Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 381
Filtrar
1.
Signal Transduct Target Ther ; 9(1): 133, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38744811

RESUMO

Sirtuin 3 (SIRT3) is well known as a conserved nicotinamide adenine dinucleotide+ (NAD+)-dependent deacetylase located in the mitochondria that may regulate oxidative stress, catabolism and ATP production. Accumulating evidence has recently revealed that SIRT3 plays its critical roles in cardiac fibrosis, myocardial fibrosis and even heart failure (HF), through its deacetylation modifications. Accordingly, discovery of SIRT3 activators and elucidating their underlying mechanisms of HF should be urgently needed. Herein, we identified a new small-molecule activator of SIRT3 (named 2-APQC) by the structure-based drug designing strategy. 2-APQC was shown to alleviate isoproterenol (ISO)-induced cardiac hypertrophy and myocardial fibrosis in vitro and in vivo rat models. Importantly, in SIRT3 knockout mice, 2-APQC could not relieve HF, suggesting that 2-APQC is dependent on SIRT3 for its protective role. Mechanically, 2-APQC was found to inhibit the mammalian target of rapamycin (mTOR)-p70 ribosomal protein S6 kinase (p70S6K), c-jun N-terminal kinase (JNK) and transforming growth factor-ß (TGF-ß)/ small mother against decapentaplegic 3 (Smad3) pathways to improve ISO-induced cardiac hypertrophy and myocardial fibrosis. Based upon RNA-seq analyses, we demonstrated that SIRT3-pyrroline-5-carboxylate reductase 1 (PYCR1) axis was closely assoiated with HF. By activating PYCR1, 2-APQC was shown to enhance mitochondrial proline metabolism, inhibited reactive oxygen species (ROS)-p38 mitogen activated protein kinase (p38MAPK) pathway and thereby protecting against ISO-induced mitochondrialoxidative damage. Moreover, activation of SIRT3 by 2-APQC could facilitate AMP-activated protein kinase (AMPK)-Parkin axis to inhibit ISO-induced necrosis. Together, our results demonstrate that 2-APQC is a targeted SIRT3 activator that alleviates myocardial hypertrophy and fibrosis by regulating mitochondrial homeostasis, which may provide a new clue on exploiting a promising drug candidate for the future HF therapeutics.


Assuntos
Cardiomegalia , Fibrose , Sirtuína 3 , Animais , Sirtuína 3/genética , Sirtuína 3/metabolismo , Cardiomegalia/genética , Cardiomegalia/tratamento farmacológico , Cardiomegalia/patologia , Cardiomegalia/induzido quimicamente , Cardiomegalia/metabolismo , Fibrose/genética , Ratos , Camundongos , Isoproterenol , Humanos , Camundongos Knockout , Homeostase/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/genética , Mitocôndrias/patologia , Mitocôndrias/metabolismo , Mitocôndrias Cardíacas/efeitos dos fármacos , Mitocôndrias Cardíacas/genética , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/patologia , Miocárdio/patologia , Miocárdio/metabolismo , Masculino
2.
Biosci Rep ; 44(5)2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38655715

RESUMO

Heart function is highly dependent on mitochondria, which not only produce energy but also regulate many cellular functions. Therefore, mitochondria are important therapeutic targets in heart failure. Abcb10 is a member of the ABC transporter superfamily located in the inner mitochondrial membrane and plays an important role in haemoglobin synthesis, biliverdin transport, antioxidant stress, and stabilization of the iron transporter mitoferrin-1. However, the mechanisms underlying the impairment of mitochondrial transporters in the heart remain poorly understood. Here, we generated mice with cardiomyocyte-specific loss of Abcb10. The Abcb10 knockouts exhibited progressive worsening of cardiac fibrosis, increased cardiovascular risk markers and mitochondrial structural abnormalities, suggesting that the pathology of heart failure is related to mitochondrial dysfunction. As the mitochondrial dysfunction was observed early but mildly, other factors were considered. We then observed increased Hif1α expression, decreased NAD synthase expression, and reduced NAD+ levels, leading to lysosomal dysfunction. Analysis of ABCB10 knockdown HeLa cells revealed accumulation of Fe2+ and lipid peroxides in lysosomes, leading to ferroptosis. Lipid peroxidation was suppressed by treatment with iron chelators, suggesting that lysosomal iron accumulation is involved in ferroptosis. We also observed that Abcb10 knockout cardiomyocytes exhibited increased ROS production, iron accumulation, and lysosomal hypertrophy. Our findings suggest that Abcb10 is required for the maintenance of cardiac function and reveal a novel pathophysiology of chronic heart failure related to lysosomal function and ferroptosis.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Ferroptose , Lisossomos , Camundongos Knockout , Miócitos Cardíacos , Animais , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Ferroptose/genética , Humanos , Lisossomos/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Camundongos , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/patologia , Mitocôndrias Cardíacas/genética , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/patologia , Células HeLa , Ferro/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Peroxidação de Lipídeos , Masculino
3.
JCI Insight ; 9(9)2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38564291

RESUMO

Duchenne muscular dystrophy (DMD) is a progressive muscle-wasting disease associated with cardiomyopathy. DMD cardiomyopathy is characterized by abnormal intracellular Ca2+ homeostasis and mitochondrial dysfunction. We used dystrophin and utrophin double-knockout (mdx:utrn-/-) mice in a sarcolipin (SLN) heterozygous-knockout (sln+/-) background to examine the effect of SLN reduction on mitochondrial function in the dystrophic myocardium. Germline reduction of SLN expression in mdx:utrn-/- mice improved cardiac sarco/endoplasmic reticulum (SR) Ca2+ cycling, reduced cardiac fibrosis, and improved cardiac function. At the cellular level, reducing SLN expression prevented mitochondrial Ca2+ overload, reduced mitochondrial membrane potential loss, and improved mitochondrial function. Transmission electron microscopy of myocardial tissues and proteomic analysis of mitochondria-associated membranes showed that reducing SLN expression improved mitochondrial structure and SR-mitochondria interactions in dystrophic cardiomyocytes. These findings indicate that SLN upregulation plays a substantial role in the pathogenesis of cardiomyopathy and that reducing SLN expression has clinical implications in the treatment of DMD cardiomyopathy.


Assuntos
Cardiomiopatias , Distrofina , Camundongos Endogâmicos mdx , Camundongos Knockout , Proteínas Musculares , Distrofia Muscular de Duchenne , Proteolipídeos , Utrofina , Animais , Masculino , Camundongos , Cálcio/metabolismo , Cardiomiopatias/metabolismo , Cardiomiopatias/genética , Cardiomiopatias/patologia , Modelos Animais de Doenças , Distrofina/genética , Distrofina/metabolismo , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/ultraestrutura , Mitocôndrias Cardíacas/genética , Proteínas Musculares/metabolismo , Proteínas Musculares/genética , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/patologia , Miocárdio/metabolismo , Miocárdio/patologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Proteolipídeos/metabolismo , Proteolipídeos/genética , Utrofina/genética , Utrofina/metabolismo
4.
Biochem Pharmacol ; 224: 116185, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38561091

RESUMO

Cardiac ATP production is tightly regulated in order to satisfy the evolving energetic requirements imposed by different cues during health and pathological conditions. In order to sustain high ATP production rates, cardiac cells are endowed with a vast mitochondrial network that is essentially acquired during the perinatal period. Nevertheless, adult cardiac cells also adapt their mitochondrial mass and oxidative function to changes in energy demand and substrate availability by fine-tuning the pathways and mitochondrial machinery involved in energy production. The reliance of cardiac cells on mitochondrial metabolism makes them particularly sensitive to alterations in proper mitochondrial function, so that deficiency in energy production underlies or precipitates the development of heart diseases. Mitochondrial biogenesis is a complex process fundamentally controlled at the transcriptional level by a network of transcription factors and co-regulators, sometimes with partially redundant functions, that ensure adequate energy supply to the working heart. Novel uncovered regulators, such as RIP140, PERM1, MED1 or BRD4 have been recently shown to modulate or facilitate the transcriptional activity of the PGC-1s/ERRs/PPARs regulatory axis, allowing cardiomyocytes to adapt to a variety of physiological or pathological situations requiring different energy provision. In this review, we summarize the current knowledge on the mechanisms that regulate cardiac mitochondrial biogenesis, highlighting the recent discoveries of new transcriptional regulators and describing the experimental models that have provided solid evidence of the relevant contribution of these factors to cardiac function in health and disease.


Assuntos
Metabolismo Energético , Animais , Metabolismo Energético/fisiologia , Metabolismo Energético/genética , Humanos , Transcrição Gênica/fisiologia , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/genética , Cardiopatias/metabolismo , Cardiopatias/genética , Miocárdio/metabolismo , Regulação da Expressão Gênica , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Modelos Animais de Doenças , Miócitos Cardíacos/metabolismo
5.
Cardiovasc Res ; 120(6): 630-643, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38230606

RESUMO

AIMS: Human pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) provide a platform to identify and characterize factors that regulate the maturation of CMs. The transition from an immature foetal to an adult CM state entails coordinated regulation of the expression of genes involved in myofibril formation and oxidative phosphorylation (OXPHOS) among others. Lysine demethylase 5 (KDM5) specifically demethylates H3K4me1/2/3 and has emerged as potential regulators of expression of genes involved in cardiac development and mitochondrial function. The purpose of this study is to determine the role of KDM5 in iPSC-CM maturation. METHODS AND RESULTS: KDM5A, B, and C proteins were mainly expressed in the early post-natal stages, and their expressions were progressively downregulated in the post-natal CMs and were absent in adult hearts and CMs. In contrast, KDM5 proteins were persistently expressed in the iPSC-CMs up to 60 days after the induction of myogenic differentiation, consistent with the immaturity of these cells. Inhibition of KDM5 by KDM5-C70 -a pan-KDM5 inhibitor, induced differential expression of 2372 genes, including upregulation of genes involved in fatty acid oxidation (FAO), OXPHOS, and myogenesis in the iPSC-CMs. Likewise, genome-wide profiling of H3K4me3 binding sites by the cleavage under targets and release using nuclease assay showed enriched of the H3K4me3 peaks at the promoter regions of genes encoding FAO, OXPHOS, and sarcomere proteins. Consistent with the chromatin and gene expression data, KDM5 inhibition increased the expression of multiple sarcomere proteins and enhanced myofibrillar organization. Furthermore, inhibition of KDM5 increased H3K4me3 deposits at the promoter region of the ESRRA gene and increased its RNA and protein levels. Knockdown of ESRRA in KDM5-C70-treated iPSC-CM suppressed expression of a subset of the KDM5 targets. In conjunction with changes in gene expression, KDM5 inhibition increased oxygen consumption rate and contractility in iPSC-CMs. CONCLUSION: KDM5 inhibition enhances maturation of iPSC-CMs by epigenetically upregulating the expressions of OXPHOS, FAO, and sarcomere genes and enhancing myofibril organization and mitochondrial function.


Assuntos
Diferenciação Celular , Ácidos Graxos , Células-Tronco Pluripotentes Induzidas , Miócitos Cardíacos , Miofibrilas , Oxirredução , Fosforilação Oxidativa , Miócitos Cardíacos/enzimologia , Miócitos Cardíacos/metabolismo , Humanos , Ácidos Graxos/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/enzimologia , Miofibrilas/metabolismo , Miofibrilas/enzimologia , Células Cultivadas , Histonas/metabolismo , Histonas/genética , Proteína 2 de Ligação ao Retinoblastoma/metabolismo , Proteína 2 de Ligação ao Retinoblastoma/genética , Regulação da Expressão Gênica no Desenvolvimento , Mitocôndrias Cardíacas/enzimologia , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/genética , Regiões Promotoras Genéticas
6.
Proc Natl Acad Sci U S A ; 120(51): e2303713120, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38091291

RESUMO

The mitochondrial permeability transition pore (mPTP) is a channel in the inner mitochondrial membrane whose sustained opening in response to elevated mitochondrial matrix Ca2+ concentrations triggers necrotic cell death. The molecular identity of mPTP is unknown. One proposed candidate is the mitochondrial ATP synthase, whose canonical function is to generate most ATP in multicellular organisms. Here, we present mitochondrial, cellular, and in vivo evidence that, rather than serving as mPTP, the mitochondrial ATP synthase inhibits this pore. Our studies confirm previous work showing persistence of mPTP in HAP1 cell lines lacking an assembled mitochondrial ATP synthase. Unexpectedly, however, we observe that Ca2+-induced pore opening is markedly sensitized by loss of the mitochondrial ATP synthase. Further, mPTP opening in cells lacking the mitochondrial ATP synthase is desensitized by pharmacological inhibition and genetic depletion of the mitochondrial cis-trans prolyl isomerase cyclophilin D as in wild-type cells, indicating that cyclophilin D can modulate mPTP through substrates other than subunits in the assembled mitochondrial ATP synthase. Mitoplast patch clamping studies showed that mPTP channel conductance was unaffected by loss of the mitochondrial ATP synthase but still blocked by cyclophilin D inhibition. Cardiac mitochondria from mice whose heart muscle cells we engineered deficient in the mitochondrial ATP synthase also demonstrate sensitization of Ca2+-induced mPTP opening and desensitization by cyclophilin D inhibition. Further, these mice exhibit strikingly larger myocardial infarctions when challenged with ischemia/reperfusion in vivo. We conclude that the mitochondrial ATP synthase does not function as mPTP and instead negatively regulates this pore.


Assuntos
Poro de Transição de Permeabilidade Mitocondrial , ATPases Mitocondriais Próton-Translocadoras , Camundongos , Animais , ATPases Mitocondriais Próton-Translocadoras/genética , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Poro de Transição de Permeabilidade Mitocondrial/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Ciclofilinas/genética , Ciclofilinas/metabolismo , Peptidil-Prolil Isomerase F , Mitocôndrias Cardíacas/genética , Mitocôndrias Cardíacas/metabolismo , Cálcio/metabolismo
7.
J Clin Invest ; 133(14)2023 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-37463442

RESUMO

Hypertrophic cardiomyopathy and pathological cardiac hypertrophy are characterized by mitochondrial structural and functional abnormalities. In this issue of the JCI, Zhuang et al. discovered 1-deoxynojirimycin (DNJ) through a screen of mitochondrially targeted compounds. The authors described the effects of DNJ in restoring mitochondria and preventing cardiac myocyte hypertrophy in cellular models carrying a mutant mitochondrial gene, MT-RNR2, which is causally implicated in familial hypertrophic cardiomyopathy. DNJ worked via stabilization of the mitochondrial inner-membrane GTPase OPA1 and other, hitherto unknown, mechanisms to preserve mitochondrial crista and respiratory chain components. The discovery is likely to spur development of a class of therapeutics that restore mitochondrial health to prevent cardiomyopathy and heart failure.


Assuntos
Cardiomiopatia Hipertrófica , Insuficiência Cardíaca , Humanos , Cardiomiopatia Hipertrófica/genética , Cardiomiopatia Hipertrófica/terapia , Cardiomiopatia Hipertrófica/patologia , Mitocôndrias/genética , Mitocôndrias/patologia , Mutação , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/terapia , Insuficiência Cardíaca/patologia , DNA Mitocondrial/genética , Mitocôndrias Cardíacas/genética , Mitocôndrias Cardíacas/patologia
8.
Nat Commun ; 13(1): 6634, 2022 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-36333300

RESUMO

Mitochondria are paramount to the metabolism and survival of cardiomyocytes. Here we show that Mitochondrial Fission Process 1 (MTFP1) is an inner mitochondrial membrane (IMM) protein that is dispensable for mitochondrial division yet essential for cardiac structure and function. Constitutive knockout of cardiomyocyte MTFP1 in mice resulted in a fatal, adult-onset dilated cardiomyopathy accompanied by extensive mitochondrial and cardiac remodeling during the transition to heart failure. Prior to the onset of disease, knockout cardiac mitochondria displayed specific IMM defects: futile proton leak dependent upon the adenine nucleotide translocase and an increased sensitivity to the opening of the mitochondrial permeability transition pore, with which MTFP1 physically and genetically interacts. Collectively, our data reveal new functions of MTFP1 in the control of bioenergetic efficiency and cell death sensitivity and define its importance in preventing pathogenic cardiac remodeling.


Assuntos
Insuficiência Cardíaca , Dinâmica Mitocondrial , Camundongos , Animais , Remodelação Ventricular/genética , Miócitos Cardíacos/metabolismo , Insuficiência Cardíaca/metabolismo , Mitocôndrias Cardíacas/genética , Mitocôndrias Cardíacas/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/genética , Proteínas de Transporte da Membrana Mitocondrial/metabolismo
9.
Nat Commun ; 13(1): 3850, 2022 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-35787630

RESUMO

Heart failure with preserved ejection fraction (HFpEF) exhibits a sex bias, being more common in women than men, and we hypothesize that mitochondrial sex differences might underlie this bias. As part of genetic studies of heart failure in mice, we observe that heart mitochondrial DNA levels and function tend to be reduced in females as compared to males. We also observe that expression of genes encoding mitochondrial proteins are higher in males than females in human cohorts. We test our hypothesis in a panel of genetically diverse inbred strains of mice, termed the Hybrid Mouse Diversity Panel (HMDP). Indeed, we find that mitochondrial gene expression is highly correlated with diastolic function, a key trait in HFpEF. Consistent with this, studies of a "two-hit" mouse model of HFpEF confirm that mitochondrial function differs between sexes and is strongly associated with a number of HFpEF traits. By integrating data from human heart failure and the mouse HMDP cohort, we identify the mitochondrial gene Acsl6 as a genetic determinant of diastolic function. We validate its role in HFpEF using adenoviral over-expression in the heart. We conclude that sex differences in mitochondrial function underlie, in part, the sex bias in diastolic function.


Assuntos
Insuficiência Cardíaca , Animais , Coenzima A Ligases , Diástole/genética , Feminino , Insuficiência Cardíaca/metabolismo , Humanos , Masculino , Camundongos , Mitocôndrias Cardíacas/genética , Mitocôndrias Cardíacas/metabolismo , Caracteres Sexuais , Volume Sistólico/genética
10.
J Am Heart Assoc ; 11(11): e024582, 2022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-35656994

RESUMO

Background Heart failure with preserved ejection fraction (HFpEF) accounts for 50% of patients with heart failure. Clinically, HFpEF prevalence shows age and gender biases. Although the majority of patients with HFpEF are elderly, there is an emergence of young patients with HFpEF. A better understanding of the underlying pathogenic mechanism is urgently needed. Here, we aimed to determine the role of aging in the pathogenesis of HFpEF. Methods and Results HFpEF dietary regimen (high-fat diet + Nω-Nitro-L-arginine methyl ester hydrochloride) was used to induce HFpEF in wild type and telomerase RNA knockout mice (second-generation and third-generation telomerase RNA component knockout), an aging murine model. First, both male and female animals develop HFpEF equally. Second, cardiac wall thickening preceded diastolic dysfunction in all HFpEF animals. Third, accelerated HFpEF onset was observed in second-generation telomerase RNA component knockout (at 6 weeks) and third-generation telomerase RNA component knockout (at 4 weeks) compared with wild type (8 weeks). Fourth, we demonstrate that mitochondrial respiration transitioned from compensatory state (normal basal yet loss of maximal respiratory capacity) to dysfunction (loss of both basal and maximal respiratory capacity) in a p53 dosage dependent manner. Last, using myocardial-specific p53 knockout animals, we demonstrate that loss of p53 activation delays the development of HFpEF. Conclusions Here we demonstrate that p53 activation plays a role in the pathogenesis of HFpEF. We show that short telomere animals exhibit a basal level of p53 activation, mitochondria upregulate mtDNA encoded genes as a mean to compensate for blocked mitochondrial biogenesis, and loss of myocardial p53 delays HFpEF onset in high fat diet + Nω-Nitro-L-arginine methyl ester hydrochloride challenged murine model.


Assuntos
Insuficiência Cardíaca , Mitocôndrias Cardíacas , Proteína Supressora de Tumor p53 , Fatores Etários , Animais , Modelos Animais de Doenças , Feminino , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/patologia , Humanos , Masculino , Camundongos , Mitocôndrias Cardíacas/genética , Mitocôndrias Cardíacas/metabolismo , Dinâmica Mitocondrial , Volume Sistólico/fisiologia , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
11.
Proc Natl Acad Sci U S A ; 119(6)2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35101990

RESUMO

Emerging evidence indicates that a subset of RNA molecules annotated as noncoding contain short open reading frames that code for small functional proteins called microproteins, which have largely been overlooked due to their small size. To search for cardiac-expressed microproteins, we used a comparative genomics approach and identified mitolamban (Mtlbn) as a highly conserved 47-amino acid transmembrane protein that is abundantly expressed in the heart. Mtlbn localizes specifically to the inner mitochondrial membrane where it interacts with subunits of complex III of the electron transport chain and with mitochondrial respiratory supercomplexes. Genetic deletion of Mtlbn in mice altered complex III assembly dynamics and reduced complex III activity. Unbiased metabolomic analysis of heart tissue from Mtlbn knockout mice further revealed an altered metabolite profile consistent with deficiencies in complex III activity. Cardiac-specific Mtlbn overexpression in transgenic (TG) mice induced cardiomyopathy with histological, biochemical, and ultrastructural pathologic features that contributed to premature death. Metabolomic analysis and biochemical studies indicated that hearts from Mtlbn TG mice exhibited increased oxidative stress and mitochondrial dysfunction. These findings reveal Mtlbn as a cardiac-expressed inner mitochondrial membrane microprotein that contributes to mitochondrial electron transport chain activity through direct association with complex III and the regulation of its assembly and function.


Assuntos
Cardiomiopatias/metabolismo , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Proteínas de Membrana/metabolismo , Mitocôndrias Cardíacas/metabolismo , Proteínas Mitocondriais/metabolismo , Miocárdio/metabolismo , Animais , Cardiomiopatias/genética , Células Cultivadas , Complexo III da Cadeia de Transporte de Elétrons/genética , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Mitocôndrias Cardíacas/genética , Proteínas Mitocondriais/genética , Especificidade de Órgãos
12.
Am J Physiol Cell Physiol ; 322(2): C311-C325, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35044857

RESUMO

Mitochondria are essential to cell homeostasis, and alterations in mitochondrial distribution, segregation, and turnover have been linked to complex pathologies such as neurodegenerative diseases and cancer. Understanding how these functions are coordinated in specific cell types is a major challenge to discover how mitochondria globally shape cell functionality. In this review, we first describe how mitochondrial transport and dynamics are regulated throughout the cell cycle in yeast and in mammals. Second, we explore the functional consequences of mitochondrial transport and partitioning on cell proliferation, fate acquisition, and stemness and on the way cells adapt their metabolism. Finally, we focus on how mitochondrial clearance programs represent a further layer of complexity for cell differentiation or in the maintenance of stemness. Defining how mitochondrial transport, dynamics, and clearance are mutually orchestrated in specific cell types may help our understanding of how cells can transition from a physiological to a pathological state.


Assuntos
Diferenciação Celular , Linhagem da Célula , Metabolismo Energético , Mitocôndrias Cardíacas/metabolismo , Dinâmica Mitocondrial , Miócitos Cardíacos/metabolismo , Leveduras/metabolismo , Animais , Transporte Biológico , Homeostase , Humanos , Mitocôndrias Cardíacas/genética , Mitofagia , Fenótipo , Leveduras/genética
13.
Sci Rep ; 12(1): 138, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34997008

RESUMO

Calpain 1 and 2 (CPN1/2) are calcium-dependent cysteine proteases that exist in cytosol and mitochondria. Pharmacologic inhibition of CPN1/2 decreases cardiac injury during ischemia (ISC)-reperfusion (REP) by improving mitochondrial function. However, the protein targets of CPN1/2 activation during ISC-REP are unclear. CPN1/2 include a large subunit and a small regulatory subunit 1 (CPNS1). Genetic deletion of CPNS1 eliminates the activities of both CPN1 and CPN2. Conditional cardiomyocyte specific CPNS1 deletion mice were used in the present study to clarify the role of CPN1/2 activation in mitochondrial damage during ISC-REP with an emphasis on identifying the potential protein targets of CPN1/2. Isolated hearts from wild type (WT) or CPNS1 deletion mice underwent 25 min in vitro global ISC and 30 min REP. Deletion of CPNS1 led to decreased cytosolic and mitochondrial calpain 1 activation compared to WT. Cardiac injury was decreased in CPNS1 deletion mice following ISC-REP as shown by the decreased infarct size compared to WT. Compared to WT, mitochondrial function was improved in CPNS1 deletion mice following ischemia-reperfusion as shown by the improved oxidative phosphorylation and decreased susceptibility to mitochondrial permeability transition pore opening. H2O2 generation was also decreased in mitochondria from deletion mice following ISC-REP compared to WT. Deletion of CPNS1 also resulted in less cytochrome c and truncated apoptosis inducing factor (tAIF) release from mitochondria. Proteomic analysis of the isolated mitochondria showed that deletion of CPNS1 increased the content of proteins functioning in regulation of mitochondrial calcium homeostasis (paraplegin and sarcalumenin) and complex III activity. These results suggest that activation of CPN1 increases cardiac injury during ischemia-reperfusion by impairing mitochondrial function and triggering cytochrome c and tAIF release from mitochondria into cytosol.


Assuntos
Calpaína/metabolismo , Mitocôndrias Cardíacas/enzimologia , Traumatismo por Reperfusão Miocárdica/enzimologia , Miócitos Cardíacos/enzimologia , ATPases Associadas a Diversas Atividades Celulares/metabolismo , Animais , Fator de Indução de Apoptose/metabolismo , Calpaína/genética , Citocromos c/metabolismo , Modelos Animais de Doenças , Peróxido de Hidrogênio/metabolismo , Preparação de Coração Isolado , Proteínas de Membrana/metabolismo , Metaloendopeptidases/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias Cardíacas/genética , Mitocôndrias Cardíacas/patologia , Poro de Transição de Permeabilidade Mitocondrial/metabolismo , Traumatismo por Reperfusão Miocárdica/genética , Traumatismo por Reperfusão Miocárdica/patologia , Miócitos Cardíacos/patologia , Fosforilação Oxidativa , Transdução de Sinais
14.
J Biochem Mol Toxicol ; 36(1): e22885, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34859534

RESUMO

Ginsenoside-Rg1 (G-Rg1), a saponin that is a primary component of ginseng, is effective against inflammatory diseases. The P2X purinoceptor 7 (P2X7) receptor is an ATP-gated ion channel that is predominantly expressed in immune cells and plays a key role in inflammatory processes. We investigated the role of G-Rg1 in sepsis-related cardiac dysfunction and the underlying mechanism involving the regulation of the P2X7 receptor. We detected cell viability, cytotoxicity, cellular reactive oxygen species (ROS) levels, and mitochondrial membrane potential (MMP) with or without G-Rg1 in lipopolysaccharide (LPS)- or hypoxia/reoxygenation (H/R)-induced H9c2 cell models of ischemia/reperfusion injury. We applied cecal ligation and puncture (CLP) to induce a mouse model of sepsis and measured the survival duration and cardiac function of CLP mice. Next, we quantified the ROS level, MMP, respiratory chain complex I-IV enzymatic activity, and mitochondrial fusion in CLP mouse heart tissues. We then investigated the role of G-Rg1 in repairing LPS-induced cell mitochondrial damage, including mitochondrial superoxidation products. The results showed that G-Rg1 inhibited LPS- or H/R-induced cardiomyocyte apoptosis, cytotoxicity, ROS levels, and mitochondrial damage. In addition, G-Rg1 prolonged the survival time of CLP mice. G-Rg1 attenuated LPS-induced superoxide production in the mitochondria of cardiomyocytes and the excessive release of cytochrome c from mitochondria into the cytoplasm. Most importantly, G-Rg1 suppressed LPS-mediated induction of proapoptotic Bax, activated Akt, induced GSK-3ß phosphorylation, and balanced mitochondrial calcium levels. Overall, G-Rg1 activates the Akt/GSK-3ß pathway through P2X7 receptors to inhibit sepsis-induced cardiac dysfunction and mitochondrial dysfunction.


Assuntos
Ginsenosídeos/farmacologia , Glicogênio Sintase Quinase 3 beta/metabolismo , Cardiopatias/metabolismo , Mitocôndrias Cardíacas/metabolismo , Miócitos Cardíacos/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Sepse/metabolismo , Transdução de Sinais , Animais , Linhagem Celular , Glicogênio Sintase Quinase 3 beta/genética , Cardiopatias/genética , Camundongos , Mitocôndrias Cardíacas/genética , Proteínas Proto-Oncogênicas c-akt/genética , Ratos , Receptores Purinérgicos P2X7/genética , Sepse/genética
15.
Int J Mol Sci ; 22(24)2021 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-34948160

RESUMO

The heart primarily uses fatty acids as energy substrates. Adipose lipolysis is a major source of fatty acids, particularly under stress conditions. In this study, we showed that mice with selective inactivation of the lipolytic coactivator comparative gene identification-58 (CGI-58) in adipose tissue (FAT-KO mice), relative to their littermate controls, had lower circulating FA levels in the fed and fasted states due to impaired adipose lipolysis. They preferentially utilized carbohydrates as energy fuels and were more insulin sensitive and glucose tolerant. Under cold stress, FAT-KO versus control mice had >10-fold increases in glucose uptake in the hearts but no increases in other tissues examined. Plasma concentrations of atrial natriuretic peptide and cardiac mRNAs for atrial and brain-type natriuretic peptides, two sensitive markers of cardiac remodeling, were also elevated. After one week of cold exposure, FAT-KO mice showed reduced cardiac expression of several mitochondrial oxidative phosphorylation proteins. After one month of cold exposure, hearts of these animals showed depressed functions, reduced SERCA2 protein, and increased proteins for MHC-ß, collagen I proteins, Glut1, Glut4 and phospho-AMPK. Thus, CGI-58-dependent adipose lipolysis critically regulates cardiac metabolism and function, especially during cold adaptation. The adipose-heart axis may be targeted for the management of cardiac dysfunction.


Assuntos
Aclimatação , Resposta ao Choque Frio , Glucose/metabolismo , Lipólise , Mitocôndrias Cardíacas/metabolismo , Miocárdio/metabolismo , Animais , Caderinas/deficiência , Caderinas/metabolismo , Glucose/genética , Camundongos , Camundongos Knockout , Mitocôndrias Cardíacas/genética
16.
Sci Rep ; 11(1): 24129, 2021 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-34916603

RESUMO

Abuse of the potent psychostimulant cocaine is widely established to have cardiovascular consequences. The cardiotoxicity of cocaine is mainly associated with oxidative stress and mitochondrial dysfunction. Mitochondrial dynamics and biogenesis, as well as the mitochondrial unfolded protein response (UPRmt), guarantee cardiac mitochondrial homeostasis. Collectively, these mechanisms act to protect against stress, injury, and the detrimental effects of chemicals on mitochondria. In this study, we examined the effects of cocaine on cardiac mitochondrial dynamics, biogenesis, and UPRmt in vivo. Rats administered cocaine via the tail vein at a dose of 20 mg/kg/day for 7 days showed no structural changes in the myocardium, but electron microscopy revealed a significant increase in the number of cardiac mitochondria. Correspondingly, the expressions of the mitochondrial fission gene and mitochondrial biogenesis were increased after cocaine administration. Significant increase in the expression and nuclear translocation of activating transcription factor 5, the major active regulator of UPRmt, were observed after cocaine administration. Accordingly, our findings show that before any structural changes are observable in the myocardium, cocaine alters mitochondrial dynamics, elevates mitochondrial biogenesis, and induces the activation of UPRmt. These alterations might reflect cardiac mitochondrial compensation to protect against the cardiotoxicity of cocaine.


Assuntos
Cocaína/efeitos adversos , Mitocôndrias Cardíacas/efeitos dos fármacos , Biogênese de Organelas , Estresse Oxidativo/efeitos dos fármacos , Fatores Ativadores da Transcrição/metabolismo , Animais , Cocaína/toxicidade , Homeostase/efeitos dos fármacos , Masculino , Mitocôndrias Cardíacas/genética , Mitocôndrias Cardíacas/fisiologia , Dinâmica Mitocondrial/efeitos dos fármacos , Dinâmica Mitocondrial/genética , Ratos Sprague-Dawley , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Resposta a Proteínas não Dobradas/genética
17.
Sci Rep ; 11(1): 22106, 2021 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-34764359

RESUMO

O-GlcNAcylation is a prevalent form of glycosylation that regulates proteins within the cytosol, nucleus, and mitochondria. The O-GlcNAc modification can affect protein cellular localization, function, and signaling interactions. The specific impact of O-GlcNAcylation on mitochondrial morphology and function has been elusive. In this manuscript, the role of O-GlcNAcylation on mitochondrial fission, oxidative phosphorylation (Oxphos), and the activity of electron transport chain (ETC) complexes were evaluated. In a cellular environment with hyper O-GlcNAcylation due to the deletion of O-GlcNAcase (OGA), mitochondria showed a dramatic reduction in size and a corresponding increase in number and total mitochondrial mass. Because of the increased mitochondrial content, OGA knockout cells exhibited comparable coupled mitochondrial Oxphos and ATP levels when compared to WT cells. However, we observed reduced protein levels for complex I and II when comparing normalized mitochondrial content and reduced linked activity for complexes I and III when examining individual ETC complex activities. In assessing mitochondrial fission, we observed increased amounts of O-GlcNAcylated dynamin-related protein 1 (Drp1) in cells genetically null for OGA and in glioblastoma cells. Individual regions of Drp1 were evaluated for O-GlcNAc modifications, and we found that this post-translational modification (PTM) was not limited to the previously characterized residues in the variable domain (VD). Additional modification sites are predicted in the GTPase domain, which may influence enzyme activity. Collectively, these results highlight the impact of O-GlcNAcylation on mitochondrial dynamics and ETC function and mimic the changes that may occur during glucose toxicity from hyperglycemia.


Assuntos
Acilação/genética , Acilação/fisiologia , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/fisiologia , N-Acetilglucosaminiltransferases/metabolismo , Animais , Linhagem Celular , Linhagem Celular Tumoral , Dinaminas/genética , Dinaminas/metabolismo , Glucose/genética , Glucose/metabolismo , Glicosilação , Células HCT116 , Humanos , Camundongos , Camundongos Knockout , Mitocôndrias Cardíacas/genética , Dinâmica Mitocondrial/genética , Dinâmica Mitocondrial/fisiologia , Complexos Multienzimáticos/genética , Complexos Multienzimáticos/metabolismo , N-Acetilglucosaminiltransferases/genética , Fosforilação Oxidativa , Processamento de Proteína Pós-Traducional/genética , Transdução de Sinais/genética
18.
Am J Physiol Regul Integr Comp Physiol ; 321(6): R912-R924, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34730023

RESUMO

We hypothesize that intrauterine hypoxia (HPX) alters the mitochondrial phenotype in fetal hearts contributing to developmental programming. Pregnant guinea pigs were exposed to normoxia (NMX) or hypoxia (HPX, 10.5% O2), starting at early [25 days (25d), 39d duration] or late gestation (50d, 14d duration). Near-term (64d) male and female fetuses were delivered by hysterotomy from anesthetized sows, and body/organ weights were measured. Left ventricles of fetal hearts were excised and frozen for measurement of expression of complex (I-V) subunits, fusion (Mfn2/OPA1) and fission (DRP1/Fis1) proteins, and enzymatic rates of I and IV from isolated mitochondrial proteins. Chronic HPX decreased fetal body weight and increased relative placenta weight regardless of timing. Early-onset HPX increased I, III, and V subunit levels, increased complex I but decreased IV activities in males but not females (all P < 0.05). Late-onset HPX decreased (P < 0.05) I, III, and V levels in both sexes but increased I and decreased IV activities in males only. Both HPX conditions decreased cardiac mitochondrial DNA content in males only. Neither early- nor late-onset HPX had any effect on Mfn2 levels but increased OPA1 in both sexes. Both HPX treatments increased DRP1/Fis1 levels in males. In females, early-onset HPX increased DRP1 with no effect on Fis1, whereas late-onset HPX increased Fis1 with no effect on DRP1. We conclude that both early- and late-onset HPX disrupts the expression/activities of select complexes that could reduce respiratory efficiency and shifts dynamics toward fission in fetal hearts. Thus, intrauterine HPX disrupts the mitochondrial phenotype predominantly in male fetal hearts, potentially altering cardiac metabolism and predisposing the offspring to heart dysfunction.


Assuntos
Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Complexo II de Transporte de Elétrons/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Complexo I de Transporte de Elétrons/metabolismo , Hipóxia Fetal/enzimologia , Mitocôndrias Cardíacas/enzimologia , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Miócitos Cardíacos/enzimologia , Animais , Hipóxia Celular , Respiração Celular , Modelos Animais de Doenças , Dinaminas/genética , Dinaminas/metabolismo , Complexo I de Transporte de Elétrons/genética , Complexo II de Transporte de Elétrons/genética , Complexo III da Cadeia de Transporte de Elétrons/genética , Complexo IV da Cadeia de Transporte de Elétrons/genética , Feminino , Hipóxia Fetal/genética , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Regulação Enzimológica da Expressão Gênica , Idade Gestacional , Cobaias , Masculino , Mitocôndrias Cardíacas/genética , Dinâmica Mitocondrial , ATPases Mitocondriais Próton-Translocadoras/genética , Fatores Sexuais
19.
Cell Rep ; 37(5): 109910, 2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34731606

RESUMO

RBFOX2, which has a well-established role in alternative splicing, is linked to heart diseases. However, it is unclear whether RBFOX2 has other roles in RNA processing that can influence gene expression in muscle cells, contributing to heart disease. Here, we employ both 3'-end and nanopore cDNA sequencing to reveal a previously unrecognized role for RBFOX2 in maintaining alternative polyadenylation (APA) signatures in myoblasts. RBFOX2-mediated APA modulates mRNA levels and/or isoform expression of a collection of genes, including contractile and mitochondrial genes. Depletion of RBFOX2 adversely affects mitochondrial health in myoblasts, correlating with disrupted APA of mitochondrial gene Slc25a4. Mechanistically, RBFOX2 regulation of Slc25a4 APA is mediated through consensus RBFOX2 binding motifs near the distal polyadenylation site, enforcing the use of the proximal polyadenylation site. In sum, our results unveil a role for RBFOX2 in fine-tuning expression of mitochondrial and contractile genes via APA in myoblasts relevant to heart diseases.


Assuntos
Mitocôndrias Cardíacas/metabolismo , Proteínas Mitocondriais/metabolismo , Proteínas Musculares/metabolismo , Mioblastos Cardíacos/metabolismo , Poliadenilação , Fatores de Processamento de RNA/metabolismo , Translocador 1 do Nucleotídeo Adenina/genética , Translocador 1 do Nucleotídeo Adenina/metabolismo , Animais , Regulação da Expressão Gênica , Células HEK293 , Humanos , Mitocôndrias Cardíacas/genética , Mitocôndrias Cardíacas/ultraestrutura , Proteínas Mitocondriais/genética , Proteínas Musculares/genética , Mioblastos Cardíacos/ultraestrutura , Fatores de Processamento de RNA/genética , Ratos , Tropomiosina/genética , Tropomiosina/metabolismo
20.
Circulation ; 144(23): 1876-1890, 2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34672678

RESUMO

BACKGROUND: The catalytic subunit of telomerase, telomerase reverse transcriptase (TERT), has protective functions in the cardiovascular system. TERT is not only present in the nucleus but also in mitochondria. However, it is unclear whether nuclear or mitochondrial TERT is responsible for the observed protection, and the appropriate tools are missing to dissect this. METHODS: We generated new mouse models containing TERT exclusively in the mitochondria (mitoTERT mice) or the nucleus (nucTERT mice) to finally distinguish between the functions of nuclear and mitochondrial TERT. Outcome after ischemia/reperfusion, mitochondrial respiration in the heart, and cellular functions of cardiomyocytes, fibroblasts, and endothelial cells, as well, were determined. RESULTS: All mice were phenotypically normal. Although respiration was reduced in cardiac mitochondria from TERT-deficient and nucTERT mice, it was increased in mitoTERT animals. The latter also had smaller infarcts than wild-type mice, whereas nucTERT animals had larger infarcts. The decrease in ejection fraction after 1, 2, and 4 weeks of reperfusion was attenuated in mitoTERT mice. Scar size was also reduced and vascularization increased. Mitochondrial TERT protected a cardiomyocyte cell line from apoptosis. Myofibroblast differentiation, which depends on complex I activity, was abrogated in TERT-deficient and nucTERT cardiac fibroblasts and completely restored in mitoTERT cells. In endothelial cells, mitochondrial TERT enhanced migratory capacity and activation of endothelial nitric oxide synthase. Mechanistically, mitochondrial TERT improved the ratio between complex I matrix arm and membrane subunits, explaining the enhanced complex I activity. In human right atrial appendages, TERT was localized in mitochondria and there increased by remote ischemic preconditioning. The telomerase activator TA-65 evoked a similar effect in endothelial cells, thereby increasing their migratory capacity, and enhanced myofibroblast differentiation. CONCLUSIONS: Mitochondrial, but not nuclear TERT, is critical for mitochondrial respiration and during ischemia/reperfusion injury. Mitochondrial TERT improves complex I subunit composition. TERT is present in human heart mitochondria, and remote ischemic preconditioning increases its level in those organelles. TA-65 has comparable effects ex vivo and improves the migratory capacity of endothelial cells and myofibroblast differentiation. We conclude that mitochondrial TERT is responsible for cardioprotection, and its increase could serve as a therapeutic strategy.


Assuntos
Complexo I de Transporte de Elétrons/metabolismo , Mitocôndrias Cardíacas/enzimologia , Proteínas Mitocondriais/metabolismo , Traumatismo por Reperfusão Miocárdica/enzimologia , Telomerase/metabolismo , Animais , Complexo I de Transporte de Elétrons/genética , Feminino , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Mitocôndrias Cardíacas/genética , Proteínas Mitocondriais/genética , Traumatismo por Reperfusão Miocárdica/genética , Telomerase/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA