Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.694
Filtrar
1.
Nat Commun ; 15(1): 4211, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38760334

RESUMO

The cumulative number of stem cell divisions in a tissue, known as mitotic age, is thought to be a major determinant of cancer-risk. Somatic mutational and DNA methylation (DNAm) clocks are promising tools to molecularly track mitotic age, yet their relationship is underexplored and their potential for cancer risk prediction in normal tissues remains to be demonstrated. Here we build and validate an improved pan-tissue DNAm counter of total mitotic age called stemTOC. We demonstrate that stemTOC's mitotic age proxy increases with the tumor cell-of-origin fraction in each of 15 cancer-types, in precancerous lesions, and in normal tissues exposed to major cancer risk factors. Extensive benchmarking against 6 other mitotic counters shows that stemTOC compares favorably, specially in the preinvasive and normal-tissue contexts. By cross-correlating stemTOC to two clock-like somatic mutational signatures, we confirm the mitotic-like nature of only one of these. Our data points towards DNAm as a promising molecular substrate for detecting mitotic-age increases in normal tissues and precancerous lesions, and hence for developing cancer-risk prediction strategies.


Assuntos
Metilação de DNA , Epigênese Genética , Mitose , Mutação , Neoplasias , Lesões Pré-Cancerosas , Humanos , Mitose/genética , Lesões Pré-Cancerosas/genética , Lesões Pré-Cancerosas/patologia , Neoplasias/genética , Neoplasias/patologia , Células-Tronco/metabolismo
2.
Arch Dermatol Res ; 316(5): 195, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38775978

RESUMO

Chronic arsenic exposure is a global health hazard significantly associated with the development of deleterious cutaneous changes and increased keratinocyte cancer risk. Although arsenic exposure is associated with broad-scale cellular and molecular changes, gaps exist in understanding how these changes impact the skin and facilitate malignant transformation. Recently developed epigenetic "clocks" can accurately predict chronological, biological and mitotic age, as well as telomere length, on the basis of tissue DNA methylation state. Deviations of predicted from expected age (epigenetic age dysregulation) have been associated with numerous complex diseases, increased all-cause mortality and higher cancer risk. We investigated the ability of these algorithms to detect molecular changes associated with chronic arsenic exposure in the context of associated skin lesions. To accomplish this, we utilized a multi-algorithmic approach incorporating seven "clocks" (Horvath, Skin&Blood, PhenoAge, PCPhenoAge, GrimAge, DNAmTL and epiTOC2) to analyze peripheral blood of pediatric and adult cohorts of arsenic-exposed (n = 84) and arsenic-naïve (n = 33) individuals, among whom n = 18 were affected by skin lesions. Arsenic-exposed adults with skin lesions exhibited accelerated epigenetic (Skin&Blood: + 7.0 years [95% CI 3.7; 10.2], q = 6.8 × 10-4), biological (PhenoAge: + 5.8 years [95% CI 0.7; 11.0], q = 7.4 × 10-2, p = 2.8 × 10-2) and mitotic age (epiTOC2: + 19.7 annual cell divisions [95% CI 1.8; 37.7], q = 7.4 × 10-2, p = 3.2 × 10-2) compared to healthy arsenic-naïve individuals; and accelerated epigenetic age (Skin&Blood: + 2.8 years [95% CI 0.2; 5.3], q = 2.4 × 10-1, p = 3.4 × 10-2) compared to lesion-free arsenic-exposed individuals. Moreover, lesion-free exposed adults exhibited accelerated Skin&Blood age (+ 4.2 [95% CI 1.3; 7.1], q = 3.8 × 10-2) compared to their arsenic-naïve counterparts. Compared to the pediatric group, arsenic-exposed adults exhibited accelerated epigenetic (+ 3.1 to 4.4 years (95% CI 1.2; 6.4], q = 2.4 × 10-4-3.1 × 10-3), biological (+ 7.4 to 7.8 years [95% CI 3.0; 12.1] q = 1.6 × 10-3-2.8 × 10-3) and mitotic age (+ 50.0 annual cell divisions [95% CI 15.6; 84.5], q = 7.8 × 10-3), as well as shortened telomere length (- 0.23 kilobases [95% CI - 0.13; - 0.33], q = 2.4 × 10-4), across all seven algorithms. We demonstrate that lifetime arsenic exposure and presence of arsenic-associated skin lesions are associated with accelerated epigenetic, biological and mitotic age, and shortened telomere length, reflecting altered immune signaling and genomic regulation. Our findings highlight the usefulness of DNA methylation-based algorithms in identifying deleterious molecular changes associated with chronic exposure to the heavy metal, serving as potential prognosticators of arsenic-induced cutaneous malignancy.


Assuntos
Arsênio , Metilação de DNA , Epigênese Genética , Encurtamento do Telômero , Humanos , Adulto , Arsênio/efeitos adversos , Arsênio/toxicidade , Feminino , Metilação de DNA/efeitos dos fármacos , Encurtamento do Telômero/efeitos dos fármacos , Masculino , Criança , Adolescente , Adulto Jovem , Pessoa de Meia-Idade , Mitose/efeitos dos fármacos , Mitose/genética , Pele/patologia , Pele/efeitos dos fármacos , Dermatopatias/induzido quimicamente , Dermatopatias/genética , Dermatopatias/patologia , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/induzido quimicamente , Neoplasias Cutâneas/patologia
3.
Int J Mol Sci ; 25(9)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38731808

RESUMO

Single-cell RNA sequencing (scRNAseq) is a rapidly advancing field enabling the characterisation of heterogeneous gene expression profiles within a population. The cell cycle phase is a major contributor to gene expression variance between cells and computational analysis tools have been developed to assign cell cycle phases to cells within scRNAseq datasets. Whilst these tools can be extremely useful, all have the drawback that they classify cells as only G1, S or G2/M. Existing discrete cell phase assignment tools are unable to differentiate between G2 and M and continuous-phase-assignment tools are unable to identify a region corresponding specifically to mitosis in a pseudo-timeline for continuous assignment along the cell cycle. In this study, bulk RNA sequencing was used to identify differentially expressed genes between mitotic and interphase cells isolated based on phospho-histone H3 expression using fluorescence-activated cell sorting. These gene lists were used to develop a methodology which can distinguish G2 and M phase cells in scRNAseq datasets. The phase assignment tools present in Seurat were modified to allow for cell cycle phase assignment of all stages of the cell cycle to identify a mitotic-specific cell population.


Assuntos
Fase G2 , Mitose , Mitose/genética , Humanos , Fase G2/genética , Análise de Célula Única/métodos , Análise de Sequência de RNA/métodos , Histonas/metabolismo , Histonas/genética , Perfilação da Expressão Gênica/métodos , Biologia Computacional/métodos , Software
4.
Nat Genet ; 56(5): 913-924, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38627597

RESUMO

How chronic mutational processes and punctuated bursts of DNA damage drive evolution of the cancer genome is poorly understood. Here, we demonstrate a strategy to disentangle and quantify distinct mechanisms underlying genome evolution in single cells, during single mitoses and at single-strand resolution. To distinguish between chronic (reactive oxygen species (ROS)) and acute (ultraviolet light (UV)) mutagenesis, we microfluidically separate pairs of sister cells from the first mitosis following burst UV damage. Strikingly, UV mutations manifest as sister-specific events, revealing mirror-image mutation phasing genome-wide. In contrast, ROS mutagenesis in transcribed regions is reduced strand agnostically. Successive rounds of genome replication over persisting UV damage drives multiallelic variation at CC dinucleotides. Finally, we show that mutation phasing can be resolved to single strands across the entire genome of liver tumors from F1 mice. This strategy can be broadly used to distinguish the contributions of overlapping cancer relevant mutational processes.


Assuntos
Dano ao DNA , Reparo do DNA , Mitose , Mutagênese , Raios Ultravioleta , Animais , Camundongos , Reparo do DNA/genética , Raios Ultravioleta/efeitos adversos , Dano ao DNA/genética , Mitose/genética , Espécies Reativas de Oxigênio/metabolismo , Mutação , Humanos
6.
Mol Cell ; 84(8): 1398-1400, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38640891

RESUMO

The DNA topological challenges generated by cellular manipulation of extremely long DNA fibers remain poorly understood. In this issue of Molecular Cell, Hildebrand et al.1 describe how mitotic chromosomes are self entangled and that disentanglement requires TOP2 activity in late mitosis.


Assuntos
Cromossomos , DNA Topoisomerases Tipo II , DNA Topoisomerases Tipo II/genética , Cromossomos/genética , DNA/genética , Mitose/genética
7.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1869(5): 159492, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38575107

RESUMO

Obesity is one of the significant health challenges in the world and is highly associated with abnormal adipogenesis. TG-interacting factor 1 (TGIF1) is essential for differentiating murine adipocytes and human adipose tissue-derived stem cells. However, the mode of action needs to be better elucidated. To investigate the roles of TGIF1 in differentiation in-depth, CRISPR/Cas9 knockout technology was performed to generate TGIF1-silenced preadipocytes. The absence of TGIF1 in 3 T3-F442A preadipocytes abolished lipid accumulation throughout the differentiation using Oil Red O staining. Conversely, we established 3 T3-F442A preadipocytes stably expressing TGIF1 and doxycycline-inducible TGIF1 in TGIF1-silenced 3 T3-F442A preadipocytes. Remarkably, the induction of TGIF1 by doxycycline during the initial differentiation phase successfully promoted lipid accumulation in TGIF1-silenced 3 T3-F442A cells. We further explored the mechanisms of TGIF1 in early differentiation. We demonstrated that TGIF1 promoted the mitotic clonal expansion via upregulation of CCAAT/enhancer-binding proteins ß expression, interruption with peroxisome proliferators activated receptor γ downstream regulation, and inhibition of p27kip1 expression. In conclusion, we strengthen the pivotal roles of TGIF1 in early differentiation, which might contribute to resolving obesity-associated metabolic syndromes.


Assuntos
Adipócitos , Adipogenia , Diferenciação Celular , Mitose , PPAR gama , Adipócitos/metabolismo , Adipócitos/citologia , Camundongos , Animais , Adipogenia/genética , PPAR gama/metabolismo , PPAR gama/genética , Mitose/genética , Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Proteína beta Intensificadora de Ligação a CCAAT/genética , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Inibidor de Quinase Dependente de Ciclina p27/genética , Humanos
8.
Biomolecules ; 14(4)2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38672404

RESUMO

Mitosis mediates the accurate separation of daughter cells, and abnormalities are closely related to cancer progression. KIF11, a member of the kinesin family, plays a vital role in the formation and maintenance of the mitotic spindle. Recently, an increasing quantity of data have demonstrated the upregulated expression of KIF11 in various cancers, promoting the emergence and progression of cancers. This suggests the great potential of KIF11 as a prognostic biomarker and therapeutic target. However, the molecular mechanisms of KIF11 in cancers have not been systematically summarized. Therefore, we first discuss the functions of the protein encoded by KIF11 during mitosis and connect the abnormal expression of KIF11 with its clinical significance. Then, we elucidate the mechanism of KIF11 to promote various hallmarks of cancers. Finally, we provide an overview of KIF11 inhibitors and outline areas for future work.


Assuntos
Cinesinas , Mitose , Neoplasias , Cinesinas/metabolismo , Cinesinas/genética , Humanos , Mitose/genética , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Animais , Regulação Neoplásica da Expressão Gênica , Fuso Acromático/metabolismo , Fuso Acromático/genética
9.
EBioMedicine ; 103: 105111, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38583260

RESUMO

BACKGROUND: Lynch syndrome (LS) is one of the most common hereditary cancer syndromes worldwide. Dominantly inherited mutation in one of four DNA mismatch repair genes combined with somatic events leads to mismatch repair deficiency and microsatellite instability (MSI) in tumours. Due to a high lifetime risk of cancer, regular surveillance plays a key role in cancer prevention; yet the observation of frequent interval cancers points to insufficient cancer prevention by colonoscopy-based methods alone. This study aimed to identify precancerous functional changes in colonic mucosa that could facilitate the monitoring and prevention of cancer development in LS. METHODS: The study material comprised colon biopsy specimens (n = 71) collected during colonoscopy examinations from LS carriers (tumour-free, or diagnosed with adenoma, or diagnosed with carcinoma) and a control group, which included sporadic cases without LS or neoplasia. The majority (80%) of LS carriers had an inherited genetic MLH1 mutation. The remaining 20% included MSH2 mutation carriers (13%) and MSH6 mutation carriers (7%). The transcriptomes were first analysed with RNA-sequencing and followed up with Gorilla Ontology analysis and Reactome Knowledgebase and Ingenuity Pathway Analyses to detect functional changes that might be associated with the initiation of the neoplastic process in LS individuals. FINDINGS: With pathway and gene ontology analyses combined with measurement of mitotic perimeters from colonic mucosa and tumours, we found an increased tendency to chromosomal instability (CIN), already present in macroscopically normal LS mucosa. Our results suggest that CIN is an earlier aberration than MSI and may be the initial cancer driving aberration, whereas MSI accelerates tumour formation. Furthermore, our results suggest that MLH1 deficiency plays a significant role in the development of CIN. INTERPRETATION: The results validate our previous findings from mice and highlight early mitotic abnormalities as an important contributor and precancerous marker of colorectal tumourigenesis in LS. FUNDING: This work was supported by grants from the Jane and Aatos Erkko Foundation, the Academy of Finland (330606 and 331284), Cancer Foundation Finland sr, and the Sigrid Jusélius Foundation. Open access is funded by Helsinki University Library.


Assuntos
Neoplasias Colorretais Hereditárias sem Polipose , Instabilidade de Microssatélites , Mitose , Humanos , Neoplasias Colorretais Hereditárias sem Polipose/genética , Neoplasias Colorretais Hereditárias sem Polipose/patologia , Neoplasias Colorretais Hereditárias sem Polipose/complicações , Feminino , Masculino , Mitose/genética , Pessoa de Meia-Idade , Mutação , Adulto , Idoso , Proteína 1 Homóloga a MutL/genética , Perfilação da Expressão Gênica , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Neoplasias Colorretais/etiologia , Carcinogênese/genética , Reparo de Erro de Pareamento de DNA/genética , Transcriptoma
10.
Science ; 383(6690): 1441-1448, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38547292

RESUMO

Mitotic duration is tightly constrained, and extended mitosis is characteristic of problematic cells prone to chromosome missegregation and genomic instability. We show here that mitotic extension leads to the formation of p53-binding protein 1 (53BP1)-ubiquitin-specific protease 28 (USP28)-p53 protein complexes that are transmitted to, and stably retained by, daughter cells. Complexes assembled through a Polo-like kinase 1-dependent mechanism during extended mitosis and elicited a p53 response in G1 that prevented the proliferation of the progeny of cells that experienced an approximately threefold extended mitosis or successive less extended mitoses. The ability to monitor mitotic extension was lost in p53-mutant cancers and some p53-wild-type (p53-WT) cancers, consistent with classification of TP53BP1 and USP28 as tumor suppressors. Cancers retaining the ability to monitor mitotic extension exhibited sensitivity to antimitotic agents.


Assuntos
Proliferação de Células , Mitose , Neoplasias , Proteína 1 de Ligação à Proteína Supressora de Tumor p53 , Ubiquitina Tiolesterase , Humanos , Proliferação de Células/genética , Instabilidade Genômica , Mitose/efeitos dos fármacos , Mitose/genética , Neoplasias/genética , Neoplasias/patologia , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Ubiquitina Tiolesterase/genética , Ubiquitina Tiolesterase/metabolismo , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/genética , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/metabolismo , Linhagem Celular Tumoral , Quinase 1 Polo-Like/metabolismo , Antimitóticos/farmacologia , Resistencia a Medicamentos Antineoplásicos
11.
Mol Cell ; 84(8): 1422-1441.e14, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38521067

RESUMO

The topological state of chromosomes determines their mechanical properties, dynamics, and function. Recent work indicated that interphase chromosomes are largely free of entanglements. Here, we use Hi-C, polymer simulations, and multi-contact 3C and find that, by contrast, mitotic chromosomes are self-entangled. We explore how a mitotic self-entangled state is converted into an unentangled interphase state during mitotic exit. Most mitotic entanglements are removed during anaphase/telophase, with remaining ones removed during early G1, in a topoisomerase-II-dependent process. Polymer models suggest a two-stage disentanglement pathway: first, decondensation of mitotic chromosomes with remaining condensin loops produces entropic forces that bias topoisomerase II activity toward decatenation. At the second stage, the loops are released, and the formation of new entanglements is prevented by lower topoisomerase II activity, allowing the establishment of unentangled and territorial G1 chromosomes. When mitotic entanglements are not removed in experiments and models, a normal interphase state cannot be acquired.


Assuntos
Cromossomos , DNA Topoisomerases Tipo II , DNA Topoisomerases Tipo II/genética , Cromossomos/genética , Mitose/genética , Interfase/genética , Polímeros
12.
Sci Rep ; 14(1): 4461, 2024 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-38396175

RESUMO

The identification of clinically-relevant biomarkers is of upmost importance for the management of cancer, from diagnosis to treatment choices. We performed a pan-cancer analysis of the mitotic checkpoint budding uninhibited by benzimidazole 1 gene BUB1, in the attempt to ascertain its diagnostic and prognostic values, specifically in the context of drug response. BUB1 was found to be overexpressed in the majority of cancers, and particularly elevated in clinically aggressive molecular subtypes. Its expression was correlated with clinico-phenotypic features, notably tumour staging, size, invasion, hypoxia, and stemness. In terms of prognostic value, the expression of BUB1 bore differential clinical outcomes depending on the treatment administered in TCGA cancer cohorts, suggesting sensitivity or resistance, depending on the expression levels. We also integrated in vitro drug sensitivity data from public projects based on correlation between drug efficacy and BUB1 expression to produce a list of candidate compounds with differential responses according to BUB1 levels. Gene Ontology enrichment analyses revealed that BUB1 overexpression in cancer is associated with biological processes related to mitosis and chromosome segregation machinery, reflecting the mechanisms of action of drugs with a differential effect based on BUB1 expression.


Assuntos
Neoplasias , Proteínas Serina-Treonina Quinases , Humanos , Proteínas Serina-Treonina Quinases/metabolismo , Mitose/genética , Neoplasias/tratamento farmacológico , Neoplasias/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo
13.
Mol Cell ; 84(6): 1003-1020.e10, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38359824

RESUMO

The high incidence of whole-arm chromosome aneuploidy and translocations in tumors suggests instability of centromeres, unique loci built on repetitive sequences and essential for chromosome separation. The causes behind this fragility and the mechanisms preserving centromere integrity remain elusive. We show that replication stress, hallmark of pre-cancerous lesions, promotes centromeric breakage in mitosis, due to spindle forces and endonuclease activities. Mechanistically, we unveil unique dynamics of the centromeric replisome distinct from the rest of the genome. Locus-specific proteomics identifies specialized DNA replication and repair proteins at centromeres, highlighting them as difficult-to-replicate regions. The translesion synthesis pathway, along with other factors, acts to sustain centromere replication and integrity. Prolonged stress causes centromeric alterations like ruptures and translocations, as observed in ovarian cancer models experiencing replication stress. This study provides unprecedented insights into centromere replication and integrity, proposing mechanistic insights into the origins of centromere alterations leading to abnormal cancerous karyotypes.


Assuntos
Centrômero , Sequências Repetitivas de Ácido Nucleico , Humanos , Centrômero/genética , Mitose/genética , Instabilidade Genômica
14.
J Cell Sci ; 137(5)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38334041

RESUMO

Cells have evolved intricate mechanisms for dividing their contents in the most symmetric way during mitosis. However, a small proportion of cell divisions results in asymmetric segregation of cellular components, which leads to differences in the characteristics of daughter cells. Although the classical function of asymmetric cell division (ACD) in the regulation of pluripotency is the generation of one differentiated daughter cell and one self-renewing stem cell, recent evidence suggests that ACD plays a role in other physiological processes. In cancer, tumor heterogeneity can result from the asymmetric segregation of genetic material and other cellular components, resulting in cell-to-cell differences in fitness and response to therapy. Defining the contribution of ACD in generating differences in key features relevant to cancer biology is crucial to advancing our understanding of the causes of tumor heterogeneity and developing strategies to mitigate or counteract it. In this Review, we delve into the occurrence of asymmetric mitosis in cancer cells and consider how ACD contributes to the variability of several phenotypes. By synthesizing the current literature, we explore the molecular mechanisms underlying ACD, the implications of phenotypic heterogeneity in cancer, and the complex interplay between these two phenomena.


Assuntos
Divisão Celular Assimétrica , Neoplasias , Humanos , Mitose/genética , Neoplasias/genética , Células-Tronco , Diferenciação Celular
15.
Methods Cell Biol ; 181: 43-58, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38302243

RESUMO

Senescence is a state of irreversible cell cycle arrest accompanied by the acquisition of the senescence-associated secretory phenotype (SASP), which is activated in response to a variety of damaging stimuli, including genotoxic therapy. Accumulating evidence indicates that mitotic stress also promotes entry into senescence. This occurs via a mechanism involving defective mitoses and mitotic arrest, followed by abortion of cell division and slippage in the G1 phase. In this process, mitotic slippage leads to the generation of senescent cells characterized by a large cell body and a multinucleated and/or enlarged nuclear size. Here, we provide a detailed protocol for the assessment of cell proliferation and mitotic slippage in colorectal cancer cells upon pharmacological inhibition of the mitotic kinesin KIF11, best known as EG5. This approach can be used for preliminary characterization of senescence induction by therapeutics, but requires validation with standard senescence assays.


Assuntos
Apoptose , Mitose , Microscopia de Vídeo , Mitose/genética , Proliferação de Células
16.
Semin Cancer Biol ; 99: 45-55, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38346544

RESUMO

Accurate and complete DNA duplication is critical for maintaining genome integrity. Multiple mechanisms regulate when and where DNA replication takes place, to ensure that the entire genome is duplicated once and only once per cell cycle. Although the bulk of the genome is copied during the S phase of the cell cycle, increasing evidence suggests that parts of the genome are replicated in G2 or mitosis, in a last attempt to secure that daughter cells inherit an accurate copy of parental DNA. Remaining unreplicated gaps may be passed down to progeny and replicated in the next G1 or S phase. These findings challenge the long-established view that genome duplication occurs strictly during the S phase, bridging DNA replication to DNA repair and providing novel therapeutic strategies for cancer treatment.


Assuntos
Replicação do DNA , Mitose , Humanos , Fase S/genética , Ciclo Celular/genética , Replicação do DNA/genética , Mitose/genética , DNA
17.
Nat Struct Mol Biol ; 31(3): 513-522, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38196033

RESUMO

Mitotic bookmarking transcription factors (TFs) are thought to mediate rapid and accurate reactivation after mitotic gene silencing. However, the loss of individual bookmarking TFs often leads to the deregulation of only a small proportion of their mitotic targets, raising doubts on the biological significance and importance of their bookmarking function. Here we used targeted proteomics of the mitotic bookmarking TF ESRRB, an orphan nuclear receptor, to discover a large redundancy in mitotic binding among members of the protein super-family of nuclear receptors. Focusing on the nuclear receptor NR5A2, which together with ESRRB is essential in maintaining pluripotency in mouse embryonic stem cells, we demonstrate conjoint bookmarking activity of both factors on promoters and enhancers of a large fraction of active genes, particularly those most efficiently reactivated in G1. Upon fast and simultaneous degradation of both factors during mitotic exit, hundreds of mitotic targets of ESRRB/NR5A2, including key players of the pluripotency network, display attenuated transcriptional reactivation. We propose that redundancy in mitotic bookmarking TFs, especially nuclear receptors, confers robustness to the reestablishment of gene regulatory networks after mitosis.


Assuntos
Cromatina , Fatores de Transcrição , Animais , Camundongos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Mitose/genética , Sequências Reguladoras de Ácido Nucleico , Células-Tronco Embrionárias Murinas/metabolismo
18.
Cell Death Dis ; 15(1): 74, 2024 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-38242874

RESUMO

Copy number variations (CNVs) play a vital role in regulating genes expression and tumorigenesis. We explored the copy number alterations in early-stage lung adenocarcinoma using high-throughput sequencing and nucleic acid flight mass spectrometry technology, and found that 8q22.1-22.2 is frequently amplified in lung adenocarcinoma tissues. COX6C localizes on the region and its expression is notably enhanced that driven by amplification in lung adenocarcinoma. Knockdown of COX6C significantly inhibits the cell proliferation, and induces S-G2/M cell cycle arrest, mitosis deficiency and apoptosis. Moreover, COX6C depletion causes a deficiency in mitochondrial fusion, and impairment of oxidative phosphorylation. Mechanistically, COX6C-induced mitochondrial deficiency stimulates ROS accumulation and activates AMPK pathway, then leading to abnormality in spindle formation and chromosome segregation, activating spindle assemble checkpoint, causing mitotic arrest, and ultimately inducing cell apoptosis. Collectively, we suggested that copy amplification-mediated COX6C upregulation might serves as a prospective biomarker for prognosis and targeting therapy in patients with lung adenocarcinoma.


Assuntos
Adenocarcinoma de Pulmão , Proliferação de Células , Complexo IV da Cadeia de Transporte de Elétrons , Neoplasias Pulmonares , Humanos , Adenocarcinoma de Pulmão/genética , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Apoptose/genética , Pontos de Checagem do Ciclo Celular/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Variações do Número de Cópias de DNA/genética , Pontos de Checagem da Fase G2 do Ciclo Celular , Neoplasias Pulmonares/patologia , Mitose/genética , Espécies Reativas de Oxigênio/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/genética , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo
19.
Mol Cell ; 84(1): 55-69, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38029753

RESUMO

Mitotic cell division is tightly monitored by checkpoints that safeguard the genome from instability. Failures in accurate chromosome segregation during mitosis can cause numerical aneuploidy, which was hypothesized by Theodor Boveri over a century ago to promote tumorigenesis. Recent interrogation of pan-cancer genomes has identified unexpected classes of chromosomal abnormalities, including complex rearrangements arising through chromothripsis. This process is driven by mitotic errors that generate abnormal nuclear structures that provoke extensive yet localized shattering of mis-segregated chromosomes. Here, we discuss emerging mechanisms underlying chromothripsis from micronuclei and chromatin bridges, as well as highlight how this mutational cascade converges on the DNA damage response. A fundamental understanding of these catastrophic processes will provide insight into how initial errors in mitosis can precipitate rapid cancer genome evolution.


Assuntos
Cromotripsia , Neoplasias , Humanos , Aberrações Cromossômicas , Mitose/genética , Instabilidade Genômica , Neoplasias/genética
20.
J Med Genet ; 61(3): 262-269, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-37852749

RESUMO

BACKGROUND: High myopia (HM) refers to an eye refractive error exceeding -5.00 D, significantly elevating blindness risk. The underlying mechanism of HM remains elusive. Given the extensive genetic heterogeneity and vast genetic base opacity, it is imperative to identify more causative genes and explore their pathogenic roles in HM. METHODS: We employed exome sequencing to pinpoint the causal gene in an HM family. Sanger sequencing was used to confirm and analyse the gene mutations in this family and 200 sporadic HM cases. Single-cell RNA sequencing was conducted to evaluate the gene's expression patterns in developing human and mouse retinas. The CRISPR/Cas9 system facilitated the gene knockout cells, aiding in the exploration of the gene's function and its mutations. Immunofluorescent staining and immunoblot techniques were applied to monitor the functional shifts of the gene mutations at the cellular level. RESULTS: A suspected nonsense mutation (c.C172T, p.Q58X) in CCDC66 was found to be co-segregated with the HM phenotype in the family. Additionally, six other rare variants were identified among the 200 sporadic patients. CCDC66 was consistently expressed in the embryonic retinas of both humans and mice. Notably, in CCDC66-deficient HEK293 cells, there was a decline in cell proliferation, microtube polymerisation rate and ace-tubulin level. Furthermore, the mutated CCDC66 failed to synchronise with the tubulin system during Hela cell mitosis, unlike its wild type counterpart. CONCLUSIONS: Our research indicates that the CCDC66 variant c.C172T is associated with HM. A deficiency in CCDC66 might disrupt cell proliferation by influencing the mitotic process during retinal growth, leading to HM.


Assuntos
Miopia , Tubulina (Proteína) , Humanos , Animais , Camundongos , Tubulina (Proteína)/genética , Células HeLa , Células HEK293 , Miopia/genética , Mutação , Mitose/genética , Proteínas do Olho/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA