Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
Nat Protoc ; 13(12): 2890-2907, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30446750

RESUMO

Fast, high-resolution mapping of heterogeneous interfaces with a wide elastic modulus range is a major goal of atomic force microscopy (AFM). This goal becomes more challenging when the nanomechanical mapping involves biomolecules in their native environment. Over the years, several AFM-based methods have been developed to address this goal. However, none of these methods combine sub-nanometer spatial resolution, quantitative accuracy, fast data acquisition speed, wide elastic modulus range and operation in physiological solutions. Here, we present detailed procedures for generating high-resolution maps of the elastic properties of biomolecules and polymers using bimodal AFM. This requires the simultaneous excitation of the first two eigenmodes of the cantilever. An amplitude modulation (AM) feedback acting on the first mode controls the tip-sample distance, and a frequency modulation (FM) feedback acts on the second mode. The method is fast because the elastic modulus, deformation and topography images are obtained simultaneously. The method is efficient because only a single data point per pixel is needed to generate the aforementioned images. The main stages of the bimodal imaging are sample preparation, calibration of the instrument, tuning of the microscope and generation of the nanomechanical maps. In addition, with knowledge of the deformation, bimodal AFM enables reconstruction of the true topography of the surface. It takes ~9 h to complete the whole procedure.


Assuntos
Técnicas de Imagem por Elasticidade/métodos , Elasticidade , Microscopia de Força Atômica/métodos , Polímeros/química , Proteínas/química , Animais , Materiais Biocompatíveis/química , Fenômenos Biomecânicos , Técnicas de Imagem por Elasticidade/economia , Técnicas de Imagem por Elasticidade/instrumentação , Desenho de Equipamento , Halobacterium salinarum/química , Halobacterium salinarum/ultraestrutura , Humanos , Microscopia de Força Atômica/economia , Microscopia de Força Atômica/instrumentação , Modelos Moleculares , Complexo de Endopeptidases do Proteassoma/química , Complexo de Endopeptidases do Proteassoma/ultraestrutura , Proteínas/ultraestrutura , Membrana Purpúrea/química , Membrana Purpúrea/ultraestrutura , Fatores de Tempo
3.
Chem Commun (Camb) ; 48(57): 7182-4, 2012 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-22691975

RESUMO

A rapid and facile signal enhancement method for detecting alpha-fetoprotein (AFP) was developed using the magnetic agglomeration of ferromagnetic nanoparticles and microcantilever sensors. The resonance frequency and deflection of the cantilevers were found to be more than 10-fold greater than that before physical agglomeration of the free nanoparticles around the magnetized nanoparticles.


Assuntos
Imunoensaio/instrumentação , Imãs/química , Microscopia de Força Atômica/instrumentação , Nanopartículas/química , alfa-Fetoproteínas/análise , Anticorpos Imobilizados/imunologia , Técnicas Biossensoriais/economia , Técnicas Biossensoriais/instrumentação , Humanos , Imunoensaio/economia , Microscopia de Força Atômica/economia , Sensibilidade e Especificidade , Fatores de Tempo , alfa-Fetoproteínas/imunologia
4.
Nanotechnology ; 22(17): 175707, 2011 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-21411911

RESUMO

Atomic force microscopy (AFM) can be used to co-localize mechanical properties and topographical features through property mapping techniques. The most common approach for testing biological materials at the microscale and nanoscale is force mapping, which involves taking individual force curves at discrete sites across a region of interest. The limitations of force mapping include long testing times and low resolution. While newer AFM methodologies, like modulated scanning and torsional oscillation, circumvent this problem, their adoption for biological materials has been limited. This could be due to their need for specialized software algorithms and/or hardware. The objective of this study is to develop a novel force scanning technique using AFM to rapidly capture high-resolution topographical images of soft biological materials while simultaneously quantifying their mechanical properties. Force scanning is a straightforward methodology applicable to a wide range of materials and testing environments, requiring no special modification to standard AFMs. Essentially, if a contact-mode image can be acquired, then force scanning can be used to produce a spatial modulus map. The current study first validates this technique using agarose gels, comparing results to ones achieved by the standard force mapping approach. Biologically relevant demonstrations are then presented for high-resolution modulus mapping of individual cells, cell-cell interfaces, and articular cartilage tissue.


Assuntos
Microscopia de Força Atômica/métodos , Animais , Fenômenos Biomecânicos , Cartilagem Articular/ultraestrutura , Géis/química , Camundongos , Camundongos Endogâmicos C57BL , Microscopia de Força Atômica/economia , Células NIH 3T3 , Sefarose/ultraestrutura , Análise de Célula Única , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA