Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 330
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(21): e2318874121, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38753510

RESUMO

The single-pass transmembrane protein Stromal Interaction Molecule 1 (STIM1), located in the endoplasmic reticulum (ER) membrane, possesses two main functions: It senses the ER-Ca2+ concentration and directly binds to the store-operated Ca2+ channel Orai1 for its activation when Ca2+ recedes. At high resting ER-Ca2+ concentration, the ER-luminal STIM1 domain is kept monomeric but undergoes di/multimerization once stores are depleted. Luminal STIM1 multimerization is essential to unleash the STIM C-terminal binding site for Orai1 channels. However, structural basis of the luminal association sites has so far been elusive. Here, we employed molecular dynamics (MD) simulations and identified two essential di/multimerization segments, the α7 and the adjacent region near the α9-helix in the sterile alpha motif (SAM) domain. Based on MD results, we targeted the two STIM1 SAM domains by engineering point mutations. These mutations interfered with higher-order multimerization of ER-luminal fragments in biochemical assays and puncta formation in live-cell experiments upon Ca2+ store depletion. The STIM1 multimerization impeded mutants significantly reduced Ca2+ entry via Orai1, decreasing the Ca2+ oscillation frequency as well as store-operated Ca2+ entry. Combination of the ER-luminal STIM1 multimerization mutations with gain of function mutations and coexpression of Orai1 partially ameliorated functional defects. Our data point to a hydrophobicity-driven binding within the ER-luminal STIM1 multimer that needs to switch between resting monomeric and activated multimeric state. Altogether, these data reveal that interactions between SAM domains of STIM1 monomers are critical for multimerization and activation of the protein.


Assuntos
Cálcio , Retículo Endoplasmático , Simulação de Dinâmica Molecular , Proteínas de Neoplasias , Proteína ORAI1 , Multimerização Proteica , Molécula 1 de Interação Estromal , Molécula 1 de Interação Estromal/metabolismo , Molécula 1 de Interação Estromal/genética , Molécula 1 de Interação Estromal/química , Humanos , Proteínas de Neoplasias/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/química , Retículo Endoplasmático/metabolismo , Cálcio/metabolismo , Proteína ORAI1/metabolismo , Proteína ORAI1/genética , Proteína ORAI1/química , Domínios Proteicos , Células HEK293 , Sítios de Ligação , Ligação Proteica
2.
Sci Rep ; 14(1): 11243, 2024 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-38755179

RESUMO

Immune thrombocytopenia (ITP) is an autoimmune disease caused by T-cell dysfunction. Recently, several studies have shown that a disturbed Th17/Treg balance contributes to the development of ITP. MicroRNAs (miRNAs) are small noncoding RNA moleculesthat posttranscriptionally regulate gene expression. Emerging evidences have demonstrated that miRNAs play an important role in regulating the Th17/Treg balance. In the present study, we found that miR-641 was upregulated in ITP patients. In primary T cells, overexpression of miR-641 could cause downregulation of its target genes STIM1 and SATB1, thus inducing a Th17 (upregulated)/Treg (downregulated) imbalance. Inhibition of miR-641 by a miR-641 sponge in primary T cells of ITP patients or by antagomiR-641 in an ITP murine model could cause upregulation of STIM1 and SATB1, thus restoring Th17/Treg homeostasis. These results suggested that the miR-641-STIM/SATB1 axis plays an important role in regulating the Th17/Treg balance in ITP.


Assuntos
Proteínas de Ligação à Região de Interação com a Matriz , MicroRNAs , Púrpura Trombocitopênica Idiopática , Molécula 1 de Interação Estromal , Linfócitos T Reguladores , Células Th17 , MicroRNAs/genética , MicroRNAs/metabolismo , Proteínas de Ligação à Região de Interação com a Matriz/genética , Proteínas de Ligação à Região de Interação com a Matriz/metabolismo , Células Th17/imunologia , Células Th17/metabolismo , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Molécula 1 de Interação Estromal/genética , Molécula 1 de Interação Estromal/metabolismo , Humanos , Animais , Camundongos , Púrpura Trombocitopênica Idiopática/imunologia , Púrpura Trombocitopênica Idiopática/genética , Púrpura Trombocitopênica Idiopática/metabolismo , Feminino , Masculino , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Adulto , Pessoa de Meia-Idade , Regulação da Expressão Gênica , Modelos Animais de Doenças
3.
J Clin Immunol ; 44(4): 94, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38578569

RESUMO

PURPOSE: Deficiency of stromal interaction molecule 1 (STIM1) results in combined immunodeficiency accompanied by extra-immunological findings like enamel defects and myopathy. We here studied a patient with a STIM1 loss-of-function mutation who presented with severe lymphoproliferation. We sought to explore the efficacy of the mTOR inhibitor rapamycin in controlling disease manifestations and reversing aberrant T-cell subsets and functions, which has never been used previously in this disorder. METHODS: Clinical findings of the patient were collected over time. We performed immunological evaluations before and after initiation of rapamycin treatment, including detailed lymphocyte subset analyses, alterations in frequencies of circulating T follicular helper (cTFH) and regulatory T (Treg) cells and their subtypes as well as T cell activation and proliferation capacities. RESULTS: A novel homozygous exon 2 deletion in STIM1 was detected in a 3-year-old girl with severe lymphoproliferation, recurrent infections, myopathy, iris hypoplasia, and enamel hypoplasia. Lymphoproliferation was associated with severe T-cell infiltrates. The deletion resulted in a complete loss of protein expression, associated with a lack of store-operated calcium entry response, defective T-cell activation, proliferation, and cytokine production. Interestingly, patient blood contained fewer cTFH and increased circulating follicular regulatory (cTFR) cells. Abnormal skewing towards TH2-like responses in certain T-cell subpopulations like cTFH, non-cTFH memory T-helper, and Treg cells was associated with increased eosinophil numbers and serum IgE levels. Treatment with rapamycin controlled lymphoproliferation, improved T-cell activation and proliferation capacities, reversed T-cell responses, and repressed high IgE levels and eosinophilia. CONCLUSIONS: This study enhances our understanding of STIM1 deficiency by uncovering additional abnormal T-cell responses, and reveals for the first time the potential therapeutic utility of rapamycin for this disorder.


Assuntos
Doenças Musculares , Sirolimo , Feminino , Humanos , Pré-Escolar , Molécula 1 de Interação Estromal/genética , Subpopulações de Linfócitos T , Imunoglobulina E , Proteínas de Neoplasias
4.
Ann Clin Lab Sci ; 54(1): 17-25, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38514055

RESUMO

OBJECTIVE: Diabetic cardiomyopathy (DCM) is the most common cardiovascular complication of type 2 diabetes mellitus (T2DM). Patients affected with DCM face a notably higher risk of progressing to congestive heart failure compared to other populations. Myocardial hypertrophy, a clearly confirmed pathological change in DCM, plays an important role in the development of DCM, with abnormal Ca2+ homeostasis serving as the key signal to induce myocardial hypertrophy. Therefore, investigating the mechanism of Ca2+ transport is of great significance for the prevention and treatment of myocardial hypertrophy in T2DM. METHODS: The rats included in the experiment were divided into wild type (WT) group and T2DM group. The T2DM rat model was established by feeding the rats with high-fat and high-sugar diets for three months combined with low dose of streptozotocin (100mg/kg). Afterwards, primary rat cardiomyocytes were isolated and cultured, and cardiomyocyte hypertrophy was induced through high-glucose treatment. Subsequently, mechanistic investigations were carried out through transfection with si-STIM1 and oe-STIM1. Western blot (WB) was used to detect the expression of the STIM1, Orai1 and p-CaMKII. qRT-PCR was used to detect mRNA levels of myocardial hypertrophy marker proteins. Cell surface area was detected using TRITC-Phalloidin staining, and intracellular Ca2+ concentration in cardiomyocytes was measured using Fluo-4 fluorescence staining. RESULTS: Through animal experiments, an upregulation of Orai1 and STIM1 was revealed in the rat model of myocardial hypertrophy induced by T2DM. Meanwhile, through cell experiments, it was found that in high glucose (HG)-induced hypertrophic cardiomyocytes, the expression of STIM1, Orai1, and p-CaMKII was upregulated, along with increased levels of store-operated Ca2+ entry (SOCE) and abnormal Ca2+ homeostasis. However, when STIM1 was downregulated in HG-induced cardiomyocytes, SOCE levels decreased and p-CaMKII was downregulated, resulting in an improvement in myocardial hypertrophy. To further elucidate the mechanism of action involving SOCE and CaMKII in T2DM-induced myocardial hypertrophy, high-glucose cardiomyocytes were respectively treated with BTP2 (SOCE blocker) and KN-93 (CaMKII inhibitor), and the results showed that STIM1 can mediate SOCE, thereby affecting the phosphorylation level of CaMKII and improving cardiomyocyte hypertrophy. CONCLUSION: STIM1/Orai1-mediated SOCE regulates p-CaMKII levels, thereby inducing myocardial hypertrophy in T2DM.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina , Cálcio , Cardiomegalia , Diabetes Mellitus Tipo 2 , Cardiomiopatias Diabéticas , Glucose , Proteína ORAI1 , Molécula 1 de Interação Estromal , Animais , Ratos , Cálcio/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Cardiomegalia/etiologia , Cardiomegalia/metabolismo , Diabetes Mellitus Tipo 2/complicações , Glucose/metabolismo , Glucose/farmacologia , Proteína ORAI1/genética , Proteína ORAI1/metabolismo , Molécula 1 de Interação Estromal/genética , Molécula 1 de Interação Estromal/metabolismo , Regulação para Cima , Cardiomiopatias Diabéticas/complicações , Ratos Sprague-Dawley , Masculino
5.
Cell Calcium ; 119: 102871, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38537434

RESUMO

The stromal interaction molecules (STIMs) are the sarcoplasmic reticulum (SR) Ca2+ sensors that trigger store-operated Ca2+ entry (SOCE) in a variety of cell types. While STIM1 isoform has been the focus of the research in cardiac pathophysiology, the function of the homolog STIM2 remains unknown. Using Ca2+ imaging and patch-clamp techniques, we showed that knockdown (KD) of STIM2 by siRNAs increased SOCE and the ISOC current in neonatal rat ventricular cardiomyocytes (NRVMs). Within this cardiomyocyte model, we identified the transcript expression of Stim2.1 and Stim2.2 splice variants, with predominance for Stim2.2. Using conventional and super-resolution confocal microscopy (STED), we found that exogenous STIM2.1 and STIM2.2 formed pre-clusters with a reticular organization at rest. Following SR Ca2+ store depletion, some STIM2.1 and STIM2.2 clusters were translocated to SR-plasma membrane (PM) junctions and co-localized with Orai1. The overexpression strategy revealed that STIM2.1 suppressed Orai1-mediated SOCE and the ISOC current while STIM2.2 enhanced SOCE. STIM2.2-enhanced SOCE was also dependent on TRPC1 and TRPC4. Even if STIM2 KD or splice variants overexpression did not affect cytosolic Ca2+ cycling, we observed, using Rhod-2/AM Ca2+ imaging, that Orai1 inhibition or STIM2.1 overexpression abolished the mitochondrial Ca2+ (mCa2+) uptake, as opposed to STIM2 KD. We also found that STIM2 was present in the mitochondria-associated endoplasmic reticulum (ER) membranes (MAMs) by interacting with the inositol trisphosphate receptors (IP3Rs), voltage-dependent anion channel (VDAC), mitochondrial Ca2+ uniporter (MCU), and mitofusin-2 (MNF2). Our results suggested that, in NRVMs, STIM2.1 constitutes the predominant functional variant that negatively regulates Orai1-generated SOCE. It participates in the control of mCa2+ uptake capacity possibly via the STIM2-IP3Rs-VDAC-MCU and MNF2 complex.


Assuntos
Cálcio , Miócitos Cardíacos , Molécula 1 de Interação Estromal , Animais , Ratos , Transporte Biológico , Cálcio/metabolismo , Canais de Cálcio/metabolismo , Sinalização do Cálcio , Homeostase , Mitocôndrias/metabolismo , Miócitos Cardíacos/metabolismo , Proteína ORAI1/metabolismo , Molécula 1 de Interação Estromal/genética , Molécula 1 de Interação Estromal/metabolismo
6.
J Clin Invest ; 134(7)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38300705

RESUMO

Stromal interaction molecule 1 (STIM1) is a Ca2+ sensor located in the sarcoplasmic reticulum (SR) of skeletal muscle, where it is best known for its role in store-operated Ca2+ entry (SOCE). Genetic syndromes resulting from STIM1 mutations are recognized as a cause of muscle weakness and atrophy. Here, we focused on a gain-of-function mutation that occurs in humans and mice (STIM1+/D84G mice), in which muscles exhibited constitutive SOCE. Unexpectedly, this constitutive SOCE did not affect global Ca2+ transients, SR Ca2+ content, or excitation-contraction coupling (ECC) and was therefore unlikely to underlie the reduced muscle mass and weakness observed in these mice. Instead, we demonstrate that the presence of D84G STIM1 in the nuclear envelope of STIM1+/D84G muscle disrupted nuclear-cytosolic coupling, causing severe derangement in nuclear architecture, DNA damage, and altered lamina A-associated gene expression. Functionally, we found that D84G STIM1 reduced the transfer of Ca2+ from the cytosol to the nucleus in myoblasts, resulting in a reduction of [Ca2+]N. Taken together, we propose a novel role for STIM1 in the nuclear envelope that links Ca2+ signaling to nuclear stability in skeletal muscle.


Assuntos
Debilidade Muscular , Membrana Nuclear , Molécula 1 de Interação Estromal , Animais , Humanos , Camundongos , Cálcio/metabolismo , Sinalização do Cálcio , Debilidade Muscular/genética , Debilidade Muscular/metabolismo , Músculo Esquelético/metabolismo , Mutação , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Membrana Nuclear/genética , Membrana Nuclear/metabolismo , Proteína ORAI1/genética , Molécula 1 de Interação Estromal/genética , Molécula 1 de Interação Estromal/metabolismo
7.
Nucleic Acids Res ; 52(5): 2389-2415, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38224453

RESUMO

DNA damage represents a challenge for cells, as this damage must be eliminated to preserve cell viability and the transmission of genetic information. To reduce or eliminate unscheduled chemical modifications in genomic DNA, an extensive signaling network, known as the DNA damage response (DDR) pathway, ensures this repair. In this work, and by means of a proteomic analysis aimed at studying the STIM1 protein interactome, we have found that STIM1 is closely related to the protection from endogenous DNA damage, replicative stress, as well as to the response to interstrand crosslinks (ICLs). Here we show that STIM1 has a nuclear localization signal that mediates its translocation to the nucleus, and that this translocation and the association of STIM1 to chromatin increases in response to mitomycin-C (MMC), an ICL-inducing agent. Consequently, STIM1-deficient cell lines show higher levels of basal DNA damage, replicative stress, and increased sensitivity to MMC. We show that STIM1 normalizes FANCD2 protein levels in the nucleus, which explains the increased sensitivity of STIM1-KO cells to MMC. This study not only unveils a previously unknown nuclear function for the endoplasmic reticulum protein STIM1 but also expands our understanding of the genes involved in DNA repair.


Assuntos
Núcleo Celular , Dano ao DNA , Molécula 1 de Interação Estromal , Cromatina/genética , Reparo do DNA , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/genética , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/metabolismo , Mitomicina/farmacologia , Proteômica , Molécula 1 de Interação Estromal/genética , Molécula 1 de Interação Estromal/metabolismo , Humanos , Núcleo Celular/metabolismo , Proteínas de Neoplasias/metabolismo
8.
Toxicol Lett ; 393: 69-77, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38281554

RESUMO

Lead (Pb) is a non-biodegradable environmental pollutant that can lead to neurotoxicity by inducing neuroinflammation. Microglial activation plays a key role in neuroinflammation, and microglial migration is one of its main features. However, whether Pb affects microglial migration has not yet been elucidated. Herein, the effect of Pb on microglial migration was investigated using BV-2 microglial cells and primary microglial cells. The results showed that cell activation markers (TNF-α and CD206) in BV-2 cells were increased after Pb treatment. The migration ability of microglia was inhibited by Pb. Both store-operated calcium entry (SOCE) and the Ca2+ release-activated Ca2+ (CRAC) current were downregulated by microglia treatment with Pb in a dose-dependent manner. However, there was no statistical difference in the protein levels of stromal interaction molecule (STIM) 1, STIM2, or Ca2+ release-activated Ca2+ channel protein (Orai) 1 in microglia. The external Ca2+ influx and cell migration ability were restored to a certain extent after overexpression of either STIM1 or its CRAC activation domain in microglia. These results indicated that Pb inhibits microglial migration by downregulation of SOCE and impairment of the function of STIM1.


Assuntos
Sinalização do Cálcio , Microglia , Humanos , Cálcio/metabolismo , Chumbo/toxicidade , Chumbo/metabolismo , Doenças Neuroinflamatórias , Proteína ORAI1/genética , Proteína ORAI1/metabolismo , Proteína ORAI1/farmacologia , Molécula 1 de Interação Estromal/genética , Molécula 1 de Interação Estromal/metabolismo , Movimento Celular
9.
J Hypertens ; 42(1): 118-128, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-37711097

RESUMO

BACKGROUND: The stroke-prone spontaneously hypertensive rat (SHRSP) is a genetic model for cerebral stroke. Although a recent study on a congenic SHRSP suggested that a nonsense mutation in stromal interaction molecule 1 ( Stim1 ) encoding a major component of store-operated Ca 2+ entry was a causal variant for stroke in SHRSP, this was not conclusive because the congenic region including Stim1 in that rat was too wide. On the other hand, we demonstrated that the Wistar-Kyoto (WKY)-derived congenic fragment adjacent to Stim1 exacerbated stroke susceptibility in a congenic SHRSP called SPwch1.71. In the present study, we directly examined the effects of the Stim1 genotype on stroke susceptibility using SHRSP in which wild-type Stim1 was knocked in (called Stim1 -KI SHRSP). The combined effects of Stim1 and the congenic fragment of SPwch1.71 were also investigated. METHODS: Stroke susceptibility was assessed by the stroke symptom-free and survival periods based on observations of behavioral symptoms and reductions in body weight. RESULTS: Stim1 -KI SHRSP was more resistant to, while SPwch1.71 was more susceptible to stroke than the original SHRSP. Introgression of the wild-type Stim1 of Stim1 -KI SHRSP into SPwch1.71 by the generation of F1 rats ameliorated stroke susceptibility in SPwch1.71. Gene expression, whole-genome sequencing, and biochemical analyses identified Art2b , Folr1 , and Pde2a as possible candidate genes accelerating stroke in SPwch1.71. CONCLUSION: The substitution of SHRSP-type Stim1 to wild-type Stim1 ameliorated stroke susceptibility in both SHRSP and SPwch1.71, indicating that the nonsense mutation in Stim1 is causally related to stroke susceptibility in SHRSP.


Assuntos
Hipertensão , Acidente Vascular Cerebral , Humanos , Ratos , Animais , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Hipertensão/complicações , Hipertensão/genética , Hipertensão/metabolismo , Cromossomos Humanos Par 1/metabolismo , Molécula 1 de Interação Estromal/genética , Códon sem Sentido , Genótipo , Acidente Vascular Cerebral/etiologia
10.
J Biol Chem ; 299(11): 105310, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37778728

RESUMO

T-cell receptor stimulation triggers cytosolic Ca2+ signaling by inositol-1,4,5-trisphosphate (IP3)-mediated Ca2+ release from the endoplasmic reticulum (ER) and Ca2+ entry through Ca2+ release-activated Ca2+ (CRAC) channels gated by ER-located stromal-interacting molecules (STIM1/2). Physiologically, cytosolic Ca2+ signaling manifests as regenerative Ca2+ oscillations, which are critical for nuclear factor of activated T-cells-mediated transcription. In most cells, Ca2+ oscillations are thought to originate from IP3 receptor-mediated Ca2+ release, with CRAC channels indirectly sustaining them through ER refilling. Here, experimental and computational evidence support a multiple-oscillator mechanism in Jurkat T-cells whereby both IP3 receptor and CRAC channel activities oscillate and directly fuel antigen-evoked Ca2+ oscillations, with the CRAC channel being the major contributor. KO of either STIM1 or STIM2 significantly reduces CRAC channel activity. As such, STIM1 and STIM2 synergize for optimal Ca2+ oscillations and activation of nuclear factor of activated T-cells 1 and are essential for ER refilling. The loss of both STIM proteins abrogates CRAC channel activity, drastically reduces ER Ca2+ content, severely hampers cell proliferation and enhances cell death. These results clarify the mechanism and the contribution of STIM proteins to Ca2+ oscillations in T-cells.


Assuntos
Canais de Cálcio Ativados pela Liberação de Cálcio , Sinalização do Cálcio , Humanos , Cálcio/metabolismo , Canais de Cálcio Ativados pela Liberação de Cálcio/genética , Canais de Cálcio Ativados pela Liberação de Cálcio/metabolismo , Sinalização do Cálcio/genética , Células Jurkat , Molécula 1 de Interação Estromal/genética , Molécula 1 de Interação Estromal/metabolismo , Molécula 2 de Interação Estromal/genética , Molécula 2 de Interação Estromal/metabolismo , Técnicas de Inativação de Genes , Modelos Biológicos , Isoformas de Proteínas , Transporte Proteico/genética , Proliferação de Células/genética , Sobrevivência Celular/genética
11.
Nat Commun ; 14(1): 6921, 2023 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-37903816

RESUMO

Ca2+ signal-generation through inter-membrane junctional coupling between endoplasmic reticulum (ER) STIM proteins and plasma membrane (PM) Orai channels, remains a vital but undefined mechanism. We identify two unusual overlapping Phe-His aromatic pairs within the STIM1 apical helix, one of which (F394-H398) mediates important control over Orai1-STIM1 coupling. In resting STIM1, this locus is deeply clamped within the folded STIM1-CC1 helices, likely near to the ER surface. The clamped environment in holo-STIM1 is critical-positive charge replacing Phe-394 constitutively unclamps STIM1, mimicking store-depletion, negative charge irreversibly locks the clamped-state. In store-activated, unclamped STIM1, Phe-394 mediates binding to the Orai1 channel, but His-398 is indispensable for transducing STIM1-binding into Orai1 channel-gating, and is spatially aligned with Phe-394 in the exposed Sα2 helical apex. Thus, the Phe-His locus traverses between ER and PM surfaces and is decisive in the two critical STIM1 functions-unclamping to activate STIM1, and conformational-coupling to gate the Orai1 channel.


Assuntos
Sinalização do Cálcio , Cálcio , Molécula 1 de Interação Estromal/genética , Molécula 1 de Interação Estromal/metabolismo , Proteína ORAI1/genética , Proteína ORAI1/metabolismo , Cálcio/metabolismo , Membrana Celular/metabolismo , Sinalização do Cálcio/fisiologia
12.
J Exp Clin Cancer Res ; 42(1): 195, 2023 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-37542345

RESUMO

BACKGROUND: Bone metastasis is a principal cause of mortality in patients with prostate cancer (PCa). Increasing evidence indicates that high expression of stromal interaction molecule 1 (STIM1)-mediated store-operated calcium entry (SOCE) significantly activates the calcium (Ca2+) signaling pathway and is involved in multiple steps of bone metastasis in PCa. However, the regulatory mechanism and target therapy of STIM1 is poorly defined. METHODS: Liquid chromatography-mass spectrometry analysis was performed to identify tetraspanin 18 (TSPAN18) as a binding protein of STIM1. Co-IP assay was carried out to explore the mechanism by which TSPAN18 inhibits STIM1 degradation. The biological function of TSPAN18 in bone metastasis of PCa was further investigated in vitro and in vivo models. RESULT: We identified that STIM1 directly interacted with TSPAN18, and TSPAN18 competitively inhibited E3 ligase tripartite motif containing 32 (TRIM32)-mediated STIM1 ubiquitination and degradation, leading to increasing STIM1 protein stability. Furthermore, TSPAN18 significantly stimulated Ca2+ influx in an STIM1-dependent manner, and then markedly accelerated PCa cells migration and invasion in vitro and bone metastasis in vivo. Clinically, overexpression of TSPAN18 was positively associated with STIM1 protein expression, bone metastasis and poor prognosis in PCa. CONCLUSION: Taken together, this work discovers a novel STIM1 regulative mechanism that TSPAN18 protects STIM1 from TRIM32-mediated ubiquitination, and enhances bone metastasis of PCa by activating the STIM1-Ca2+ signaling axis, suggesting that TSPAN18 may be an attractive therapeutic target for blocking bone metastasis in PCa.


Assuntos
Cálcio , Neoplasias da Próstata , Masculino , Humanos , Molécula 1 de Interação Estromal/genética , Molécula 1 de Interação Estromal/química , Molécula 1 de Interação Estromal/metabolismo , Cálcio/metabolismo , Canais de Cálcio/metabolismo , Neoplasias da Próstata/genética , Ubiquitinação , Sinalização do Cálcio , Proteína ORAI1/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteínas com Motivo Tripartido/metabolismo , Fatores de Transcrição/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Tetraspaninas/genética , Tetraspaninas/metabolismo
13.
Diabetes ; 72(10): 1433-1445, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37478155

RESUMO

Altered endoplasmic reticulum (ER) Ca2+ signaling has been linked with ß-cell dysfunction and diabetes development. Store-operated Ca2+ entry replenishes ER Ca2+ through reversible gating of plasma membrane Ca2+ channels by the ER Ca2+ sensor, stromal interaction molecule 1 (STIM1). For characterization of the in vivo impact of STIM1 loss, mice with ß-cell-specific STIM1 deletion (STIM1Δß mice) were generated and challenged with high-fat diet. Interestingly, ß-cell dysfunction was observed in female, but not male, mice. Female STIM1Δß mice displayed reductions in ß-cell mass, a concomitant increase in α-cell mass, and reduced expression of markers of ß-cell maturity, including MafA and UCN3. Consistent with these findings, STIM1 expression was inversely correlated with HbA1c levels in islets from female, but not male, human organ donors. Mechanistic assays demonstrated that the sexually dimorphic phenotype observed in STIM1Δß mice was due, in part, to loss of signaling through the noncanonical 17-ß estradiol receptor (GPER1), as GPER1 knockdown and inhibition led to a similar loss of expression of ß-cell maturity genes in INS-1 cells. Together, these data suggest that STIM1 orchestrates pancreatic ß-cell function and identity through GPER1-mediated estradiol signaling. ARTICLE HIGHLIGHTS: Store-operated Ca2+ entry replenishes endoplasmic reticulum (ER) Ca2+ through reversible gating of plasma membrane Ca2+ channels by the ER Ca2+ sensor, stromal interaction molecule 1 (STIM1). ß-Cell-specific deletion of STIM1 results in a sexually dimorphic phenotype, with ß-cell dysfunction and loss of identity in female but not male mice. Expression of the noncanonical 17-ß estradiol receptor (GPER1) is decreased in islets of female STIM1Δß mice, and modulation of GPER1 levels leads to alterations in expression of ß-cell maturity genes in INS-1 cells.


Assuntos
Canais de Cálcio , Proteínas de Membrana , Animais , Camundongos , Feminino , Humanos , Proteínas de Membrana/metabolismo , Canais de Cálcio/metabolismo , Molécula 1 de Interação Estromal/genética , Molécula 1 de Interação Estromal/metabolismo , Cálcio/metabolismo , Receptores de Estradiol/metabolismo , Receptor alfa de Estrogênio/metabolismo , Sinalização do Cálcio , Proteínas de Ligação ao GTP/metabolismo
14.
Bull Exp Biol Med ; 174(6): 701-706, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37162628

RESUMO

We explored the anti-cardiac hypertrophy mechanism of glycyrrhizic acid from the perspective of calcium regulation under pathological conditions. For this purpose, we used a rat model of myocardial hypertrophy induced by pressure overload. The effect of glycyrrhizic acid on BP was measured non-invasively with a sphygmomanometer and recorded in PC. In rats with modeled cardiac hypertrophy, the effect of GA on expression of type 1 matrix interaction molecules was determined in horizontal tissues and cultured cardiomyocytes of the left ventricle. The laser confocal microscopy and calcium ion probe Fluo-4 AM were used to assess the effect of glycyrrhizic acid on stromal interaction molecule 1 (STIM1)-dependent store-operated calcium entry in cultured cardiomyocytes derived from the hypertrophic myocardium. Glycyrrhizic acid exerted the anti-hypertrophic effect in rats with hypertrophic myocardium by down-regulating STIM1 protein expression and reducing the intensity of STIM1-dependent store-operated calcium entry.


Assuntos
Cálcio , Ácido Glicirrízico , Ratos , Animais , Molécula 1 de Interação Estromal/genética , Cálcio/metabolismo , Ácido Glicirrízico/farmacologia , Cardiomegalia/tratamento farmacológico , Cardiomegalia/metabolismo , Sinalização do Cálcio
15.
PLoS One ; 18(5): e0285422, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37155641

RESUMO

PURPOSE: Congenital myopathies are a heterogeneous group of diseases affecting the skeletal muscles and characterized by high clinical, genetic, and histological variability. Magnetic Resonance (MR) is a valuable tool for the assessment of involved muscles (i.e., fatty replacement and oedema) and disease progression. Machine Learning is becoming increasingly applied for diagnostic purposes, but to our knowledge, Self-Organizing Maps (SOMs) have never been used for the identification of the patterns in these diseases. The aim of this study is to evaluate if SOMs may discriminate between muscles with fatty replacement (S), oedema (E) or neither (N). METHODS: MR studies of a family affected by tubular aggregates myopathy (TAM) with the histologically proven autosomal dominant mutation of the STIM1 gene, were examined: for each patient, in two MR assessments (i.e., t0 and t1, the latter after 5 years), fifty-three muscles were evaluated for muscular fatty replacement on the T1w images, and for oedema on the STIR images, for reference. Sixty radiomic features were collected from each muscle at t0 and t1 MR assessment using 3DSlicer software, in order to obtain data from images. A SOM was created to analyze all datasets using three clusters (i.e., 0, 1 and 2) and results were compared with radiological evaluation. RESULTS: Six patients with TAM STIM1-mutation were included. At t0 MR assessments, all patients showed widespread fatty replacement that intensifies at t1, while oedema mainly affected the muscles of the legs and appears stable at follow-up. All muscles with oedema showed fatty replacement, too. At t0 SOM grid clustering shows almost all N muscles in Cluster 0 and most of the E muscles in Cluster 1; at t1 almost all E muscles appear in Cluster 1. CONCLUSION: Our unsupervised learning model appears to be able to recognize muscles altered by the presence of edema and fatty replacement.


Assuntos
Miopatias Congênitas Estruturais , Aprendizado de Máquina não Supervisionado , Humanos , Músculo Esquelético/diagnóstico por imagem , Músculo Esquelético/patologia , Imageamento por Ressonância Magnética/métodos , Miopatias Congênitas Estruturais/diagnóstico por imagem , Miopatias Congênitas Estruturais/genética , Espectroscopia de Ressonância Magnética , Edema/diagnóstico por imagem , Edema/patologia , Molécula 1 de Interação Estromal/genética , Proteínas de Neoplasias
16.
Yi Chuan ; 45(5): 395-408, 2023 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-37194587

RESUMO

STIM1 (stromal interaction molecule 1) is one of the key components of the store operated Ca2+ entry channel (SOCE), which is located on the endoplasmic reticulum membrane and highly expressed in most kinds of tumors. STIM1 promotes tumorigenesis and metastasis by modulating the formation of invadopodia, promoting angiogenesis, mediating inflammatory response, altering the cytoskeleton and cell dynamics. However, the roles and mechanism of STIM1 in different tumors have not been fully elucidated. In this review, we summarize the latest progress and mechanisms of STIM1 in tumorigenesis and metastasis, thereby providing insights and references for the study on STIM1 in the field of cancer biology in the future.


Assuntos
Cálcio , Carcinogênese , Humanos , Molécula 1 de Interação Estromal/genética , Molécula 1 de Interação Estromal/metabolismo , Carcinogênese/genética , Cálcio/metabolismo , Sinalização do Cálcio/fisiologia , Proteínas de Neoplasias/genética
17.
Cell Signal ; 107: 110681, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37062436

RESUMO

Oxidative stress is a predisposing factor in Chronic Obstructive Pulmonary Disease (COPD). Specifically, pulmonary epithelial (PE) cells reduce antioxidant capacity during COPD because of the continuous production of reactive oxygen species (ROS). However, the molecular pathogenesis that governs such ROS activity is unclear. Here we show that the dysregulation of intracellular calcium concentration ([Ca2+]i) in PE cells from COPD patients, compared to the healthy PE cells, is associated with the robust functional expressions of Transient Receptor Potential Canonical (TRPC)1 and TRPC3 channels, and Ca2+ entry (SOCE) components, Stromal Interaction Molecule 1 (STIM1) and ORAI1 channels. Additionally, the elevated expression levels of fibrotic, inflammatory, oxidative, and apoptotic markers in cells from COPD patients suggest detrimental pathway activation, thereby reducing the ability of lung remodeling. To further delineate the mechanism, we used human lung epithelial cell line, A549, since the behavior of SOCE and the expression patterns of TRPC1/C3, STIM1, and ORAI1 were much like PE cells. Notably, the knockdown of TRPC1/C3 in A549 cells substantially reduced the SOCE-induced [Ca2+]i rise, and reversed the ROS-mediated oxidative, fibrotic, inflammatory, and apoptotic responses, thus confirming the role of TRPC1/C3 in SOCE driven COPD-like condition. Higher TRPC1/C3, STIM1, and ORAI1 expressions, along with a greater Ca2+ entry, via SOCE in ROS-induced A549 cells, led to the rise in oxidative, fibrotic, inflammatory, and apoptotic gene expression, specifically through the extracellular signal-regulated kinase (ERK) pathway. Abatement of TRPC1 and/or TRPC3 reduced the mobilization of [Ca2+]i and reversed apoptotic gene expression and ERK activation, signifying the involvement of TRPC1/C3. Together these data suggest that TRPC1/C3 and SOCE facilitate the COPD condition through ROS-mediated cell death, thus implicating their likely roles as potential therapeutic targets for COPD. SUMMARY: Alterations in Ca2+ signaling modalities in normal pulmonary epithelial cells exhibit COPD through oxidative stress and cellular injury, compromising repair, which was alleviated through inhibition of store-operated calcium entry. SUBJECT AREA: Calcium, ROS, Cellular signaling, lung disease.


Assuntos
Canais de Cálcio , Doença Pulmonar Obstrutiva Crônica , Humanos , Cálcio/metabolismo , Canais de Cálcio/metabolismo , Sinalização do Cálcio , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Proteína ORAI1/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Molécula 1 de Interação Estromal/genética , Molécula 1 de Interação Estromal/metabolismo , Canais de Cátion TRPC/genética , Canais de Cátion TRPC/metabolismo
19.
Am J Physiol Cell Physiol ; 324(6): C1199-C1212, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37093037

RESUMO

Endothelial cell (EC) migration is critical for the repair of monolayer disruption following angioplasties, but migration is inhibited by lipid oxidation products, including lysophosphatidylcholine (lysoPC), which open canonical transient receptor potential 6 (TRPC6) channels. TRPC6 activation requires an increase in intracellular Ca2+ concentration ([Ca2+]i), the source of which is unknown. LysoPC can activate phospholipase A2 to release arachidonic acid (ArA). ArA can activate arachidonic acid-regulated calcium (ARC) channels that are formed by stromal interaction molecule 1 (STIM1) and Orai1 and Orai3 proteins. Both lysoPC and ArA can activate p38 mitogen-activated protein kinase (MAPK) that induces the phosphorylation required for STIM1-Orai3 association. This is accompanied by an increase in [Ca2+]i and TRPC6 externalization. The effect of lysoPC and ArA is not additive, suggesting activation of the same pathway. The increase in [Ca2+]i activates an Src kinase that leads to TRPC6 activation. Downregulation of Orai3 using siRNA blocks the lysoPC- or ArA-induced increase in [Ca2+]i and TRPC6 externalization and preserves EC migration. These data show that lysoPC induces activation of p38 MAPK, which leads to STIM1-Orai3 association and increased [Ca2+]i. This increase in [Ca2+]i activates an Src kinase leading to TRPC6 externalization, which initiates a cascade of events ending in cytoskeletal changes that disrupt EC migration. Blocking this pathway preserves EC migration in the presence of lipid oxidation products.NEW & NOTEWORTHY The major lysophospholipid component in oxidized LDL, lysophosphatidylcholine (lysoPC), can activate p38 MAP kinase, which in turn promotes externalization of Orai3 and STIM1-Orai3 association, suggesting involvement of arachidonic acid-regulated calcium (ARC) channels. The subsequent increase in intracellular calcium activates an Src kinase required for TRPC6 externalization. TRPC6 activation, which has been shown to inhibit endothelial cell migration, is blocked by p38 MAP kinase or Orai3 downregulation, and this partially preserves endothelial migration in lysoPC.


Assuntos
Lisofosfatidilcolinas , Proteínas Quinases p38 Ativadas por Mitógeno , Canal de Cátion TRPC6/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Cálcio/metabolismo , Molécula 1 de Interação Estromal/genética , Ácido Araquidônico/farmacologia , Canais de Cálcio/metabolismo , Quinases da Família src/metabolismo , Proteína ORAI1/genética
20.
Nat Commun ; 14(1): 1286, 2023 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-36890174

RESUMO

Ca2+ release-activated Ca2+ (CRAC) channels, indispensable for the immune system and various other human body functions, consist of two transmembrane (TM) proteins, the Ca2+-sensor STIM1 in the ER membrane and the Ca2+ ion channel Orai1 in the plasma membrane. Here we employ genetic code expansion in mammalian cell lines to incorporate the photocrosslinking unnatural amino acids (UAA), p-benzoyl-L-phenylalanine (Bpa) and p-azido-L-phenylalanine (Azi), into the Orai1 TM domains at different sites. Characterization of the respective UAA-containing Orai1 mutants using Ca2+ imaging and electrophysiology reveal that exposure to UV light triggers a range of effects depending on the UAA and its site of incorporation. In particular, photoactivation at A137 using Bpa in Orai1 activates Ca2+ currents that best match the biophysical properties of CRAC channels and are capable of triggering downstream signaling pathways such as nuclear factor of activated T-cells (NFAT) translocation into the nucleus without the need for the physiological activator STIM1.


Assuntos
Canais de Cálcio Ativados pela Liberação de Cálcio , Animais , Humanos , Canais de Cálcio Ativados pela Liberação de Cálcio/metabolismo , Canais de Cálcio/metabolismo , Proteína ORAI1/genética , Proteína ORAI1/metabolismo , Proteínas de Membrana/metabolismo , Membrana Celular/metabolismo , Molécula 1 de Interação Estromal/genética , Molécula 1 de Interação Estromal/metabolismo , Cálcio/metabolismo , Sinalização do Cálcio/fisiologia , Mamíferos/metabolismo , Proteínas de Neoplasias/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA