Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
Nat Commun ; 15(1): 9062, 2024 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-39433769

RESUMO

Myotonic Dystrophy type 1 (DM1), a highly prevalent form of muscular dystrophy, is caused by (CTG)n repeat expansion in the DMPK gene. Much of DM1 research has focused on the effects within the muscle and neurological tissues; however, DM1 patients also suffer from various metabolic and liver dysfunctions such as increased susceptibility to metabolic dysfunction-associated fatty liver disease (MAFLD) and heightened sensitivity to certain drugs. Here, we generated a liver-specific DM1 mouse model that reproduces molecular and pathological features of the disease, including susceptibility to MAFLD and reduced capacity to metabolize specific analgesics and muscle relaxants. Expression of CUG-expanded (CUG)exp repeat RNA within hepatocytes sequestered muscleblind-like proteins and triggered widespread gene expression and RNA processing defects. Mechanistically, we demonstrate that increased expression and alternative splicing of acetyl-CoA carboxylase 1 drives excessive lipid accumulation in DM1 livers, which is exacerbated by high-fat, high-sugar diets. Together, these findings reveal that (CUG)exp RNA toxicity disrupts normal hepatic functions, predisposing DM1 livers to injury, MAFLD, and drug clearance pathologies that may jeopardize the health of affected individuals and complicate their treatment.


Assuntos
Modelos Animais de Doenças , Fígado Gorduroso , Fígado , Distrofia Miotônica , Animais , Distrofia Miotônica/metabolismo , Distrofia Miotônica/genética , Distrofia Miotônica/patologia , Camundongos , Fígado/metabolismo , Fígado/patologia , Humanos , Fígado Gorduroso/metabolismo , Fígado Gorduroso/genética , Fígado Gorduroso/patologia , Processamento Alternativo , Hepatócitos/metabolismo , Masculino , Miotonina Proteína Quinase/genética , Miotonina Proteína Quinase/metabolismo , Camundongos Transgênicos , Acetil-CoA Carboxilase/metabolismo , Acetil-CoA Carboxilase/genética , Feminino , Camundongos Endogâmicos C57BL , Dieta Hiperlipídica/efeitos adversos , Expansão das Repetições de Trinucleotídeos/genética , Proteínas de Ligação a DNA , Proteínas de Ligação a RNA
2.
Stem Cell Res Ther ; 15(1): 302, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39278936

RESUMO

BACKGROUND: Cell-based strategies are being explored as a therapeutic option for muscular dystrophies, using a variety of cell types from different origin and with different characteristics. Primary pericytes are multifunctional cells found in the capillary bed that exhibit stem cell-like and myogenic regenerative properties. This unique combination allows them to be applied systemically, presenting a promising opportunity for body-wide muscle regeneration. We previously reported the successful isolation of ALP+ pericytes from skeletal muscle of patients with myotonic dystrophy type 1 (DM1). These pericytes maintained normal growth parameters and myogenic characteristics in vitro despite the presence of nuclear (CUG)n RNA foci, the cellular hallmark of DM1. Here, we examined the behaviour of DM1 pericytes during myogenic differentiation. METHODS: DMPK (CTG)n repeat lengths in patient pericytes were assessed using small pool PCR, to be able to relate variation in myogenic properties and disease hallmarks to repeat expansion. Pericytes from unaffected controls and DM1 patients were cultured under differentiating conditions in vitro. In addition, the pericytes were grown in co-cultures with myoblasts to examine their regenerative capacity by forming hybrid myotubes. Finally, the effect of pericyte fusion on DM1 disease hallmarks was investigated. RESULTS: Small pool PCR analysis revealed the presence of somatic mosaicism in pericyte cell pools. Upon differentiation to myotubes, DMPK expression was upregulated, leading to an increase in nuclear foci sequestering MBNL1 protein. Remarkably, despite the manifestation of these disease biomarkers, patient-derived pericytes demonstrated myogenic potential in co-culture experiments comparable to unaffected pericytes and myoblasts. However, only the unaffected pericytes improved the disease hallmarks in hybrid myotubes. From 20% onwards, the fraction of unaffected nuclei in myotubes positively correlated with a reduction of the number of RNA foci and an increase in the amount of free MBNL1. CONCLUSIONS: Fusion of only a limited number of unaffected myogenic precursors to DM1 myotubes already ameliorates cellular disease hallmarks, offering promise for the development of cell transplantation strategies to lower disease burden.


Assuntos
Diferenciação Celular , Fibras Musculares Esqueléticas , Distrofia Miotônica , Miotonina Proteína Quinase , Pericitos , Humanos , Distrofia Miotônica/metabolismo , Distrofia Miotônica/genética , Distrofia Miotônica/terapia , Distrofia Miotônica/patologia , Fibras Musculares Esqueléticas/metabolismo , Pericitos/metabolismo , Miotonina Proteína Quinase/genética , Miotonina Proteína Quinase/metabolismo , Mioblastos/metabolismo , Mioblastos/citologia , Desenvolvimento Muscular , Células Cultivadas , Masculino , Adulto , Feminino , Técnicas de Cocultura , Pessoa de Meia-Idade , Fusão Celular
3.
Hum Mol Genet ; 33(20): 1789-1799, 2024 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-39126705

RESUMO

Myotonic Dystrophy Type 1 (DM1) is an autosomal dominant multisystemic disorder for which cardiac features, including conduction delays and arrhythmias, are the second leading cause of disease mortality. DM1 is caused by expanded CTG repeats in the 3' untranslated region of the DMPK gene. Transcription of the expanded DMPK allele produces mRNAs containing long tracts of CUG repeats, which sequester the Muscleblind-Like family of RNA binding proteins, leading to their loss-of-function and the dysregulation of alternative splicing. A well-characterized mis-regulated splicing event in the DM1 heart is the increased inclusion of SCN5A exon 6A rather than the mutually exclusive exon 6B that normally predominates in adult heart. As previous work showed that forced inclusion of Scn5a exon 6A in mice recapitulates cardiac DM1 phenotypes, we tested whether rescue of Scn5a mis-splicing would improve the cardiac phenotypes in a DM1 heart mouse model. We generated mice lacking Scn5a exon 6A to force the expression of the adult SCN5A isoform including exon 6B and crossed these mice to our previously established CUG960 DM1 heart mouse model. We showed that correction Scn5a mis-splicing does not improve the DM1 heart conduction delays and structural changes induced by CUG repeat RNA expression. Interestingly, we found that in addition to Scn5a mis-splicing, Scn5a expression is reduced in heart tissues of CUG960 mice and DM1-affected individuals. These data indicate that Scn5a mis-splicing is not the sole driver of DM1 heart deficits and suggest a potential role for reduced Scn5a expression in DM1 cardiac disease.


Assuntos
Processamento Alternativo , Modelos Animais de Doenças , Éxons , Distrofia Miotônica , Canal de Sódio Disparado por Voltagem NAV1.5 , Animais , Canal de Sódio Disparado por Voltagem NAV1.5/genética , Canal de Sódio Disparado por Voltagem NAV1.5/metabolismo , Camundongos , Distrofia Miotônica/genética , Distrofia Miotônica/patologia , Distrofia Miotônica/metabolismo , Processamento Alternativo/genética , Éxons/genética , Humanos , Miocárdio/metabolismo , Miocárdio/patologia , Miotonina Proteína Quinase/genética , Miotonina Proteína Quinase/metabolismo , Coração/fisiopatologia , Splicing de RNA
4.
J Clin Invest ; 134(1)2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38165037

RESUMO

Myotonic dystrophy type 1 (DM1) is an autosomal dominant disorder caused by an unstable expanded CTG repeat located in the 3'-UTR of the DM1 protein kinase (DMPK) gene. The pathogenic mechanism results in misregulated alternative splicing of hundreds of genes, creating the dilemma of establishing which genes contribute to the mechanism of DM1 skeletal muscle pathology. In this issue of the JCI, Cisco and colleagues systematically tested the combinatorial effects of DM1-relevant mis-splicing patterns in vivo and identified the synergistic effects of mis-spliced calcium and chloride channels as a major contributor to DM1 skeletal muscle impairment. The authors further demonstrated the therapeutic potential for calcium channel modulation to block the synergistic effects and rescue myopathy.


Assuntos
Distrofia Miotônica , Humanos , Distrofia Miotônica/metabolismo , Splicing de RNA , Músculo Esquelético/metabolismo , Processamento Alternativo , Canais Iônicos/metabolismo , Miotonina Proteína Quinase/genética , Miotonina Proteína Quinase/metabolismo , Expansão das Repetições de Trinucleotídeos
5.
Acta Neuropathol Commun ; 11(1): 44, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36922901

RESUMO

Reduced brain volume including atrophy in grey and white matter is commonly seen in myotonic dystrophy type 1 (DM1). DM1 is caused by an expansion of CTG trinucleotide repeats in the 3' untranslated region (UTR) of the Dystrophia Myotonica Protein Kinase (DMPK) gene. Mutant DMPK mRNA containing expanded CUG RNA (DMPK-CUGexp) sequesters cytoplasmic MBNL1, resulting in morphological impairment. How DMPK-CUGexp and loss of MBNL1 cause histopathological phenotypes in the DM1 brain remains elusive. Here, we show that BDNF-TrkB retrograde transport is impaired in neurons expressing DMPK-CUGexp due to loss of cytoplasmic MBNL1 function. We reveal that mature BDNF protein levels are reduced in the brain of the DM1 mouse model EpA960/CaMKII-Cre. Exogenous BDNF treatment did not rescue impaired neurite outgrowth in neurons expressing DMPK-CUGexp, whereas overexpression of the cytoplasmic MBNL1 isoform in DMPK-CUGexp-expressing neurons improved their responsiveness to exogenous BDNF. We identify dynein light chain LC8-type 2, DYNLL2, as an MBNL1-interacting protein and demonstrate that their interaction is RNA-independent. Using time-lapse imaging, we show that overexpressed MBNL1 and DYNLL2 move along axonal processes together and that MBNL1-knockdown impairs the motility of mCherry-tagged DYNLL2, resulting in a reduced percentage of retrograde DYNLL2 movement. Examination of the distribution of DYNLL2 and activated phospho-TrkB (pTrkB) receptor in EpA960/CaMKII-Cre brains revealed an increase in the postsynaptic membrane fraction (LP1), indicating impaired retrograde transport. Finally, our neuropathological analysis of postmortem DM1 tissue reveals that reduced cytoplasmic MBNL1 expression is associated with an increase in DYNLL2 and activated pTrkB receptor levels in the synaptosomal fraction. Together, our results support that impaired MBNL1-mediated retrograde BDNF-TrkB signaling may contribute to the histopathological phenotypes of DM1.


Assuntos
Distrofia Miotônica , Animais , Camundongos , Distrofia Miotônica/genética , Distrofia Miotônica/metabolismo , Distrofia Miotônica/patologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Expansão das Repetições de Trinucleotídeos , Miotonina Proteína Quinase/genética , Miotonina Proteína Quinase/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , RNA/genética , Encéfalo/patologia , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
6.
Cells ; 12(4)2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-36831201

RESUMO

Cytoskeleton organization and dynamics are rapidly regulated by post-translational modifications of key target proteins. Acting downstream of the Cdc42 GTPase, the myotonic dystrophy-related Cdc42-binding kinases MRCKα, MRCKß, and MRCKγ have recently emerged as important players in cytoskeleton regulation through the phosphorylation of proteins such as the regulatory myosin light chain proteins. Compared with the closely related Rho-associated coiled-coil kinases 1 and 2 (ROCK1 and ROCK2), the contributions of the MRCK kinases are less well characterized, one reason for this being that the discovery of potent and selective MRCK pharmacological inhibitors occurred many years after the discovery of ROCK inhibitors. The disclosure of inhibitors, such as BDP5290 and BDP9066, that have marked selectivity for MRCK over ROCK, as well as the dual ROCK + MRCK inhibitor DJ4, has expanded the repertoire of chemical biology tools to study MRCK function in normal and pathological conditions. Recent research has used these novel inhibitors to establish the role of MRCK signalling in epithelial polarization, phagocytosis, cytoskeleton organization, cell motility, and cancer cell invasiveness. Furthermore, pharmacological MRCK inhibition has been shown to elicit therapeutically beneficial effects in cell-based and in vivo studies of glioma, skin, and ovarian cancers.


Assuntos
Neoplasias , Transdução de Sinais , Humanos , Miotonina Proteína Quinase/metabolismo , Neoplasias/patologia , Quinases Associadas a rho/metabolismo , Movimento Celular
7.
Artigo em Inglês | MEDLINE | ID: mdl-36767649

RESUMO

Myotonic dystrophy type 1 (DM1) is an autosomal dominant hereditary disease caused by abnormal expansion of unstable CTG repeats in the 3' untranslated region of the myotonic dystrophy protein kinase (DMPK) gene. This disease mainly affects skeletal muscle, resulting in myotonia, progressive distal muscle weakness, and atrophy, but also affects other tissues and systems, such as the heart and central nervous system. Despite some studies reporting therapeutic strategies for DM1, many issues remain unsolved, such as the contribution of metabolic and mitochondrial dysfunctions to DM1 pathogenesis. Therefore, it is crucial to identify molecular target candidates associated with metabolic processes for DM1. In this study, resorting to a bibliometric analysis, articles combining DM1, and metabolic/metabolism terms were identified and further analyzed using an unbiased strategy of automatic text mining with VOSviewer software. A list of candidate molecular targets for DM1 associated with metabolic/metabolism was generated and compared with genes previously associated with DM1 in the DisGeNET database. Furthermore, g:Profiler was used to perform a functional enrichment analysis using the Gene Ontology (GO) and REAC databases. Enriched signaling pathways were identified using integrated bioinformatics enrichment analyses. The results revealed that only 15 of the genes identified in the bibliometric analysis were previously associated with DM1 in the DisGeNET database. Of note, we identified 71 genes not previously associated with DM1, which are of particular interest and should be further explored. The functional enrichment analysis of these genes revealed that regulation of cellular metabolic and metabolic processes were the most associated biological processes. Additionally, a number of signaling pathways were found to be enriched, e.g., signaling by receptor tyrosine kinases, signaling by NRTK1 (TRKA), TRKA activation by NGF, PI3K-AKT activation, prolonged ERK activation events, and axon guidance. Overall, several valuable target candidates related to metabolic processes for DM1 were identified, such as NGF, NTRK1, RhoA, ROCK1, ROCK2, DAG, ACTA, ID1, ID2 MYOD, and MYOG. Therefore, our study strengthens the hypothesis that metabolic dysfunctions contribute to DM1 pathogenesis, and the exploitation of metabolic dysfunction targets is crucial for the development of future therapeutic interventions for DM1.


Assuntos
Distrofia Miotônica , Humanos , Distrofia Miotônica/genética , Distrofia Miotônica/metabolismo , Distrofia Miotônica/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Miotonina Proteína Quinase/metabolismo , Músculo Esquelético/metabolismo , Transdução de Sinais , Quinases Associadas a rho/metabolismo
8.
Structure ; 31(4): 435-446.e4, 2023 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-36854301

RESUMO

Protein kinases of the dystonia myotonica protein kinase (DMPK) family are critical regulators of actomyosin contractility in cells. The DMPK kinase MRCK1 is required for the activation of myosin, leading to the development of cortical tension, apical constriction, and early gastrulation. Here, we present the structure, conformation, and membrane-binding properties of Caenorhabditis elegans MRCK1. MRCK1 forms a homodimer with N-terminal kinase domains, a parallel coiled coil of 55 nm, and a C-terminal tripartite module of C1, pleckstrin homology (PH), and citron homology (CNH) domains. We report the high-resolution structure of the membrane-binding C1-PH-CNH module of MRCK1 and, using high-throughput and conventional liposome-binding assays, determine its binding to specific phospholipids. We further characterize the interaction of the C-terminal CRIB motif with Cdc42. The length of the coiled-coil domain of DMPK kinases is remarkably conserved over millions of years of evolution, suggesting that they may function as molecular rulers to position kinase activity at a fixed distance from the membrane.


Assuntos
Distrofia Miotônica , Proteínas Serina-Treonina Quinases , Animais , Proteínas Serina-Treonina Quinases/química , Miotonina Proteína Quinase/genética , Miotonina Proteína Quinase/metabolismo , Sequência de Aminoácidos , Proteínas Quinases/metabolismo , Caenorhabditis elegans/metabolismo
9.
Hum Mol Genet ; 32(9): 1413-1428, 2023 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-36222125

RESUMO

Myotonic dystrophy type 1 (DM1) is a multi-systemic disorder caused by expansion of CTG microsatellite repeats within DMPK. The most severe form, congenital myotonic dystrophy (CDM), has symptom onset at birth due to large intergenerational repeat expansions. Despite a common mutation, CDM individuals present with a distinct clinical phenotype and absence of common DM1 symptoms. Given the clinical divergence, it is unknown if the hallmark of DM1 pathology, dysregulation of alternative splicing (AS) due to sequestration of MBNL proteins within toxic CUG repeat RNAs, contributes to disease throughout pediatric development. To evaluate global transcriptomic dysregulation, RNA-seq was performed on 36 CDM skeletal muscle biopsies ages 2 weeks to 16 years, including two longitudinal samples. Fifty DM1 and adult/pediatric controls were also sequenced as comparative groups. Despite a large CTG expansion and shared age of onset, CDM individuals presented with a heterogenous, MBNL-dependent mis-splicing signature. Estimation of intracellular MBNL concentrations from splicing responses of select events correlated with total spliceopathy and revealed a distinct, triphasic pattern of AS dysregulation across pediatric development. CDM infants (< 2 years) possess severe mis-splicing that significantly improves in early childhood (2-8 years) independent of sex or CTG repeat load. Adolescent individuals (8-16 years) stratified into two populations with a full range of global splicing dysregulation. DMPK expression changes correlated with alterations in splicing severity during development. This study reveals the complex dynamics of the CDM muscle transcriptome and provides insights into new therapeutic strategies, timing of therapeutic intervention, and biomarker development.


Assuntos
Distrofia Miotônica , Pré-Escolar , Humanos , Distrofia Miotônica/patologia , Transcriptoma/genética , Miotonina Proteína Quinase/genética , Miotonina Proteína Quinase/metabolismo , Músculo Esquelético/metabolismo , Splicing de RNA/genética , Expansão das Repetições de Trinucleotídeos/genética
10.
J Cell Biol ; 221(11)2022 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-36121394

RESUMO

Phagocytosis requires actin dynamics, but whether actomyosin contractility plays a role in this morphodynamic process is unclear. Here, we show that in the retinal pigment epithelium (RPE), particle binding to Mer Tyrosine Kinase (MerTK), a widely expressed phagocytic receptor, stimulates phosphorylation of the Cdc42 GEF Dbl3, triggering activation of MRCKß/myosin-II and its coeffector N-WASP, membrane deformation, and cup formation. Continued MRCKß/myosin-II activity then drives recruitment of a mechanosensing bridge, enabling cytoskeletal force transmission, cup closure, and particle internalization. In vivo, MRCKß is essential for RPE phagocytosis and retinal integrity. MerTK-independent activation of MRCKß signaling by a phosphomimetic Dbl3 mutant rescues phagocytosis in retinitis pigmentosa RPE cells lacking functional MerTK. MRCKß is also required for efficient particle translocation from the cortex into the cell body in Fc receptor-mediated phagocytosis. Thus, conserved MRCKß signaling at the cortex controls spatiotemporal regulation of actomyosin contractility to guide distinct phases of phagocytosis in the RPE and represents the principle phagocytic effector pathway downstream of MerTK.


Assuntos
Actomiosina , Miotonina Proteína Quinase , Fagocitose , Actinas/metabolismo , Actomiosina/metabolismo , Miosina Tipo II/metabolismo , Miotonina Proteína Quinase/metabolismo , Fagocitose/fisiologia , Proteínas Tirosina Quinases , Receptores Fc , c-Mer Tirosina Quinase/metabolismo
11.
Dis Model Mech ; 15(7)2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35642886

RESUMO

RNA regulation in mammalian cells requires complex physical compartmentalisation, using structures thought to be formed by liquid-liquid phase separation. Disruption of these structures is implicated in numerous degenerative diseases. Myotonic dystrophy type 1 (DM1) is a multi-systemic trinucleotide repeat disorder resulting from an expansion of nucleotides CTG (CTGexp) in the DNA encoding DM1 protein kinase (DMPK). The cellular hallmark of DM1 is the formation of nuclear foci that contain expanded DMPK RNA (CUGexp) (with thymine instead of uracil). We report here the deregulation of stress granules (SGs) and processing bodies (P-bodies), two cytoplasmic structures key for mRNA regulation, in cell culture models of DM1. Alterations to the rates of formation and dispersal of SGs suggest an altered ability of cells to respond to stress associated with DM1, while changes to the structure and dynamics of SGs and P-bodies suggest that a widespread alteration to the biophysical properties of cellular structures is a consequence of the presence of CUGexp RNA.


Assuntos
Distrofia Miotônica , Animais , Mamíferos/metabolismo , Distrofia Miotônica/genética , Miotonina Proteína Quinase/genética , Miotonina Proteína Quinase/metabolismo , Corpos de Processamento , RNA , Grânulos de Estresse , Expansão das Repetições de Trinucleotídeos/genética
12.
Int J Mol Sci ; 23(9)2022 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-35563013

RESUMO

Myotonic dystrophy type 1 (DM1) is the most common muscular dystrophy affecting many different body tissues, predominantly skeletal and cardiac muscles and the central nervous system. The expansion of CTG repeats in the DM1 protein-kinase (DMPK) gene is the genetic cause of the disease. The pathogenetic mechanisms are mainly mediated by the production of a toxic expanded CUG transcript from the DMPK gene. With the availability of new knowledge, disease models, and technical tools, much progress has been made in the discovery of altered pathways and in the potential of therapeutic intervention, making the path to the clinic a closer reality. In this review, we describe and discuss the molecular therapeutic strategies for DM1, which are designed to directly target the CTG genomic tract, the expanded CUG transcript or downstream signaling molecules.


Assuntos
Distrofia Miotônica , Edição de Genes , Humanos , Distrofia Miotônica/tratamento farmacológico , Distrofia Miotônica/genética , Miotonina Proteína Quinase/genética , Miotonina Proteína Quinase/metabolismo , Expansão das Repetições de Trinucleotídeos/genética
13.
Cells ; 11(4)2022 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-35203270

RESUMO

ABCB4, is an adenosine triphosphate-binding cassette (ABC) transporter localized at the canalicular membrane of hepatocytes, where it mediates phosphatidylcholine secretion into bile. Gene variations of ABCB4 cause different types of liver diseases, including progressive familial intrahepatic cholestasis type 3 (PFIC3). The molecular mechanisms underlying the trafficking of ABCB4 to and from the canalicular membrane are still unknown. We identified the serine/threonine kinase Myotonic dystrophy kinase-related Cdc42-binding kinase isoform α (MRCKα) as a novel partner of ABCB4. The role of MRCKα was explored, either by expression of dominant negative mutant or by gene silencing using the specific RNAi and CRISPR-cas9 strategy in cell models. The expression of a dominant-negative mutant of MRCKα and MRCKα inhibition by chelerythrine both caused a significant increase in ABCB4 steady-state expression in primary human hepatocytes and HEK-293 cells. RNA interference and CRISPR-Cas9 knockout of MRCKα also caused a significant increase in the amount of ABCB4 protein expression. We demonstrated that the effect of MRCKα was mediated by its downstream effector, the myosin II regulatory light chain (MRLC), which was shown to also bind ABCB4. Our findings provide evidence that MRCKα and MRLC bind to ABCB4 and regulate its cell surface expression.


Assuntos
Subfamília B de Transportador de Cassetes de Ligação de ATP , Colestase Intra-Hepática , Colestase , Miotonina Proteína Quinase , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Células HEK293 , Humanos , Cadeias Leves de Miosina , Miosina Tipo II , Miotonina Proteína Quinase/metabolismo
14.
Gene Ther ; 29(12): 698-709, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35075265

RESUMO

Myotonic dystrophy, or dystrophia myotonica type 1 (DM1), is a multi-systemic disorder and is the most common adult form of muscular dystrophy. It affects not only muscles but also many organs, including the brain. Cerebral impairments include cognitive deficits, daytime sleepiness, and loss of visuospatial and memory functions. The expression of mutated transcripts with CUG repeats results in a gain of toxic mRNA function. The antisense oligonucleotide (ASO) strategy to treat DM1 brain deficits is limited by the fact that ASOs do not cross the blood-brain barrier after systemic administration, indicating that other methods of delivery should be considered. ASO technology has emerged as a powerful tool for developing potential new therapies for a wide variety of human diseases, and its potential has been proven in a recent clinical trial. Targeting DMPK mRNA in neural cells derived from human induced pluripotent stem cells obtained from a DM1 patient with the IONIS 486178 ASO abolished CUG-expanded foci, enabled nuclear redistribution of MBNL1/2, and corrected aberrant splicing. Intracerebroventricular injection of the IONIS 486178 ASO in DMSXL mice decreased the levels of mutant DMPK mRNAs by up to 70% throughout different brain regions. It also reversed behavioral abnormalities following neonatal administration. The present study indicated that the IONIS 486178 ASO targets mutant DMPK mRNAs in the brain and strongly supports the feasibility of a therapy for DM1 patients based on the intrathecal injection of an ASO.


Assuntos
Células-Tronco Pluripotentes Induzidas , Distrofia Miotônica , Adulto , Humanos , Animais , Camundongos , Distrofia Miotônica/terapia , Distrofia Miotônica/tratamento farmacológico , Miotonina Proteína Quinase/genética , Miotonina Proteína Quinase/metabolismo , Oligonucleotídeos Antissenso/genética , Oligonucleotídeos Antissenso/uso terapêutico , Expansão das Repetições de Trinucleotídeos , Proteínas de Ligação a RNA/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Oligonucleotídeos/uso terapêutico , Encéfalo/metabolismo
15.
Biol Open ; 11(1)2022 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-35019138

RESUMO

Skeletal muscle tissue is severely affected in myotonic dystrophy type 1 (DM1) patients, characterised by muscle weakness, myotonia and muscle immaturity in the most severe congenital form of the disease. Previously, it was not known at what stage during myogenesis the DM1 phenotype appears. In this study we differentiated healthy and DM1 human embryonic stem cells to myoblasts and myotubes and compared their differentiation potential using a comprehensive multi-omics approach. We found myogenesis in DM1 cells to be abnormal with altered myotube generation compared to healthy cells. We did not find differentially expressed genes between DM1 and non-DM1 cell lines within the same developmental stage. However, during differentiation we observed an aberrant inflammatory response and increased CpG methylation upstream of the CTG repeat at the myoblast level and RNA mis-splicing at the myotube stage. We show that early myogenesis modelled in hESC reiterates the early developmental manifestation of DM1.


Assuntos
Distrofia Miotônica , Células-Tronco Embrionárias/metabolismo , Humanos , Metilação , Desenvolvimento Muscular/genética , Músculo Esquelético/metabolismo , Distrofia Miotônica/genética , Distrofia Miotônica/metabolismo , Miotonina Proteína Quinase/genética , Miotonina Proteína Quinase/metabolismo , RNA/metabolismo
16.
Int J Mol Sci ; 23(1)2022 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-35008948

RESUMO

Myotonic dystrophy type 1 (DM1) is a hereditary and multisystemic disease characterized by myotonia, progressive distal muscle weakness and atrophy. The molecular mechanisms underlying this disease are still poorly characterized, although there are some hypotheses that envisage to explain the multisystemic features observed in DM1. An emergent hypothesis is that nuclear envelope (NE) dysfunction may contribute to muscular dystrophies, particularly to DM1. Therefore, the main objective of the present study was to evaluate the nuclear profile of DM1 patient-derived and control fibroblasts and to determine the protein levels and subcellular distribution of relevant NE proteins in these cell lines. Our results demonstrated that DM1 patient-derived fibroblasts exhibited altered intracellular protein levels of lamin A/C, LAP1, SUN1, nesprin-1 and nesprin-2 when compared with the control fibroblasts. In addition, the results showed an altered location of these NE proteins accompanied by the presence of nuclear deformations (blebs, lobes and/or invaginations) and an increased number of nuclear inclusions. Regarding the nuclear profile, DM1 patient-derived fibroblasts had a larger nuclear area and a higher number of deformed nuclei and micronuclei than control-derived fibroblasts. These results reinforce the evidence that NE dysfunction is a highly relevant pathological characteristic observed in DM1.


Assuntos
Biomarcadores , Fibroblastos/metabolismo , Membrana Nuclear/metabolismo , Núcleo Celular/metabolismo , Imunofluorescência , Humanos , Espaço Intracelular/metabolismo , Lamina Tipo A/metabolismo , Proteínas de Membrana/metabolismo , Distrofia Miotônica/genética , Distrofia Miotônica/metabolismo , Miotonina Proteína Quinase/metabolismo , Proteínas Nucleares/metabolismo
17.
J Clin Endocrinol Metab ; 106(10): 2819-2827, 2021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-34125228

RESUMO

Myotonic dystrophy is a dominantly inherited multisystem disorder that results from increased CTG repeats in the 3' region of the myotonic dystrophy protein kinase gene (DMPK). The mutant DMPK mRNA remains in the nucleus and sequesters RNA-binding proteins, including regulators of mRNA splicing. Myotonic dystrophy is characterized by a highly variable phenotype that includes muscle weakness and myotonia, and the disorder may affect the function of many endocrine glands. DMPK mRNA is expressed in muscle, testis, liver, pituitary, thyroid, and bone; the mutated form leads to disruption of meiosis and an increase in fetal insulin receptor-A relative to adult insulin receptor-B, resulting in adult primary testicular failure and insulin resistance predisposing to diabetes, respectively. Patients with myotonic dystrophy are also at increased risk for hyperlipidemia, nonalcoholic fatty liver disease, erectile dysfunction, benign and malignant thyroid nodules, bone fractures, miscarriage, preterm delivery, and failed labor during delivery. Circulating parathyroid hormone and adrenocorticotropic hormone levels may be elevated, but the mechanisms for these associations are unclear. This review summarizes what is known about endocrine dysfunction in individuals with myotonic dystrophy.


Assuntos
Doenças do Sistema Endócrino/genética , Sistema Endócrino/fisiopatologia , Distrofia Miotônica/genética , Distrofia Miotônica/fisiopatologia , Miotonina Proteína Quinase/metabolismo , Feminino , Humanos , Masculino , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo
18.
Cells ; 10(4)2021 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-33921698

RESUMO

MRCKα is a ubiquitously expressed serine/threonine kinase involved in cell contraction and F-actin turnover, which is highly amplified in human breast cancer and part of a gene expression signature for bad prognosis. Nothing is known about the in vivo function of MRCKα. To explore MRCKα function in development and in breast cancer, we generated mice lacking a functional MRCKα gene. Mice were born close to the Mendelian ratio and showed no obvious phenotype including a normal mammary gland formation. Assessing breast cancer development using the transgenic MMTV-PyMT mouse model, loss of MRCKα did not affect tumor onset, tumor growth and metastasis formation. Deleting MRCKα and its related family member MRCKß in two triple-negative breast cancer cell lines resulted in reduced invasion of MDA-MB-231 cells, but did not affect migration of 4T1 cells. Further genomic analysis of human breast cancers revealed that MRCKα is frequently co-amplified with the oncogenes ARID4B and AKT3 which might contribute to the prognostic value of MRCKα expression. Collectively, these data suggest that MRCKα might be a prognostic marker for breast cancer, but probably of limited functional importance.


Assuntos
Antígenos Transformantes de Poliomavirus/metabolismo , Carcinogênese/patologia , Neoplasias Mamárias Animais/metabolismo , Vírus do Tumor Mamário do Camundongo/fisiologia , Miotonina Proteína Quinase/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Fatores de Despolimerização de Actina/metabolismo , Actinas/metabolismo , Animais , Antígenos de Neoplasias/metabolismo , Sequência de Bases , Carcinogênese/efeitos dos fármacos , Carcinogênese/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Colágeno/farmacologia , Modelos Animais de Doenças , Feminino , Géis/farmacologia , Humanos , Glândulas Mamárias Animais/patologia , Neoplasias Mamárias Animais/genética , Vírus do Tumor Mamário do Camundongo/efeitos dos fármacos , Camundongos , Camundongos Knockout , Mutação/genética , Miosinas/metabolismo , Invasividade Neoplásica , Metástase Neoplásica , Proteínas de Neoplasias/metabolismo , Fenótipo , Fosforilação/efeitos dos fármacos , Polimerização/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Neoplasias de Mama Triplo Negativas/patologia
19.
J Neuromuscul Dis ; 8(4): 603-619, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33682722

RESUMO

Myotonic dystrophy type 1 (DM1) is the most common monogenetic muscular disorder of adulthood. This multisystemic disease is caused by CTG repeat expansion in the 3'-untranslated region of the DM1 protein kinase gene called DMPK. DMPK encodes a myosin kinase expressed in skeletal muscle cells and other cellular populations such as smooth muscle cells, neurons and fibroblasts. The resultant expanded (CUG)n RNA transcripts sequester RNA binding factors leading to ubiquitous and persistent splicing deregulation. The accumulation of mutant CUG repeats is linked to increased activity of glycogen synthase kinase 3 beta (GSK3ß), a highly conserved and ubiquitous serine/threonine kinase with functions in pathways regulating inflammation, metabolism, oncogenesis, neurogenesis and myogenesis. As GSK3ß-inhibition ameliorates defects in myogenesis, muscle strength and myotonia in a DM1 mouse model, this kinase represents a key player of DM1 pathobiochemistry and constitutes a promising therapeutic target. To better characterise DM1 patients, and monitor treatment responses, we aimed to define a set of robust disease and severity markers linked to GSK3ßby unbiased proteomic profiling utilizing fibroblasts derived from DM1 patients with low (80- 150) and high (2600- 3600) CTG-repeats. Apart from GSK3ß increase, we identified dysregulation of nine proteins (CAPN1, CTNNB1, CTPS1, DNMT1, HDAC2, HNRNPH3, MAP2K2, NR3C1, VDAC2) modulated by GSK3ß. In silico-based expression studies confirmed expression in neuronal and skeletal muscle cells and revealed a relatively elevated abundance in fibroblasts. The potential impact of each marker in the myopathology of DM1 is discussed based on respective function to inform potential uses as severity markers or for monitoring GSK3ß inhibitor treatment responses.


Assuntos
Fibroblastos/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Distrofia Miotônica/metabolismo , Pele/metabolismo , Adulto , Biomarcadores , Feminino , Perfilação da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Desenvolvimento Muscular , Fibras Musculares Esqueléticas/metabolismo , Força Muscular , Miotonina Proteína Quinase/metabolismo , Proteínas Serina-Treonina Quinases , Proteômica , RNA Mensageiro , Expansão das Repetições de Trinucleotídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA