Microdomínios da Membrana/imunologia , Microdomínios da Membrana/metabolismo , Microdomínios da Membrana/ultraestrutura , Proteínas de Membrana/imunologia , Mycobacterium tuberculosis/imunologia , Mycobacterium tuberculosis/patogenicidade , Peptidoglicano/química , Peptidoglicano/imunologia , Tuberculose Pulmonar/imunologia , Tuberculose Pulmonar/microbiologia
19.
Methods Mol Biol ; 1707: 183-192, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29388108

RESUMO

Single-particle tracking has been used extensively to advance our understanding of the plasma membrane and the mechanisms controlling the movement of cell surface proteins. These studies provide fundamental insights into the regulation of membrane receptor activation and the assembly of signaling clusters. Here, we describe a method to label and track B cell receptor (BCR) and other cell surface proteins and how this method can be adapted to simultaneously track two molecular species or examine the movement of membrane proteins in relation to membrane microdomains. We recently used this method to study the role of the actin cytoskeleton in the regulation of B cell receptor dynamics at the cell surface.


Assuntos
Linfócitos B/imunologia , Microdomínios da Membrana/imunologia , Receptores de Antígenos de Linfócitos B/imunologia , Imagem Individual de Molécula/métodos , Animais , Linfócitos B/química , Linfócitos B/citologia , Humanos , Microdomínios da Membrana/química , Transporte Proteico/imunologia , Receptores de Antígenos de Linfócitos B/química
20.
Methods Mol Biol ; 1707: 207-224, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29388110

RESUMO

For decades, various Förster resonance energy transfer (FRET) techniques have been developed to measure the distance between interacting molecules. FRET imaging by the sensitized acceptor emission method has been widely applied to study the dynamical association between two molecules at a nanometer scale in live cells. Here, we provide a detailed protocol for FRET imaging by sensitized emission using a confocal laser scanning microscope to analyze the interaction of the B cell receptor (BCR) with the Lyn-enriched lipid microdomain on the plasma membrane of live cells upon antigen binding, one of the earliest signaling events in BCR-mediated B cell activation.


Assuntos
Transferência Ressonante de Energia de Fluorescência/métodos , Microdomínios da Membrana/imunologia , Receptores de Antígenos de Linfócitos B/imunologia , Animais , Linfócitos B/citologia , Linfócitos B/imunologia , Linhagem Celular , Humanos , Microscopia Confocal/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA