Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
1.
Opt Lett ; 49(13): 3705-3708, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38950247

RESUMO

Circular dichroism second harmonic generation microscopy (CDSHG) is a powerful imaging technique, which allows three-dimensional visualization of collagen fibril orientation in tissues. However, recent publications have obtained contradictory results on whether CDSHG can be used to reveal the relative out-of-plane polarity of collagen fibrils. Here we compare CDSHG images of unstained tendon and tendon which has been stained with hematoxylin and eosin. We find significant differences in the CDSHG between these two conditions, which explain the recent contradictory results within the literature.


Assuntos
Dicroísmo Circular , Colágeno , Tendões , Colágeno/química , Tendões/diagnóstico por imagem , Tendões/química , Animais , Coloração e Rotulagem , Microscopia de Geração do Segundo Harmônico/métodos
2.
Exp Eye Res ; 244: 109941, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38782177

RESUMO

Refractive errors remain a global health concern, as a large proportion of the world's population is myopic. Current ablative approaches are costly, not without risks, and not all patients are candidates for these procedures. Electromechanical reshaping (EMR) has been explored as a viable cost-effective modality to directly shape tissues, including cartilage. In this study, stromal collagen structure and fibril orientation was examined before and after EMR with second-harmonic generation microscopy (SHG), a nonlinear multiphoton imaging method that has previously been used to study native corneal collagen with high spatial resolution. EMR, using a milled metal contact lens and potentiostat, was performed on the corneas of five extracted rabbit globes. SHG was performed using a confocal microscopy system and all images underwent collagen fibril orientation analysis. The collagen SHG signal in controls is uniform and is similarly seen in samples treated with pulsed potential, while continuous EMR specimens have reduced, nonhomogeneous signal. Collagen fibril orientation in native tissue demonstrates a broad distribution with suggestion of another peak evolving, while with EMR treated eyes a bimodal characteristic becomes readily evident. Pulsed EMR may be a means to correct refractive errors, as when comparing its SHG signal to negative control, preservation of collagen structures with little to no damage is observed. From collagen fiber orientation analysis, it can be inferred that simple DC application alters the structure of collagen. Future studies will involve histological assessment of these layers and multi-modal imaging analysis of dosimetry.


Assuntos
Colágeno , Microscopia Confocal , Microscopia de Geração do Segundo Harmônico , Animais , Coelhos , Microscopia de Geração do Segundo Harmônico/métodos , Colágeno/metabolismo , Substância Própria/metabolismo , Córnea
3.
BMC Cancer ; 24(1): 652, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38811917

RESUMO

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) ranks among the deadliest types of cancer, and it will be meaningful to search for new biomarkers with prognostic value to help clinicians tailor therapeutic strategies. METHODS: Here we tried to use an advanced optical imaging technique, multiphoton microscopy (MPM) combining second-harmonic generation (SHG) and two-photon excited fluorescence (TPEF) imaging, for the label-free detection of PDAC tissues from a cohort of 149 patients. An automated image processing method was used to extract collagen features from SHG images and the Kaplan-Meier survival analysis and Cox proportional hazards regression were used to assess the prognostic value of collagen signatures. RESULTS: SHG images clearly show the different characteristics of collagen fibers in tumor microenvironment. We gained eight collagen morphological features, and a Feature-score was derived for each patient by the combination of these features using ridge regression. Statistical analyses reveal that Feature-score is an independent factor, and can predict the overall survival of PDAC patients as well as provide well risk stratification. CONCLUSIONS: SHG imaging technique can potentially be a tool for the accurate diagnosis of PDAC, and this optical biomarker (Feature-score) may help clinicians make more approximate treatment decisions.


Assuntos
Carcinoma Ductal Pancreático , Colágeno , Neoplasias Pancreáticas , Humanos , Carcinoma Ductal Pancreático/diagnóstico por imagem , Carcinoma Ductal Pancreático/patologia , Carcinoma Ductal Pancreático/mortalidade , Carcinoma Ductal Pancreático/metabolismo , Prognóstico , Feminino , Masculino , Colágeno/metabolismo , Neoplasias Pancreáticas/diagnóstico por imagem , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/mortalidade , Neoplasias Pancreáticas/diagnóstico , Pessoa de Meia-Idade , Idoso , Microscopia de Geração do Segundo Harmônico/métodos , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/análise , Estimativa de Kaplan-Meier , Microscopia de Fluorescência por Excitação Multifotônica/métodos , Adulto , Microambiente Tumoral
4.
J Biophotonics ; 17(6): e202300565, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38566461

RESUMO

This study explored the application of deep learning in second harmonic generation (SHG) microscopy, a rapidly growing area. This study focuses on the impact of glycerol concentration on image noise in SHG microscopy and compares two image restoration techniques: Noise-to-Void 2D (N2V 2D, no reference image restoration) and content-aware image restoration (CARE 2D, full reference image restoration). We demonstrated that N2V 2D effectively restored the images affected by high glycerol concentrations. To reduce sample exposure and damage, this study further addresses low-power SHG imaging by reducing the laser power by 70% using deep learning techniques. CARE 2D excels in preserving detailed structures, whereas N2V 2D maintains natural muscle structure. This study highlights the strengths and limitations of these models in specific SHG microscopy applications, offering valuable insights and potential advancements in the field .


Assuntos
Processamento de Imagem Assistida por Computador , Razão Sinal-Ruído , Processamento de Imagem Assistida por Computador/métodos , Microscopia de Geração do Segundo Harmônico/métodos , Animais , Aprendizado Profundo , Especificidade de Órgãos
5.
Sci Rep ; 13(1): 22100, 2023 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-38092851

RESUMO

Liver fibrosis is assessed mainly by conventional staining or second harmonic generation (SHG) microscopy, which can only provide collagen content in fibrotic area. We propose to use polarization-resolved SHG (PR-SHG) microscopy to quantify liver fibrosis in terms of collagen fiber orientation and crystallization. Liver samples obtained from autopsy cases with fibrosis stage of F0-F4 were evaluated with an SHG microscope, and 12 consecutive PR-SHG images were acquired while changing the polarization azimuth angle of the irradiated laser from 0° to 165° in 15° increments using polarizer. The fiber orientation angle (φ) and degree (ρ) of collagen were estimated from the images. The SHG-positive area increased as the fibrosis stage progressed, which was well consistent with Sirius Red staining. The value of φ was random regardless of fibrosis stage. The mean value of ρ (ρ-mean), which represents collagen fiber crystallinity, varied more as fibrosis progressed to stage F3, and converged to a significantly higher value in F4 than in other stages. Spatial dispersion of ρ (ρ-entropy) also showed increased variation in the stage F3 and decreased variation in the stage F4. It was shown that PR-SHG could provide new information on the properties of collagen fibers in human liver fibrosis.


Assuntos
Microscopia de Geração do Segundo Harmônico , Humanos , Microscopia de Geração do Segundo Harmônico/métodos , Colágeno , Cirrose Hepática , Refração Ocular , Corantes
6.
Acta Biomater ; 172: 135-146, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37804951

RESUMO

The mechanical and structural properties of passive skeletal muscle are important for musculoskeletal models in impact biomechanics, rehabilitation engineering and surgical simulation. Passive properties of skeletal muscle depend strongly on the architecture of the extracellular matrix (ECM), but the structure of ECM and its realignment under applied deformation remain poorly understood. We apply second harmonic generation (SHG) microscopy to study muscle ECM in intact muscle samples both under deformation and in the undeformed state. A method for regional relocation was developed, so that the same ECM segment could be viewed before and after applying deformations. Skeletal muscle ECM was viewed at multiple scales and in three states: undeformed, under compression and under tension. Results show that second harmonic generation microscopy provides substantial detail of skeletal muscle ECM over a wide range of length scales, especially the perimysium structure. We present images of individual portions of skeletal muscle ECM both undeformed and subjected to tensile/compressive deformation. We also present data showing the response of the perimysium to a partial thickness cut applied to a section under tensile deformation. STATEMENT OF SIGNIFICANCE: Second Harmonic Generation (SHG) microscopy is an imaging technique which takes advantage of a non-linear and coherent frequency doubling optical effect that is present in a small number of biological molecules, primarily collagen Type I, II and myosin. Collagen I is the most abundant collagen type in skeletal muscle, making SHG a promising option for visualisation of the skeletal muscle extracellular matrix (ECM). SHG microscopy does not require fixing or staining. This short communication presents the application of SHG microscopy to skeletal muscle ECM to improve our understanding of how collagen fibres reorganise under applied tensile and compression, including microscopic observations of collagen fibre reorganisation for intact samples by using a method to re-identify specific regions in repeated deformation tests.


Assuntos
Microscopia de Geração do Segundo Harmônico , Microscopia de Geração do Segundo Harmônico/métodos , Matriz Extracelular/química , Colágeno/química , Músculo Esquelético/fisiologia , Fenômenos Biomecânicos , Colágeno Tipo I
7.
Methods Mol Biol ; 2664: 173-184, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37423990

RESUMO

Interstitial fibrosis is characterized by the increased deposition of extracellular matrix (ECM) components within the interstitial space of various organs, such as the kidneys, heart, lungs, liver, and skin. The primary component of interstitial fibrosis-related scarring is interstitial collagen. Therefore, the therapeutic application of anti-fibrotic medication hinges on the accurate measurement of interstitial collagen levels within tissue samples. Current histological measurement techniques for interstitial collagen are generally semi-quantitative in nature and only provide a ratio of collagen levels within tissues. However, the Genesis™ 200 imaging system and supplemental image analysis software, FibroIndex™, from HistoIndex™, is a novel, automated platform for imaging and characterizing interstitial collagen deposition and related topographical properties of the collagen structures within an organ, in the absence of any staining. This is achieved by using a property of light known as second harmonic generation (SHG). Using a rigorous optimization protocol, collagen structures in tissue sections can be imaged with a high degree of reproducibility and ensures homogeneity across all samples while minimizing the introduction of any imaging artefacts or photobleaching (decreased tissue fluorescence due to prolonged exposure to the laser). This chapter outlines the protocol that should be undertaken to optimize HistoIndex scanning of tissue sections, and the outputs that can be measured and analyzed using the FibroIndex™ software.


Assuntos
Colágeno , Microscopia de Geração do Segundo Harmônico , Colágeno/análise , Colágeno/metabolismo , Microscopia de Geração do Segundo Harmônico/métodos , Fibrose/metabolismo , Fibrose/patologia , Software , Microtomia , Reprodutibilidade dos Testes , Fotodegradação , Artefatos , Lasers , Parafina , Animais , Camundongos , Rim/metabolismo , Rim/patologia
8.
J Biophotonics ; 16(5): e202200284, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36651498

RESUMO

We employ wide-field second harmonic generation (SHG) microscopy together with nonlinear Stokes polarimetry for quick ultrastructural investigation of large sample areas (700 µm × 700 µm) in thin histology sections. The Stokes vector components for SHG are obtained from the polarimetric measurements with incident and outgoing linear and circular polarization states. The Stokes components are used to construct the images of polarimetric parameters and deduce the maps of ultrastructural parameters of achiral and chiral nonlinear susceptibility tensor components ratios and cylindrical axis orientation in fibrillar materials. The large area imaging was employed for lung tumor margin investigations. The imaging shows reduced SHG intensity, increased achiral susceptibility ratio values, and preferential orientation of collagen strands along the boarder of tumor margin. The wide-field Stokes polarimetric SHG microscopy opens a possibility of quick large area imaging of ultrastructural parameters of tissue collagen, which can be used for nonlinear histopathology investigations.


Assuntos
Microscopia , Microscopia de Geração do Segundo Harmônico , Microscopia de Geração do Segundo Harmônico/métodos , Análise Espectral , Colágeno/química , Miócitos Cardíacos
9.
Sci Rep ; 12(1): 18760, 2022 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-36335164

RESUMO

We report the utilization of Third-Harmonic Generation microscopy for label-free live cell imaging of lipid droplets in the hypha of filamentous fungus Phycomyces blakesleeanus. THG microscopy images showed bright spherical features dispersed throughout the hypha cytoplasm in control conditions and a transient increase in the number of bright features after complete nitrogen starvation. Colocalization analysis of THG and lipid-counterstained images disclosed that the cytoplasmic particles were lipid droplets. Particle Size Analysis and Image Correlation Spectroscopy were used to quantify the number density and size of lipid droplets. The two analysis methods both revealed an increase from 16 × 10-3 to 23 × 10-3 lipid droplets/µm2 after nitrogen starvation and a decrease in the average size of the droplets (range: 0.5-0.8 µm diameter). In conclusion, THG imaging, followed by PSA and ICS, can be reliably used for filamentous fungi for the in vivo quantification of lipid droplets without the need for labeling and/or fixation. In addition, it has been demonstrated that ICS is suitable for THG microscopy.


Assuntos
Gotículas Lipídicas , Microscopia de Geração do Segundo Harmônico , Microscopia de Geração do Segundo Harmônico/métodos , Microscopia/métodos , Fungos , Nitrogênio
10.
Proc Natl Acad Sci U S A ; 119(47): e2214662119, 2022 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-36375085

RESUMO

Second harmonic generation microscopy (SHG) is generally acknowledged as a powerful tool for the label-free three-dimensional visualization of tissues and advanced materials, with one of its most popular applications being collagen imaging. Despite the great need, progress in super-resolved SHG imaging lags behind the developments reported over the past years in fluorescence-based optical nanoscopy. In this work, we demonstrate super-resolved re-scan SHG, qualitatively and quantitatively showing on collagenous tissues the available resolution advantage over the diffraction limit. We introduce as well super-resolved re-scan two-photon excited fluorescence microscopy, an imaging modality not explored to date.


Assuntos
Microscopia de Geração do Segundo Harmônico , Microscopia de Geração do Segundo Harmônico/métodos , Microscopia de Fluorescência/métodos , Colágeno , Fótons , Cintilografia
11.
Opt Express ; 30(14): 25718-25733, 2022 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-36237096

RESUMO

Ovarian cancer has the highest mortality rate among all gynecological cancers, containing complicated heterogeneous histotypes, each with different treatment plans and prognoses. The lack of screening test makes new perspectives for the biomarker of ovarian cancer of great significance. As the main component of extracellular matrix, collagen fibers undergo dynamic remodeling caused by neoplastic activity. Second harmonic generation (SHG) enables label-free, non-destructive imaging of collagen fibers with submicron resolution and deep sectioning. In this study, we developed a new metric named local coverage to quantify morphologically localized distribution of collagen fibers and combined it with overall density to characterize 3D SHG images of collagen fibers from normal, benign and malignant human ovarian biopsies. An overall diagnosis accuracy of 96.3% in distinguishing these tissue types made local and overall density signatures a sensitive biomarker of tumor progression. Quantitative, multi-parametric SHG imaging might serve as a potential screening test tool for ovarian cancer.


Assuntos
Neoplasias Ovarianas , Microscopia de Geração do Segundo Harmônico , Colágeno , Matriz Extracelular/patologia , Feminino , Humanos , Imageamento Tridimensional/métodos , Neoplasias Ovarianas/diagnóstico por imagem , Microscopia de Geração do Segundo Harmônico/métodos
12.
Neuroscience ; 502: 10-24, 2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-36055560

RESUMO

Second harmonic generation (SHG) imaging is label-free and non-invasive, and it has been extensively applied in multiple biological and medical studies, but not in the brain in vivo. In this study, we modified classical two photon excited fluorescence (TPEF) system to perform in vivo simultaneous TPEF and SHG imaging in the local ischemia mouse model. In cerebral vascular walls, we found strong SHG signal, which co-localized with collagen. In the continuous 2 days' in vivo imaging, this SHG signal remained stable in the local ischemic blood vessel in the initial 4 h, then its signal abruptly increased and got spatially thickened 5 h after thrombosis, and this tendency continued in the following 48 h. This study provides direct and precise timeline of rapid collagen change in cerebral vascular walls in vivo, and reveals the subtle but significant temporal-spatial dynamics of this structural signal during local ischemia. Thus, this cerebral in vivo SHG imaging provides a powerful tool to identify the early and subtle pathological change of collagen around clinical key therapeutic time window.


Assuntos
Microscopia de Geração do Segundo Harmônico , Camundongos , Animais , Microscopia de Geração do Segundo Harmônico/métodos , Colágeno , Microscopia de Fluorescência por Excitação Multifotônica/métodos , Fótons , Modelos Animais de Doenças , Isquemia
13.
Sci Rep ; 12(1): 10290, 2022 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-35717344

RESUMO

The extracellular matrix (ECM) collagen undergoes major remodeling during tumorigenesis. However, alterations to the ECM are not widely considered in cancer diagnostics, due to mostly uniform appearance of collagen fibers in white light images of hematoxylin and eosin-stained (H&E) tissue sections. Polarimetric second-harmonic generation (P-SHG) microscopy enables label-free visualization and ultrastructural investigation of non-centrosymmetric molecules, which, when combined with texture analysis, provides multiparameter characterization of tissue collagen. This paper demonstrates whole slide imaging of breast tissue microarrays using high-throughput widefield P-SHG microscopy. The resulting P-SHG parameters are used in classification to differentiate tumor from normal tissue, resulting in 94.2% for both accuracy and F1-score, and 6.3% false discovery rate. Subsequently, the trained classifier is employed to predict tumor tissue with 91.3% accuracy, 90.7% F1-score, and 13.8% false omission rate. As such, we show that widefield P-SHG microscopy reveals collagen ultrastructure over large tissue regions and can be utilized as a sensitive biomarker for cancer diagnostics and prognostics studies.


Assuntos
Neoplasias , Microscopia de Geração do Segundo Harmônico , Colágeno/química , Matriz Extracelular/patologia , Aprendizado de Máquina , Neoplasias/diagnóstico , Neoplasias/patologia , Prognóstico , Microscopia de Geração do Segundo Harmônico/métodos
14.
Sci Rep ; 12(1): 7330, 2022 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-35513702

RESUMO

We demonstrated that wide-field second harmonic generation (SHG) microscopy of lung tissue in combination with quantitative analysis of SHG images is a powerful tool for fast and label-free visualization of the fibrosis pathogenesis in pulmonary arterial hypertension (PAH). Statistical analysis of the SHG images revealed changes of the collagen content and morphology in the lung tissue during the monocrotaline-induced PAH progression in rats. First order statistics disclosed the dependence of the collagen overproduction on time, the second order statistics indicated tightening of collagen fiber network around blood vessels and their spreading into the alveolar region. Fourier analysis revealed that enhancement of the fiber orientation in the collagen network with PAH progression was followed with its subsequent reduction at the terminating phase of the disease. Proposed approach has potential for assessing pulmonary fibrosis in interstitial lung disease, after lung(s) transplantation, cancer, etc.


Assuntos
Hipertensão Arterial Pulmonar , Microscopia de Geração do Segundo Harmônico , Animais , Colágeno , Fibrose , Análise de Fourier , Ratos , Microscopia de Geração do Segundo Harmônico/métodos
15.
Elife ; 112022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35166669

RESUMO

Three-photon excitation has recently been demonstrated as an effective method to perform intravital microscopy in deep, previously inaccessible regions of the mouse brain. The applicability of 3-photon excitation for deep imaging of other, more heterogeneous tissue types has been much less explored. In this work, we analyze the benefit of high-pulse-energy 1 MHz pulse-repetition-rate infrared excitation near 1300 and 1700 nm for in-depth imaging of tumorous and bone tissue. We show that this excitation regime provides a more than 2-fold increased imaging depth in tumor and bone tissue compared to the illumination conditions commonly used in 2-photon excitation, due to improved excitation confinement and reduced scattering. We also show that simultaneous 3- and 4-photon processes can be effectively induced with a single laser line, enabling the combined detection of blue to far-red fluorescence together with second and third harmonic generation without chromatic aberration, at excitation intensities compatible with live tissue imaging. Finally, we analyze photoperturbation thresholds in this excitation regime and derive setpoints for safe cell imaging. Together, these results indicate that infrared high-pulse-energy low-repetition-rate excitation opens novel perspectives for intravital deep-tissue microscopy of multiple parameters in strongly scattering tissues and organs.


Assuntos
Aprendizado Profundo , Microscopia de Fluorescência por Excitação Multifotônica/métodos , Neoplasias Experimentais/diagnóstico por imagem , Microscopia de Geração do Segundo Harmônico/métodos , Animais , Osso e Ossos/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Linhagem Celular Tumoral , Sobrevivência Celular/fisiologia , Corantes Fluorescentes/química , Processamento de Imagem Assistida por Computador , Masculino , Camundongos
16.
Nano Lett ; 22(2): 846-852, 2022 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-35023753

RESUMO

Structural engineering permits the introduction of chirality into organic-inorganic hybrid metal halides (HMHs), which creates a promising and exclusive material for applications in various optoelectronics. However, the optical activity regulation of chiral HMHs remains largely unexplored. In this work, we have synthesized two pairs of lead-free chiral HMHs with a zero-dimensional tetrahedral arrangement, i.e., (R- and S-1-(1-naphthyl)ethylammonium)2CuCl4 and (R- and S-1-(2-naphthyl)ethylammonium)2CuCl4. The magnitude of optical activity in these HMHs can be efficiently modulated as a result of the different magnetic transition dipole moments. Furthermore, these HMHs exhibited effective second-harmonic generation (SHG) and distinct SHG-circular dichroism (CD), with (R-1-(1-naphthyl)ethylammonium)2CuCl4 having an anisotropy factor (gSHG-CD) of up to 0.41. This work not only provides insights into regulating the optical activity and anisotropic SHG effect of lead-free chiral HMHs but also confirms the feasibility of SHG-CD spectroscopy as a promising tool for characterizing the intrinsic optical activity of chiral materials.


Assuntos
Microscopia de Geração do Segundo Harmônico , Anisotropia , Dicroísmo Circular , Cobre , Rotação Ocular , Microscopia de Geração do Segundo Harmônico/métodos
17.
Sci Rep ; 11(1): 11874, 2021 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-34088955

RESUMO

The ratio of type III to type I collagen is important for properly maintaining functions of organs and cells. We propose a method to quantify the ratio of type III to total (type I + III) collagen (λIII) in a given collagen fiber bundle using second harmonic generation (SHG) light. First, the relationship between SHG light intensity and the λIII of collagen gels was examined, and the slope (k1) and SHG light intensity at 0% type III collagen (k2) were determined. Second, the SHG light intensity of a 100% type I collagen fiber bundle and its diameter (D) were measured, and the slope (k3) of the relationship was determined. The λIII in a collagen fiber bundle was estimated from these constants (k1-3) and SHG light intensity. We applied this method to collagen fiber bundles isolated from the media and adventitia of porcine thoracic aortas, and obtained λIII = 84.7% ± 13.8% and λIII = 17.5% ± 15.2%, respectively. These values concurred with those obtained with a typical quantification method using sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The findings demonstrated that the method proposed is useful to quantify the ratio of type III to total collagen in a collagen fiber bundle.


Assuntos
Aorta Torácica/diagnóstico por imagem , Colágeno Tipo III/química , Colágeno Tipo I/química , Microscopia de Geração do Segundo Harmônico/métodos , Animais , Colágeno/química , Eletroforese , Eletroforese em Gel de Poliacrilamida , Matriz Extracelular , Luz , Masculino , Microscopia de Polarização/métodos , Ratos , Ratos Wistar , Suínos
18.
Int J Mol Sci ; 22(5)2021 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-33800802

RESUMO

Multiphoton microscopy has recently passed the milestone of its first 30 years of activity in biomedical research. The growing interest around this approach has led to a variety of applications from basic research to clinical practice. Moreover, this technique offers the advantage of label-free multiphoton imaging to analyze samples without staining processes and the need for a dedicated system. Here, we review the state of the art of label-free techniques; then, we focus on two-photon autofluorescence as well as second and third harmonic generation, describing physical and technical characteristics. We summarize some successful applications to a plethora of biomedical research fields and samples, underlying the versatility of this technique. A paragraph is dedicated to an overview of sample preparation, which is a crucial step in every microscopy experiment. Afterwards, we provide a detailed review analysis of the main quantitative methods to extract important information and parameters from acquired images using second harmonic generation. Lastly, we discuss advantages, limitations, and future perspectives in label-free multiphoton microscopy.


Assuntos
Microscopia de Fluorescência por Excitação Multifotônica/métodos , Absorção de Radiação , Anisotropia , Análise de Fourier , Microscopia de Polarização/métodos , Microtomia/métodos , Imagem Óptica/métodos , Fotodegradação , Fótons , Microscopia de Geração do Segundo Harmônico/métodos , Manejo de Espécimes/métodos , Fixação de Tecidos/métodos , Análise de Ondaletas
19.
Lasers Med Sci ; 36(6): 1161-1167, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32945997

RESUMO

The complete polarization state of second harmonic (SH) light was measured and characterized by collagen type I and skeletal muscle fiber using a Stokes vector-based SHG microscope. The polarization states of the SH signal are analyzed in a pixel-by-pixel manner and displayed through two dimensional (2D) Stokes vector images. Various polarization parameters are reconstructed using Stokes values to quantify the polarization properties of SH light. Also, the measurements are extended for different input polarization states to investigate the molecular structure of second harmonic generation (SHG) active molecules such as collagen type I and myosin.


Assuntos
Colágeno/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Microscopia de Geração do Segundo Harmônico/métodos
20.
Sci Rep ; 10(1): 19317, 2020 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-33168890

RESUMO

We demonstrate a label-free imaging approach to study cardiac remodeling of fibrotic and hypertrophic hearts, bridging scales from the whole organ down to the molecular level. To this end, we have used mice subjected to transverse aortic constriction and imaged adjacent cardiac tissue sections by microfocus X-ray diffraction and second harmonic generation (SHG) imaging. In this way, the acto-myosin structure was probed in a spatially resolved manner for entire heart sections. From the recorded diffraction data, spatial maps of diffraction intensity, anisotropy and orientation were obtained, and fully automated analysis depicted the acto-myosin filament spacing and direction. X-ray diffraction presented an overview of entire heart sections and revealed that in regions of severe cardiac remodeling the muscle mass is partly replaced by connective tissue and the acto-myosin lattice spacing is increased at these regions. SHG imaging revealed sub-cellular structure of cardiac tissue and complemented the findings from X-ray diffraction by revealing micro-level distortion of myofibrils, immune cell infiltration at regions of cardiac remodeling and the development of fibrosis down to the scale of a single collagen fibril. Overall, our results show that both X-ray diffraction and SHG imaging can be used for label-free and high-resolution visualization of cardiac remodeling and fibrosis progression at different stages in a cardiac pressure-overload mouse model that cannot be achieved by conventional histology.


Assuntos
Coração/diagnóstico por imagem , Coração/fisiologia , Microscopia de Geração do Segundo Harmônico/métodos , Difração de Raios X/métodos , Actomiosina/metabolismo , Animais , Anisotropia , Biomarcadores/metabolismo , Cardiomiopatias/diagnóstico por imagem , Cardiomiopatias/fisiopatologia , Análise por Conglomerados , Colágeno/química , Circulação Coronária , Ecocardiografia , Insuficiência Cardíaca/diagnóstico por imagem , Insuficiência Cardíaca/fisiopatologia , Hipertensão/diagnóstico por imagem , Hipertensão/fisiopatologia , Processamento de Imagem Assistida por Computador , Camundongos , Dinâmica não Linear , Distribuição Normal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA