Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.887
Filtrar
1.
Int J Med Sci ; 21(6): 983-993, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38774750

RESUMO

Previous studies have highlighted the protective effects of pyruvate kinase M2 (PKM2) overexpression in septic cardiomyopathy. In our study, we utilized cardiomyocyte-specific PKM2 knockout mice to further investigate the role of PKM2 in attenuating LPS-induced myocardial dysfunction, focusing on mitochondrial biogenesis and prohibitin 2 (PHB2). Our findings confirmed that the deletion of PKM2 in cardiomyocytes significantly exacerbated LPS-induced myocardial dysfunction, as evidenced by impaired contractile function and relaxation. Additionally, the deletion of PKM2 intensified LPS-induced myocardial inflammation. At the molecular level, LPS triggered mitochondrial dysfunction, characterized by reduced ATP production, compromised mitochondrial respiratory complex I/III activities, and increased ROS production. Intriguingly, the absence of PKM2 further worsened LPS-induced mitochondrial damage. Our molecular investigations revealed that LPS disrupted mitochondrial biogenesis in cardiomyocytes, a disruption that was exacerbated by the absence of PKM2. Given that PHB2 is known as a downstream effector of PKM2, we employed PHB2 adenovirus to restore PHB2 levels. The overexpression of PHB2 normalized mitochondrial biogenesis, restored mitochondrial integrity, and promoted mitochondrial function. Overall, our results underscore the critical role of PKM2 in regulating the progression of septic cardiomyopathy. PKM2 deficiency impeded mitochondrial biogenesis, leading to compromised mitochondrial integrity, increased myocardial inflammation, and impaired cardiac function. The overexpression of PHB2 mitigated the deleterious effects of PKM2 deletion. This discovery offers a novel insight into the molecular mechanisms underlying septic cardiomyopathy and suggests potential therapeutic targets for intervention.


Assuntos
Cardiomiopatias , Camundongos Knockout , Mitocôndrias Cardíacas , Miócitos Cardíacos , Proibitinas , Piruvato Quinase , Sepse , Animais , Cardiomiopatias/patologia , Cardiomiopatias/metabolismo , Cardiomiopatias/genética , Cardiomiopatias/etiologia , Camundongos , Miócitos Cardíacos/patologia , Miócitos Cardíacos/metabolismo , Sepse/metabolismo , Sepse/patologia , Sepse/genética , Piruvato Quinase/metabolismo , Piruvato Quinase/genética , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/patologia , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Humanos , Biogênese de Organelas , Lipopolissacarídeos/toxicidade , Masculino , Modelos Animais de Doenças
2.
J Biochem Mol Toxicol ; 38(5): e23718, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38738849

RESUMO

According to the pathophysiological mechanisms linking particulate matter (PM2.5) exposure and cardiovascular diseases, PM2.5 may directly translocate into the blood stream and remote target organs and thereby induce cardiovascular effects. The toxicity of PM2.5 is known to induce oxidative stress in pulmonary tissue, but its impact on the redox state in heart (distant organ) is unknown and how it modulates the cardiac response to ischemia reperfusion (IR) remains unclear. In the present study, we evaluated the toxic effect of PM2.5 on cardiac physiology in the presence and absence of IR after introducing PM2.5 into the blood. Female Wistar rats were injected with diesel particulate matter (DPM) via i.p & i.v routes at a concentration of 10 µg/ml. The toxic impact of PM2.5 not only adversely affects the cardiac ultra-structure (leading to nuclear infiltration, edema, irregularities in heart muscle and nuclear infiltration), but also altered the cellular redox balance, elevated inflammation and promoted the upregulation of proapoptotic mediator genes at the basal level of myocardium. The results showed alterations in cardiac ultrastructure, elevated oxidative stress and significant redox imbalance, increased inflammation and proapoptotic mediators at the basal level of myocardium. Moreover, the cardioprotective pro survival signaling axis was declined along with an increased NF-kB activation at the basal level. IR inflicted further injury with deterioration of cardiac hemodynamic indices (Heart rate [HR], Left ventricular developed pressure [LVDP], Left ventricular end-diastolic pressure [LVEDP] and rate pressure product [RPP]) along with prominent inactivation of signaling pathways. Furthermore, the levels of GSH/GSSG, NADH/NAD, NADPH/NADP were significantly low along with increased lipid peroxidation in mitochondria of PM2.5 treated IR rat hearts. This observation was supported by downregulation of glutaredoxin and peroxiredoxin genes in the myocardium. Similarly the presence of oxidative stress inducing metals was found at a higher concentration in cardiac mitochondria. Thus, the toxic impact of PM2.5 in heart augment the IR associated pathological changes by altering the physiological response, initiating cellular metabolic alterations in mitochondria and modifying the signaling molecules.


Assuntos
NF-kappa B , Oxirredução , Material Particulado , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Ratos Wistar , Transdução de Sinais , Serina-Treonina Quinases TOR , Animais , Material Particulado/toxicidade , Ratos , Feminino , Oxirredução/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , NF-kappa B/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Miocárdio/metabolismo , Miocárdio/patologia , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Estresse Oxidativo/efeitos dos fármacos , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/efeitos dos fármacos
3.
Int J Mol Sci ; 25(9)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38731929

RESUMO

Sepsis-induced cardiomyopathy (SICM) is one of the leading indicators for poor prognosis associated with sepsis. Despite its reversibility, prognosis varies widely among patients. Mitochondria play a key role in cellular energy production by generating adenosine triphosphate (ATP), which is vital for myocardial energy metabolism. Over recent years, mounting evidence suggests that severe sepsis not only triggers mitochondrial structural abnormalities such as apoptosis, incomplete autophagy, and mitophagy in cardiomyocytes but also compromises their function, leading to ATP depletion. This metabolic disruption is recognized as a significant contributor to SICM, yet effective treatment options remain elusive. Sepsis cannot be effectively treated with inotropic drugs in failing myocardium due to excessive inflammatory factors that blunt ß-adrenergic receptors. This review will share the recent knowledge on myocardial cell death in sepsis and its molecular mechanisms, focusing on the role of mitochondria as an important metabolic regulator of SICM, and discuss the potential for developing therapies for sepsis-induced myocardial injury.


Assuntos
Cardiomiopatias , Sepse , Sepse/complicações , Sepse/metabolismo , Humanos , Cardiomiopatias/etiologia , Cardiomiopatias/metabolismo , Cardiomiopatias/patologia , Animais , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/patologia , Mitofagia , Metabolismo Energético , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Apoptose , Trifosfato de Adenosina/metabolismo
4.
FASEB J ; 38(9): e23654, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38717442

RESUMO

Heart failure and cardiac remodeling are both characterized by mitochondrial dysfunction. Healthy mitochondria are required for adequate contractile activity and appropriate regulation of cell survival. In the mammalian heart, enhancement of the mitochondrial unfolded protein response (UPRmt) is cardioprotective under pressure overload conditions. We explored the UPRmt and the underlying regulatory mechanism in terms of hypertension-induced cardiac remodeling and the cardioprotective effect of metformin. Male spontaneously hypertensive rats and angiotensin II-treated neonatal rat cardiomyocytes were used to induce cardiac hypertrophy. The results showed that hypertension induced the formation of aberrant mitochondria, characterized by a reduced mtDNA/nDNA ratio and swelling, as well as lower levels of mitochondrial complexes I to V and inhibition of the expression of one protein subunit of each of complexes I to IV. Such changes eventually enlarged cardiomyocytes and increased cardiac fibrosis. Metformin treatment increased the mtDNA/nDNA ratio and regulated the UPRmt, as indicated by increased expression of activating transcription factor 5, Lon protease 1, and heat shock protein 60, and decreased expression of C/EBP homologous protein. Thus, metformin improved mitochondrial ultrastructure and function in spontaneously hypertensive rats. In vitro analyses revealed that metformin reduced the high levels of angiotensin II-induced mitochondrial reactive oxygen species in such animals and stimulated nuclear translocation of heat shock factor 1 (HSF1). Moreover, HSF1 small-interfering RNA reduced the metformin-mediated improvements in mitochondrial morphology and the UPRmt by suppressing hypertrophic signals and cardiomyocyte apoptosis. These results suggest that HSF1/UPRmt signaling contributes to the beneficial effects of metformin. Metformin-mediated targeting of mitochondrial protein homeostasis and modulation of HSF1 levels have potential therapeutic implications in terms of cardiac remodeling.


Assuntos
Fatores de Transcrição de Choque Térmico , Metformina , Miócitos Cardíacos , Ratos Endogâmicos SHR , Resposta a Proteínas não Dobradas , Animais , Metformina/farmacologia , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Masculino , Ratos , Fatores de Transcrição de Choque Térmico/metabolismo , Fatores de Transcrição de Choque Térmico/genética , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Hipertensão/metabolismo , Hipertensão/tratamento farmacológico , Remodelação Ventricular/efeitos dos fármacos , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/efeitos dos fármacos , Angiotensina II/farmacologia , Cardiomegalia/metabolismo , Cardiomegalia/tratamento farmacológico , Cardiomegalia/patologia , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Ratos Endogâmicos WKY
5.
Cardiovasc Diabetol ; 23(1): 164, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38724987

RESUMO

Dynamin-related protein 1 (Drp1) is a crucial regulator of mitochondrial dynamics, the overactivation of which can lead to cardiovascular disease. Multiple distinct posttranscriptional modifications of Drp1 have been reported, among which S-nitrosylation was recently introduced. However, the detailed regulatory mechanism of S-nitrosylation of Drp1 (SNO-Drp1) in cardiac microvascular dysfunction in diabetes remains elusive. The present study revealed that mitogen-activated protein kinase kinase kinase kinase 4 (MAP4K4) was consistently upregulated in diabetic cardiomyopathy (DCM) and promoted SNO-Drp1 in cardiac microvascular endothelial cells (CMECs), which in turn led to mitochondrial dysfunction and cardiac microvascular disorder. Further studies confirmed that MAP4K4 promoted SNO-Drp1 at human C644 (mouse C650) by inhibiting glutathione peroxidase 4 (GPX4) expression, through which MAP4K4 stimulated endothelial ferroptosis in diabetes. In contrast, inhibition of MAP4K4 via DMX-5804 significantly reduced endothelial ferroptosis, alleviated cardiac microvascular dysfunction and improved cardiac dysfunction in db/db mice by reducing SNO-Drp1. In parallel, the C650A mutation in mice abolished SNO-Drp1 and the role of Drp1 in promoting cardiac microvascular disorder and cardiac dysfunction. In conclusion, our findings demonstrate that MAP4K4 plays an important role in endothelial dysfunction in DCM and reveal that SNO-Drp1 and ferroptosis activation may act as downstream targets, representing potential therapeutic targets for DCM.


Assuntos
Cardiomiopatias Diabéticas , Dinaminas , Células Endoteliais , Camundongos Endogâmicos C57BL , Transdução de Sinais , Animais , Cardiomiopatias Diabéticas/metabolismo , Cardiomiopatias Diabéticas/genética , Cardiomiopatias Diabéticas/fisiopatologia , Cardiomiopatias Diabéticas/patologia , Cardiomiopatias Diabéticas/enzimologia , Cardiomiopatias Diabéticas/etiologia , Humanos , Dinaminas/metabolismo , Dinaminas/genética , Masculino , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Células Endoteliais/enzimologia , Células Endoteliais/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Ferroptose/efeitos dos fármacos , Modelos Animais de Doenças , Células Cultivadas , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/patologia , Mitocôndrias Cardíacas/enzimologia , Camundongos , Processamento de Proteína Pós-Traducional , Circulação Coronária , Peptídeos e Proteínas de Sinalização Intracelular
7.
Nat Commun ; 15(1): 4277, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38769288

RESUMO

Elevated intracellular sodium Nai adversely affects mitochondrial metabolism and is a common feature of heart failure. The reversibility of acute Na induced metabolic changes is evaluated in Langendorff perfused rat hearts using the Na/K ATPase inhibitor ouabain and the myosin-uncoupler para-aminoblebbistatin to maintain constant energetic demand. Elevated Nai decreases Gibb's free energy of ATP hydrolysis, increases the TCA cycle intermediates succinate and fumarate, decreases ETC activity at Complexes I, II and III, and causes a redox shift of CoQ to CoQH2, which are all reversed on lowering Nai to baseline levels. Pseudo hypoxia and stabilization of HIF-1α is observed despite normal tissue oxygenation. Inhibition of mitochondrial Na/Ca-exchange with CGP-37517 or treatment with the mitochondrial ROS scavenger MitoQ prevents the metabolic alterations during Nai elevation. Elevated Nai plays a reversible role in the metabolic and functional changes and is a novel therapeutic target to correct metabolic dysfunction in heart failure.


Assuntos
Mitocôndrias Cardíacas , Sódio , Animais , Ratos , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/efeitos dos fármacos , Sódio/metabolismo , Masculino , Miocárdio/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/tratamento farmacológico , Trifosfato de Adenosina/metabolismo , Ciclo do Ácido Cítrico/efeitos dos fármacos , Ratos Sprague-Dawley , Compostos Organofosforados/farmacologia , Compostos Organofosforados/metabolismo , Trocador de Sódio e Cálcio/metabolismo , Ubiquinona/metabolismo , Ubiquinona/análogos & derivados , ATPase Trocadora de Sódio-Potássio/metabolismo , Oxirredução , Ácido Succínico/metabolismo
9.
Signal Transduct Target Ther ; 9(1): 133, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38744811

RESUMO

Sirtuin 3 (SIRT3) is well known as a conserved nicotinamide adenine dinucleotide+ (NAD+)-dependent deacetylase located in the mitochondria that may regulate oxidative stress, catabolism and ATP production. Accumulating evidence has recently revealed that SIRT3 plays its critical roles in cardiac fibrosis, myocardial fibrosis and even heart failure (HF), through its deacetylation modifications. Accordingly, discovery of SIRT3 activators and elucidating their underlying mechanisms of HF should be urgently needed. Herein, we identified a new small-molecule activator of SIRT3 (named 2-APQC) by the structure-based drug designing strategy. 2-APQC was shown to alleviate isoproterenol (ISO)-induced cardiac hypertrophy and myocardial fibrosis in vitro and in vivo rat models. Importantly, in SIRT3 knockout mice, 2-APQC could not relieve HF, suggesting that 2-APQC is dependent on SIRT3 for its protective role. Mechanically, 2-APQC was found to inhibit the mammalian target of rapamycin (mTOR)-p70 ribosomal protein S6 kinase (p70S6K), c-jun N-terminal kinase (JNK) and transforming growth factor-ß (TGF-ß)/ small mother against decapentaplegic 3 (Smad3) pathways to improve ISO-induced cardiac hypertrophy and myocardial fibrosis. Based upon RNA-seq analyses, we demonstrated that SIRT3-pyrroline-5-carboxylate reductase 1 (PYCR1) axis was closely assoiated with HF. By activating PYCR1, 2-APQC was shown to enhance mitochondrial proline metabolism, inhibited reactive oxygen species (ROS)-p38 mitogen activated protein kinase (p38MAPK) pathway and thereby protecting against ISO-induced mitochondrialoxidative damage. Moreover, activation of SIRT3 by 2-APQC could facilitate AMP-activated protein kinase (AMPK)-Parkin axis to inhibit ISO-induced necrosis. Together, our results demonstrate that 2-APQC is a targeted SIRT3 activator that alleviates myocardial hypertrophy and fibrosis by regulating mitochondrial homeostasis, which may provide a new clue on exploiting a promising drug candidate for the future HF therapeutics.


Assuntos
Cardiomegalia , Fibrose , Sirtuína 3 , Animais , Sirtuína 3/genética , Sirtuína 3/metabolismo , Cardiomegalia/genética , Cardiomegalia/tratamento farmacológico , Cardiomegalia/patologia , Cardiomegalia/induzido quimicamente , Cardiomegalia/metabolismo , Fibrose/genética , Ratos , Camundongos , Isoproterenol , Humanos , Camundongos Knockout , Homeostase/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/genética , Mitocôndrias/patologia , Mitocôndrias/metabolismo , Mitocôndrias Cardíacas/efeitos dos fármacos , Mitocôndrias Cardíacas/genética , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/patologia , Miocárdio/patologia , Miocárdio/metabolismo , Masculino
10.
Toxicol Appl Pharmacol ; 486: 116951, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38705401

RESUMO

Cardiac lipotoxicity is a prevalent consequence of lipid metabolism disorders occurring in cardiomyocytes, which in turn precipitates the onset of heart failure. Mimetics of brain-derived neurotrophic factor (BDNF), such as 7,8-dihydroxyflavone (DHF) and 7,8,3'-trihydroxyflavone (THF), have demonstrated significant cardioprotective effects. However, it remains unclear whether these mimetics can protect cardiomyocytes against lipotoxicity. The aim of this study was to examine the impact of DHF and THF on the lipotoxic effects induced by palmitic acid (PA), as well as the concurrent mitochondrial dysfunction. H9c2 cells were subjected to treatment with PA alone or in conjunction with DHF or THF. Various factors such as cell viability, lactate dehydrogenase (LDH) release, death ratio, and mitochondrial function including mitochondrial membrane potential (MMP), mitochondrial-derived reactive oxygen species (mito-SOX) production, and mitochondrial respiration were assessed. PA dose-dependently reduced cell viability, which was restored by DHF or THF. Additionally, both DHF and THF decreased LDH content, death ratio, and mito-SOX production, while increasing MMP and regulating mitochondrial oxidative phosphorylation in cardiomyocytes. Moreover, DHF and THF specifically activated Akt signaling. The protective effects of DHF and THF were abolished when an Akt inhibitor was used. In conclusion, BDNF mimetics attenuate PA-induced injury in cardiomyocytes by alleviating mitochondrial impairments through the activation of Akt signaling.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Flavonas , Potencial da Membrana Mitocondrial , Miócitos Cardíacos , Ácido Palmítico , Proteínas Proto-Oncogênicas c-akt , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Ácido Palmítico/toxicidade , Ácido Palmítico/farmacologia , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Ratos , Linhagem Celular , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Flavonas/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Mitocôndrias Cardíacas/efeitos dos fármacos , Mitocôndrias Cardíacas/metabolismo , Espécies Reativas de Oxigênio/metabolismo
12.
Methods Mol Biol ; 2803: 75-86, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38676886

RESUMO

Mitochondria within a cardiomyocyte form a highly dynamic network that undergoes fusion and fission events in response to acute and chronic stressors, such as hyperglycemia and diabetes mellitus. Changes in mitochondrial architecture and morphology not only reflect their capacity for oxidative phosphorylation and ATP synthesis but also impact their subcellular localization and interaction with other organelles. The role of these ultrastructural abnormalities in modulating electrophysiological properties and excitation-contraction coupling remains largely unknown and warrants direct investigation considering the growing appreciation of the functional and structural coupling between the mitochondrial network, the calcium cycling machinery, and sarcolemmal ion channels in the cardiac myocyte. In this Methods in Molecular Biology chapter, we provide a protocol that allows for a quantitative assessment of mitochondrial shape and morphology in control and diabetic hearts that had undergone detailed electrophysiological measurements using high resolution optical action potential (AP) mapping.


Assuntos
Potenciais de Ação , Mitocôndrias Cardíacas , Miócitos Cardíacos , Animais , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/ultraestrutura , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Potenciais de Ação/fisiologia , Diabetes Mellitus Experimental/fisiopatologia , Diabetes Mellitus Experimental/patologia , Ratos , Fenômenos Eletrofisiológicos , Miocárdio/patologia , Miocárdio/metabolismo
13.
Biosci Rep ; 44(5)2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38655715

RESUMO

Heart function is highly dependent on mitochondria, which not only produce energy but also regulate many cellular functions. Therefore, mitochondria are important therapeutic targets in heart failure. Abcb10 is a member of the ABC transporter superfamily located in the inner mitochondrial membrane and plays an important role in haemoglobin synthesis, biliverdin transport, antioxidant stress, and stabilization of the iron transporter mitoferrin-1. However, the mechanisms underlying the impairment of mitochondrial transporters in the heart remain poorly understood. Here, we generated mice with cardiomyocyte-specific loss of Abcb10. The Abcb10 knockouts exhibited progressive worsening of cardiac fibrosis, increased cardiovascular risk markers and mitochondrial structural abnormalities, suggesting that the pathology of heart failure is related to mitochondrial dysfunction. As the mitochondrial dysfunction was observed early but mildly, other factors were considered. We then observed increased Hif1α expression, decreased NAD synthase expression, and reduced NAD+ levels, leading to lysosomal dysfunction. Analysis of ABCB10 knockdown HeLa cells revealed accumulation of Fe2+ and lipid peroxides in lysosomes, leading to ferroptosis. Lipid peroxidation was suppressed by treatment with iron chelators, suggesting that lysosomal iron accumulation is involved in ferroptosis. We also observed that Abcb10 knockout cardiomyocytes exhibited increased ROS production, iron accumulation, and lysosomal hypertrophy. Our findings suggest that Abcb10 is required for the maintenance of cardiac function and reveal a novel pathophysiology of chronic heart failure related to lysosomal function and ferroptosis.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Ferroptose , Lisossomos , Camundongos Knockout , Miócitos Cardíacos , Animais , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Ferroptose/genética , Humanos , Lisossomos/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Camundongos , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/patologia , Mitocôndrias Cardíacas/genética , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/patologia , Células HeLa , Ferro/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Peroxidação de Lipídeos , Masculino
14.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167158, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38588780

RESUMO

OBJECTIVES: Diabetic cardiomyopathy (DCM) is the leading cause of mortality in type 2 diabetes mellitus (T2DM) patients, with its underlying mechanisms still elusive. This study aims to investigate the role of cholesterol-25-monooxygenase (CH25H) in T2DM induced cardiomyopathy. METHODS: High fat diet combined with streptozotocin (HFD/STZ) were used to establish a T2DM model. CH25H and its product 25-hydroxycholesterol (25HC) were detected in the hearts of T2DM model. Gain- or loss-of-function of CH25H were performed by receiving AAV9-cTNT-CH25H or CH25H knockout (CH25H-/-) mice with HFD/STZ treatment. Cardiac function was evaluated using echocardiography, and cardiac tissues were collected for immunoblot analysis, histological assessment and quantitative polymerase chain reaction (qPCR). Mitochondrial morphology and function were evaluated using transmission electron microscopy (TEM) and Seahorse XF Cell Mito Stress Test Kit. RNA-sequence analysis was performed to determine the molecular changes associated with CH25H deletion. RESULTS: CH25H and 25HC were significantly decreased in the hearts of T2DM mice. CH25H-/- mice treated with HFD/STZ exhibited impaired mitochondrial function and structure, increased lipid accumulation, and aggregated cardiac dysfunction. Conversely, T2DM mice receiving AAV9-CH25H displayed cardioprotective effects. Mechanistically, RNA sequencing and qPCR analysis revealed that CH25H deficiency decreased peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) and its target gene expression. Additionally, administration of ZLN005, a potent PGC-1α activator, partially protected against high glucose and palmitic acid induced mitochondria dysfunction and lipid accumulation in vitro. CONCLUSION: Our study provides compelling evidence supporting the protective role of CH25H in T2DM-induced cardiomyopathy. Furthermore, the regulation of PGC-1α may be intricately involved in this cardioprotective process.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Cardiomiopatias Diabéticas , Camundongos Knockout , Animais , Cardiomiopatias Diabéticas/metabolismo , Cardiomiopatias Diabéticas/patologia , Cardiomiopatias Diabéticas/prevenção & controle , Cardiomiopatias Diabéticas/etiologia , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/metabolismo , Camundongos , Masculino , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Esteroide Hidroxilases/metabolismo , Esteroide Hidroxilases/genética , Dieta Hiperlipídica/efeitos adversos , Camundongos Endogâmicos C57BL , Hidroxicolesteróis/metabolismo , Miocárdio/metabolismo , Miocárdio/patologia , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/patologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética
15.
Free Radic Res ; 58(4): 293-310, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38630026

RESUMO

Calorie restriction is a nutritional intervention that reproducibly protects against the maladaptive consequences of cardiovascular diseases. Pathological cardiac hypertrophy leads to cellular growth, dysfunction (with mitochondrial dysregulation), and oxidative stress. The mechanisms behind the cardiovascular protective effects of calorie restriction are still under investigation. In this study, we show that this dietetic intervention prevents cardiac protein elevation, avoids fetal gene reprogramming (atrial natriuretic peptide), and blocks the increase in heart weight per tibia length index (HW/TL) seen in isoproterenol-induced cardiac hypertrophy. Our findings suggest that calorie restriction inhibits cardiac pathological growth while also lowering mitochondrial reverse electron transport-induced hydrogen peroxide formation and improving mitochondrial content. Calorie restriction also attenuated the opening of the Ca2+-induced mitochondrial permeability transition pore. We also found that calorie restriction blocked the negative correlation of antioxidant enzymes (superoxide dimutase and glutatione peroxidase activity) and HW/TL, leading to the maintenance of protein sulphydryls and glutathione levels. Given the nature of isoproterenol-induced cardiac hypertrophy, we investigated whether calorie restriction could alter cardiac beta-adrenergic sensitivity. Using isolated rat hearts in a Langendorff system, we found that calorie restricted hearts have preserved beta-adrenergic signaling. In contrast, hypertrophic hearts (treated for seven days with isoproterenol) were insensitive to beta-adrenergic activation using isoproterenol (50 nM). Despite protecting against cardiac hypertrophy, calorie restriction did not alter the lack of responsiveness to isoproterenol in isolated hearts harvested from isoproterenol-treated rats. These results suggest (through a series of mitochondrial, oxidative stress, and cardiac hemodynamic studies) that calorie restriction possesses beneficial effects against hypertrophic cardiomyopathy.


Assuntos
Cálcio , Restrição Calórica , Estresse Oxidativo , Animais , Ratos , Cálcio/metabolismo , Masculino , Cardiomegalia/metabolismo , Cardiomegalia/prevenção & controle , Transporte de Elétrons , Isoproterenol , Mitocôndrias/metabolismo , Mitocôndrias Cardíacas/metabolismo , Ratos Sprague-Dawley
16.
Acta Physiol (Oxf) ; 240(6): e14151, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38676357

RESUMO

AIMS: Ischaemic heart disease remains a significant cause of mortality globally. A pharmacological agent that protects cardiac mitochondria against oxygen deprivation injuries is welcome in therapy against acute myocardial infarction. Here, we evaluate the effect of large-conductance Ca2+-activated K+ channels (BKCa) activator, Compound Z, in isolated mitochondria under hypoxia and reoxygenation. METHODS: Mitochondria from mice hearts were obtained by differential centrifugation. The isolated mitochondria were incubated with a BKCa channel activator, Compound Z, and subjected to normoxia or hypoxia/reoxygenation. Mitochondrial function was evaluated by measurement of O2 consumption in the complexes I, II, and IV in the respiratory states 1, 2, 3, and by maximal uncoupled O2 uptake, ATP production, ROS production, transmembrane potential, and calcium retention capacity. RESULTS: Incubation of isolated mitochondria with Compound Z under normoxia conditions reduced the mitochondrial functions and induced the production of a significant amount of ROS. However, under hypoxia/reoxygenation, the Compound Z prevented a profound reduction in mitochondrial functions, including reducing ROS production over the hypoxia/reoxygenation group. Furthermore, hypoxia/reoxygenation induced a large mitochondria depolarization, which Compound Z incubation prevented, but, even so, Compound Z created a small depolarization. The mitochondrial calcium uptake was prevented by the BKCa activator, extruding the mitochondrial calcium present before Compound Z incubation. CONCLUSION: The Compound Z acts as a mitochondrial BKCa channel activator and can protect mitochondria function against hypoxia/reoxygenation injury, by handling mitochondrial calcium and transmembrane potential.


Assuntos
Cálcio , Mitocôndrias Cardíacas , Animais , Camundongos , Cálcio/metabolismo , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/efeitos dos fármacos , Masculino , Canais de Potássio Ativados por Cálcio de Condutância Alta/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Camundongos Endogâmicos C57BL , Hipóxia/metabolismo , Potenciais da Membrana/efeitos dos fármacos , Consumo de Oxigênio/efeitos dos fármacos , Oxigênio/metabolismo
17.
J Ethnopharmacol ; 330: 118152, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-38614260

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Xinyang tablet (XYT) has been used for heart failure (HF) for over twenty years in clinical practice, but the underlying molecular mechanism remains poorly understood. AIMS OF THE STUDY: In the present study, we aimed to explore the protective effects of XYT in HF in vivo and in vitro. MATERIALS AND METHODS: Transverse aortic constriction was performed in vivo to establish a mouse model of cardiac pressure overload. Echocardiography, tissue staining, and real-time quantitative PCR (qPCR) were examined to evaluate the protective effects of XYT on cardiac function and structure. Adenosine 5'-triphosphate production, reactive oxygen species staining, and measurement of malondialdehyde and superoxide dismutase was used to detect mitochondrial damage. Mitochondrial ultrastructure was observed by transmission electron microscope. Immunofluorescence staining, qPCR, and Western blotting were performed to evaluate the effect of XYT on the mitochondrial unfolded protein response and mitophagy, and to identify its potential pharmacological mechanism. In vitro, HL-1 cells and neonatal mouse cardiomyocytes were stimulated with Angiotensin II to establish the cell model. Western blotting, qPCR, immunofluorescence staining, and flow cytometry were utilized to determine the effects of XYT on cardiomyocytes. HL-1 cells overexpressing receptor-interacting serum/three-protein kinase 3 (RIPK3) were generated by transfection of RIPK3-overexpressing lentiviral vectors. Cells were then co-treated with XYT to determine the molecular mechanisms. RESULTS: In the present study, XYT was found to exerta protective effect on cardiac function and structure in the pressure overload mice. And it was also found XYT reduced mitochondrial damage by enhancing mitochondrial unfolded protein response and restoring mitophagy. Further studies showed that XYT achieved its cardioprotective role through regulating the RIPK3/FUN14 domain containing 1 (FUNDC1) signaling. Moreover, the overexpression of RIPK3 successfully reversed the XYT-induced protective effects and significantly attenuated the positive effects on the mitochondrial unfolded protein response and mitophagy. CONCLUSIONS: Our findings indicated that XYT prevented pressure overload-induced HF through regulating the RIPK3/FUNDC1-mediated mitochondrial unfolded protein response and mitophagy. The information gained from this study provides a potential strategy for attenuating mitochondrial damage in the context of pressure overload-induced heart failure using XYT.


Assuntos
Modelos Animais de Doenças , Medicamentos de Ervas Chinesas , Camundongos Endogâmicos C57BL , Mitofagia , Miócitos Cardíacos , Resposta a Proteínas não Dobradas , Animais , Mitofagia/efeitos dos fármacos , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Camundongos , Masculino , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/fisiopatologia , Mitocôndrias Cardíacas/efeitos dos fármacos , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/ultraestrutura , Comprimidos , Linhagem Celular , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo
18.
Circ Res ; 134(10): 1292-1305, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38618716

RESUMO

BACKGROUND: During myocardial ischemia/reperfusion (I/R) injury, high levels of matrix Ca2+ and reactive oxygen species (ROS) induce the opening of the mitochondrial permeability transition pore (mPTP), which causes mitochondrial dysfunction and ultimately necrotic death. However, the mechanisms of how these triggers individually or cooperatively open the pore have yet to be determined. METHODS: Here, we use a combination of isolated mitochondrial assays and in vivo I/R surgery in mice. We challenged isolated liver and heart mitochondria with Ca2+, ROS, and Fe2+ to induce mitochondrial swelling. Using inhibitors of the mPTP (cyclosporine A or ADP) lipid peroxidation (ferrostatin-1, MitoQ), we determined how the triggers elicit mitochondrial damage. Additionally, we used the combination of inhibitors during I/R injury in mice to determine if dual inhibition of these pathways is additivity protective. RESULTS: In the absence of Ca2+, we determined that ROS fails to trigger mPTP opening. Instead, high levels of ROS induce mitochondrial dysfunction and rupture independently of the mPTP through lipid peroxidation. As expected, Ca2+ in the absence of ROS induces mPTP-dependent mitochondrial swelling. Subtoxic levels of ROS and Ca2+ synergize to induce mPTP opening. Furthermore, this synergistic form of Ca2+- and ROS-induced mPTP opening persists in the absence of CypD (cyclophilin D), suggesting the existence of a CypD-independent mechanism for ROS sensitization of the mPTP. These ex vivo findings suggest that mitochondrial dysfunction may be achieved by multiple means during I/R injury. We determined that dual inhibition of the mPTP and lipid peroxidation is significantly more protective against I/R injury than individually targeting either pathway alone. CONCLUSIONS: In the present study, we have investigated the relationship between Ca2+ and ROS, and how they individually or synergistically induce mitochondrial swelling. Our findings suggest that Ca2+ mediates mitochondrial damage through the opening of the mPTP, although ROS mediates its damaging effects through lipid peroxidation. However, subtoxic levels both Ca2+ and ROS can induce mPTP-mediated mitochondrial damage. Targeting both of these triggers to preserve mitochondria viability unveils a highly effective therapeutic approach for mitigating I/R injury.


Assuntos
Peroxidação de Lipídeos , Camundongos Endogâmicos C57BL , Mitocôndrias Cardíacas , Mitocôndrias Hepáticas , Proteínas de Transporte da Membrana Mitocondrial , Poro de Transição de Permeabilidade Mitocondrial , Traumatismo por Reperfusão Miocárdica , Espécies Reativas de Oxigênio , Animais , Peroxidação de Lipídeos/efeitos dos fármacos , Poro de Transição de Permeabilidade Mitocondrial/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Camundongos , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/efeitos dos fármacos , Mitocôndrias Cardíacas/patologia , Masculino , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Traumatismo por Reperfusão Miocárdica/patologia , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Mitocôndrias Hepáticas/metabolismo , Mitocôndrias Hepáticas/patologia , Mitocôndrias Hepáticas/efeitos dos fármacos , Cálcio/metabolismo , Dilatação Mitocondrial/efeitos dos fármacos
19.
Int J Mol Sci ; 25(8)2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38674076

RESUMO

Myocardial ischemia/reperfusion injury is reduced by cardioprotective adaptations such as local or remote ischemic conditioning. The cardioprotective stimuli activate signaling cascades, which converge on mitochondria and maintain the function of the organelles, which is critical for cell survival. The signaling cascades include not only extracellular molecules that activate sarcolemmal receptor-dependent or -independent protein kinases that signal at the plasma membrane or in the cytosol, but also involve kinases, which are located to or within mitochondria, phosphorylate mitochondrial target proteins, and thereby modify, e.g., respiration, the generation of reactive oxygen species, calcium handling, mitochondrial dynamics, mitophagy, or apoptosis. In the present review, we give a personal and opinionated overview of selected protein kinases, localized to/within myocardial mitochondria, and summarize the available data on their role in myocardial ischemia/reperfusion injury and protection from it. We highlight the regulation of mitochondrial function by these mitochondrial protein kinases.


Assuntos
Mitocôndrias Cardíacas , Traumatismo por Reperfusão Miocárdica , Transdução de Sinais , Humanos , Animais , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Traumatismo por Reperfusão Miocárdica/patologia , Mitocôndrias Cardíacas/metabolismo , Proteínas Quinases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Mitocôndrias/metabolismo
20.
JCI Insight ; 9(9)2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38564291

RESUMO

Duchenne muscular dystrophy (DMD) is a progressive muscle-wasting disease associated with cardiomyopathy. DMD cardiomyopathy is characterized by abnormal intracellular Ca2+ homeostasis and mitochondrial dysfunction. We used dystrophin and utrophin double-knockout (mdx:utrn-/-) mice in a sarcolipin (SLN) heterozygous-knockout (sln+/-) background to examine the effect of SLN reduction on mitochondrial function in the dystrophic myocardium. Germline reduction of SLN expression in mdx:utrn-/- mice improved cardiac sarco/endoplasmic reticulum (SR) Ca2+ cycling, reduced cardiac fibrosis, and improved cardiac function. At the cellular level, reducing SLN expression prevented mitochondrial Ca2+ overload, reduced mitochondrial membrane potential loss, and improved mitochondrial function. Transmission electron microscopy of myocardial tissues and proteomic analysis of mitochondria-associated membranes showed that reducing SLN expression improved mitochondrial structure and SR-mitochondria interactions in dystrophic cardiomyocytes. These findings indicate that SLN upregulation plays a substantial role in the pathogenesis of cardiomyopathy and that reducing SLN expression has clinical implications in the treatment of DMD cardiomyopathy.


Assuntos
Cardiomiopatias , Distrofina , Camundongos Endogâmicos mdx , Camundongos Knockout , Proteínas Musculares , Distrofia Muscular de Duchenne , Proteolipídeos , Utrofina , Animais , Masculino , Camundongos , Cálcio/metabolismo , Cardiomiopatias/metabolismo , Cardiomiopatias/genética , Cardiomiopatias/patologia , Modelos Animais de Doenças , Distrofina/genética , Distrofina/metabolismo , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/ultraestrutura , Mitocôndrias Cardíacas/genética , Proteínas Musculares/metabolismo , Proteínas Musculares/genética , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/patologia , Miocárdio/metabolismo , Miocárdio/patologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Proteolipídeos/metabolismo , Proteolipídeos/genética , Utrofina/genética , Utrofina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA