Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nature ; 586(7830): 612-617, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32814901

RESUMO

Single-cell RNA sequencing of embryos can resolve the transcriptional landscape of development at unprecedented resolution. To date, single-cell RNA-sequencing studies of mammalian embryos have focused exclusively on eutherian species. Analysis of mammalian outgroups has the potential to identify deeply conserved lineage specification and pluripotency factors, and can extend our understanding of X dosage compensation. Metatherian (marsupial) mammals diverged from eutherians around 160 million years ago. They exhibit distinctive developmental features, including late implantation1 and imprinted X chromosome inactivation2, which is associated with expression of the XIST-like noncoding RNA RSX3. Here we perform a single-cell RNA-sequencing analysis of embryogenesis and X chromosome inactivation in a marsupial, the grey short-tailed opossum (Monodelphis domestica). We resolve the developmental trajectory and transcriptional signatures of the epiblast, primitive endoderm and trophectoderm, and identify deeply conserved lineage-specific markers that pre-date the eutherian-marsupial divergence. RSX coating and inactivation of the X chromosome occurs early and rapidly. This observation supports the hypothesis that-in organisms with early X chromosome inactivation-imprinted X chromosome inactivation prevents biallelic X silencing. We identify XSR, an RSX antisense transcript expressed from the active X chromosome, as a candidate for the regulator of imprinted X chromosome inactivation. Our datasets provide insights into the evolution of mammalian embryogenesis and X dosage compensation.


Assuntos
Embrião de Mamíferos/citologia , Desenvolvimento Embrionário/genética , Monodelphis/embriologia , Monodelphis/genética , Análise de Célula Única , Transcriptoma/genética , Inativação do Cromossomo X/genética , Animais , Linhagem da Célula/genética , Embrião de Mamíferos/embriologia , Feminino , Camadas Germinativas/citologia , Camadas Germinativas/embriologia , Masculino , Monodelphis/classificação , RNA Antissenso/genética , RNA não Traduzido/genética , Regulação para Cima , Cromossomo X/genética
2.
Proc Natl Acad Sci U S A ; 114(32): E6566-E6575, 2017 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-28747528

RESUMO

The molecular changes that support implantation in eutherian mammals are necessary to establish pregnancy. In marsupials, pregnancy is relatively short, and although a placenta does form, it is present for only a few days before parturition. However, morphological changes in the uterus of marsupials at term mimic those that occur during implantation in humans and mice. We investigated the molecular similarity between term pregnancy in the marsupials and implantation in eutherian mammals using the gray short-tailed opossum (Monodelphis domestica) as a model. Transcriptomic analysis shows that term pregnancy in the opossum is characterized by an inflammatory response consistent with implantation in humans and mice. This immune response is temporally correlated with the loss of the eggshell, and we used immunohistochemistry to report that this reaction occurs at the materno-fetal interface. We demonstrate that key markers of implantation, including Heparin binding EGF-like growth factor and Mucin 1, exhibit expression and localization profiles consistent with the pattern observed during implantation in eutherian mammals. Finally, we show that there are transcriptome-wide similarities between the opossum attachment reaction and implantation in rabbits and humans. Our data suggest that the implantation reaction that occurs in eutherians is derived from an attachment reaction in the ancestral therian mammal which, in the opossum, leads directly to parturition. Finally, we argue that the ability to shift from an inflammatory attachment reaction to a noninflammatory period of pregnancy was a key innovation in eutherian mammals that allowed an extended period of intimate placentation.


Assuntos
Evolução Biológica , Implantação do Embrião/fisiologia , Embrião de Mamíferos/embriologia , Monodelphis/embriologia , Gravidez/fisiologia , Animais , Feminino , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Fator de Crescimento Semelhante a EGF de Ligação à Heparina/biossíntese , Humanos , Camundongos , Mucina-1/biossíntese
3.
J Anat ; 230(4): 596-600, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28052333

RESUMO

Thymus-dependent lymphocytes (T cells) are a critical cell lineage in the adaptive immune system of all jawed vertebrates. In eutherian mammals the initiation of T cell development takes place prenatally and the offspring of many species are born relatively immuno-competent. Marsupials, in contrast, are born in a comparatively altricial state and with a less well developed immune system. As such, marsupials are valuable models for studying the peri- and postnatal initiation of immune system development in mammals. Previous results supported a lack of prenatal T cell development in a variety of marsupial species. In the gray short-tailed opossum, Monodelphis domestica, however, there was evidence that αßT cells were present on postnatal day 1 and likely initiated development prenatally. Demonstrated here is the presence of CD3ε+ lymphocytes in late-stage embryos at a site in the upper thoracic cavity, the site of an early developing thymus. CD3ε+ cells were evident as early as 48 h prior to parturition. In day 14 embryos, where there is clear organogenesis, CD3ε+ cells were only found at the site of the early thymus, consistent with no extra-thymic sites of T cell development in the opossum. These observations are the first evidence of prenatal T cell lineage commitment in any marsupial.


Assuntos
Monodelphis/embriologia , Linfócitos T , Animais , Animais Recém-Nascidos , Feminino , Monodelphis/anatomia & histologia , Gravidez
4.
Dev Dyn ; 245(12): 1176-1188, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27666927

RESUMO

BACKGROUND: Previous comparative studies suggest that the requirement for Nodal in epiblast and hypoblast development is unique to mammalians. Expression of anterior visceral endoderm (AVE) genes in the visceral endoderm and of their orthologs in the hypoblast may be unique to mammalians and avians, and is absent in the reptilian hypoblast. Axis formation in reptiles is signaled by the formation of the posterior marginal epiblast (PME), which expresses a series of primitive streak genes. To assess the phylogenetic origin of Nodal and AVE gene expression and axis formation in amniotes, we examined marker gene expression in gray short-tailed opossum, a metatherian. RESULTS: Nodal was expressed in neither epiblast nor hypoblast of opossum embryos. No AVE genes were expressed in the opossum hypoblast. Attainment of polarity in the embryonic disk was signaled by Nodal, Wnt3a, Fgf8, and Bra expression in the PME at 8.5 days post-coitus. CONCLUSIONS: Nodal expression in epiblast or hypoblast may be unique to eutherians. AVE gene expression in visceral endoderm and hypoblast may have been independently acquired in eutherian and avian lineages. PME formation appears to be the event that signals axis formation in reptilian and metatherian embryos, and thus may be an ancestral characteristic of basal amniotes. Developmental Dynamics 245:1176-1188, 2016. © 2016 Wiley Periodicals, Inc.


Assuntos
Monodelphis/embriologia , Monodelphis/metabolismo , Animais , Padronização Corporal/genética , Padronização Corporal/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Monodelphis/classificação , Proteína Nodal/genética , Proteína Nodal/metabolismo , Filogenia
5.
Development ; 143(1): 66-74, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26732839

RESUMO

The amplification of distinct neural stem/progenitor cell subtypes during embryogenesis is essential for the intricate brain structures present in various vertebrate species. For example, in both mammals and birds, proliferative neuronal progenitors transiently appear on the basal side of the ventricular zone of the telencephalon (basal progenitors), where they contribute to the enlargement of the neocortex and its homologous structures. In placental mammals, this proliferative cell population can be subdivided into several groups that include Tbr2(+) intermediate progenitors and basal radial glial cells (bRGs). Here, we report that basal progenitors in the developing avian pallium show unique morphological and molecular characteristics that resemble the characteristics of bRGs, a progenitor population that is abundant in gyrencephalic mammalian neocortex. Manipulation of LGN (Leu-Gly-Asn repeat-enriched protein) and Cdk4/cyclin D1, both essential regulators of neural progenitor dynamics, revealed that basal progenitors and Tbr2(+) cells are distinct cell lineages in the developing avian telencephalon. Furthermore, we identified a small population of subapical mitotic cells in the developing brains of a wide variety of amniotes and amphibians. Our results suggest that unique progenitor subtypes are amplified in mammalian and avian lineages by modifying common mechanisms of neural stem/progenitor regulation during amniote brain evolution.


Assuntos
Gânglios da Base/citologia , Gânglios da Base/embriologia , Neocórtex/embriologia , Células-Tronco Neurais/citologia , Neurônios/citologia , Ambystoma mexicanum , Animais , Linhagem da Célula/fisiologia , Proliferação de Células/fisiologia , Embrião de Galinha , Ciclina D1/metabolismo , Quinase 4 Dependente de Ciclina/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Monodelphis/embriologia , Neocórtex/citologia , Tartarugas/embriologia , Xenopus laevis
6.
Exp Anim ; 64(3): 323-32, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25912322

RESUMO

The opossum delivers a newborn baby equivalent to tremature fetus state by postpregnancy. The peculiarity is advantageous for studies of fetus, because operations to take out fetus from the uterus of a mother are not necessary. When mammalian skin is wounded by full-thickness excision, fetal and adult wound healing processes differ. Fetal-type wound healing does not leave a scar. However, studies of how the fetal wound healing process differs in detail from the adult type are not advanced. We first observed the normal skin development of the gray short-tailed opossum (Monodelphis domestica) using an electron microscope. As for normal skin, an epidermis became multi-layered, and thickened from birth through to 7 days after birth. The quantity of extracellular matrix of the dermis increased thereafter, and several types of cells were found in the dermis. To examine the wound healing, we used material from a 1 day-old newborn baby, and from another 15 days after birth, and compared the wound healing style morphologically. Differences in the constitution of cells and fine structures of the skin were observed, it was obviously suggested that change in the wound healing style from fetal-type to adult-type occurred between 1 to 15 days after birth.


Assuntos
Epiderme/ultraestrutura , Monodelphis/embriologia , Monodelphis/fisiologia , Fenômenos Fisiológicos da Pele , Pele/ultraestrutura , Cicatrização , Envelhecimento/metabolismo , Envelhecimento/fisiologia , Animais , Animais Recém-Nascidos , Células Epidérmicas , Epiderme/metabolismo , Matriz Extracelular/metabolismo , Feminino , Marsupiais , Microscopia Eletrônica , Gravidez , Pele/embriologia
7.
Genome Res ; 24(1): 70-83, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24065774

RESUMO

Evidence from a few genes in diverse species suggests that X-chromosome inactivation (XCI) in marsupials is characterized by exclusive, but leaky inactivation of the paternally derived X chromosome. To study the phenomenon of marsupial XCI more comprehensively, we profiled parent-of-origin allele-specific expression, DNA methylation, and histone modifications in fetal brain and extra-embryonic membranes in the gray, short-tailed opossum (Monodelphis domestica). The majority of X-linked genes (152 of 176 genes with trackable SNP variants) exhibited paternally imprinted expression, with nearly 100% of transcripts derived from the maternal allele; whereas 24 loci (14%) escaped inactivation, showing varying levels of biallelic expression. In addition to recently reported evidence of marsupial XCI regulation by the noncoding Rsx transcript, strong depletion of H3K27me3 at escaper gene loci in the present study suggests that histone state modifications also correlate strongly with opossum XCI. In contrast to mouse, the opossum did not show an association between X-linked gene expression and promoter DNA methylation, with one notable exception. Unlike all other X-linked genes examined, Rsx was differentially methylated on the maternal and paternal X chromosomes, and expression was exclusively from the inactive (paternal) X chromosome. Our study provides the first comprehensive catalog of parent-of-origin expression status for X-linked genes in a marsupial and sheds light on the regulation and evolution of imprinted XCI in mammals.


Assuntos
Encéfalo/embriologia , Genes Ligados ao Cromossomo X , Monodelphis/embriologia , Monodelphis/genética , Placenta/metabolismo , RNA não Traduzido/genética , Inativação do Cromossomo X , Cromossomo X/metabolismo , Animais , Encéfalo/metabolismo , Linhagem Celular , Metilação de DNA , Embrião de Mamíferos , Epigênese Genética , Evolução Molecular , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Variação Genética , Histonas , Masculino , Camundongos , Polimorfismo de Nucleotídeo Único , Gravidez , RNA Longo não Codificante/genética , Análise de Sequência de RNA , Cromossomo X/genética
8.
Evol Dev ; 15(3): 171-85, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23607301

RESUMO

The marsupial blastocyst forms in an entirely different manner from its eutherian counterpart, involving cell-zona rather than cell-cell adhesion during the 8- to-16-cell transition. While the eutherian blastocyst consists of a spherical trophoblast completely enveloping a pluripotent inner cell mass, or pluriblast, the marsupial blastocyst forms initially as a bowl-shaped monolayer of cells lining the zona pellucida at the embryonic pole (ep). This monolayer contains a small patch of centrally positioned pluriblast cells edged with trophoblast cells that later coalesce at the abembryonic pole. Using immunocytochemistry, we examined the localization of the proteins Oct4, Cdx2, Tead4, Sox2, and Yap1 in opossum embryos to determine if their temporal expression pattern differed from that in the mouse, given the important differences in cell behavior preceding blastocyst formation in these mammals. Our results indicate that these proteins are expressed in similar temporal patterns despite the topological differences between mouse and opossum cleavage-stage embryos and blastocysts. That the Hippo-pathway protein Yap1 localized specifically around the approximately 128-cell stage to opossum trophoblast nuclei but remained in the cytoplasm of pluriblast cells suggests that this transcriptional regulator participates in allocating cells to the trophoblast lineage, as it does in mouse. Interestingly, in both mouse and opossum embryos, expression of the pluripotency marker Oct4 persisted after Cdx2, which signals trophoblast specification, began to be expressed in trophoblast cells. This and the observation that Cdx2 is present in opossum embryos well before blastomere-zona adhesion even occurs suggests that the proteins studied may have other roles in early mammalian embryonic development.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Blastocisto/citologia , Proteínas de Homeodomínio/metabolismo , Monodelphis/embriologia , Fator 3 de Transcrição de Octâmero/metabolismo , Transativadores/metabolismo , Animais , Fator de Transcrição CDX2 , Adesão Celular , Linhagem da Célula , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Monodelphis/metabolismo , Fatores de Tempo , Trofoblastos/metabolismo
9.
Evol Dev ; 15(1): 18-27, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23331914

RESUMO

During their embryogenesis, marsupials transiently develop a unique structure, the shoulder arch, which provides the structural support and muscle-attachments necessary for the newborn's crawl to the teat. One of the most pronounced and functionally important aspects of the shoulder arch is an enlarged coracoid. The goal of this study is to determine the molecular basis of shoulder arch formation in marsupials. To achieve this goal, this study investigates the relative expression of several genes with known roles in shoulder girdle morphogenesis in a marsupial-the opossum, Monodelphis domestica-and a placental, the mouse, Mus musculus. Results indicate that Hoxc6, a gene involved in coracoid patterning, is expressed for a longer period of time and at higher levels in opossum relative to mouse. Functional manipulation suggests that these differences in Hoxc6 expression are independent of documented differences in retinoic acid signaling in opossum and mouse forelimbs. Results also indicate that Emx2, a gene involved in scapular blade condensation, is upregulated in opossum relative to mouse. However, several other genes involved in shoulder girdle patterning (e.g., Gli3, Pax1, Pbx1, Tbx15) are comparably expressed in these species. These findings suggest that the upregulation of Hoxc6 and Emx2 occurs through independent genetic modifications in opossum relative to mouse. In summary, this study documents a correlation between gene expression and the divergent shoulder girdle morphogenesis of marsupial (i.e., opossum) and placental (i.e., mouse) mammals, and thereby provides a foundation for future research into the genetic basis of shoulder girdle morphogenesis in marsupials. Furthermore, this study supports the hypothesis that the mammalian shoulder girdle is a highly modular structure whose elements are relatively free to evolve independently.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Monodelphis/embriologia , Animais , Padronização Corporal , Primers do DNA/genética , Biologia do Desenvolvimento , Feminino , Proteínas de Homeodomínio/metabolismo , Masculino , Camundongos , Monodelphis/fisiologia , Morfogênese , Reação em Cadeia da Polimerase , Ombro/patologia , Especificidade da Espécie , Tretinoína/metabolismo
10.
PLoS One ; 7(9): e45931, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23029324

RESUMO

Marsupials are a lineage of mammals noted for giving birth to highly altricial young, which complete much of their "fetal" development externally attached to a teat. Postnatal B cell ontogeny and diversity was investigated in a model marsupial species, the gray short-tailed opossum, Monodelphis domestica. The results support the initiation of B cell development late in gestation and progressing into the first two weeks of postnatal life. Transcription of CD79a and CD79b was detected in embryonic tissue prior to birth, while immunoglobulin heavy chain locus transcription was not detected until the first postnatal 24 hours. Transcription of the Ig light chains was not detected until postnatal day 7 at the earliest. The predicted timing of the earliest appearance of mature B cells and completion of gene rearrangements is consistent with previous analyses on the timing of endogenous antibody responses in newborn marsupials. The diversity of early B cell IgH chains is limited, as has been seen in fetal humans and mice, but lacks bias in the gene segments used to encode the variable domains. Newborn light chain diversity is, from the start, comparable to that of the adult, consistent with an earlier hypothesis that light chains contribute extensively to antibody diversity in this species.


Assuntos
Linfócitos B/citologia , Regulação da Expressão Gênica no Desenvolvimento , Genes de Imunoglobulinas , Subunidades de Imunoglobulinas/genética , Monodelphis/crescimento & desenvolvimento , Monodelphis/imunologia , Animais , Diversidade de Anticorpos , Linfócitos B/imunologia , Linfócitos B/metabolismo , Sequência de Bases , Antígenos CD79/genética , Antígenos CD79/imunologia , Embrião de Mamíferos/citologia , Embrião de Mamíferos/imunologia , Embrião de Mamíferos/metabolismo , Rearranjo Gênico , Subunidades de Imunoglobulinas/imunologia , Monodelphis/embriologia , Monodelphis/genética , Transcrição Gênica
11.
Evol Dev ; 14(1): 93-103, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23016977

RESUMO

Marsupial newborns are highly altricial and also show a wide array of shifts in the rate or timing of developmental events so that certain neonatal structures are quite mature. One particularly notable feature is the steep gradient in development along the anterior-posterior axis such that anterior structures are generally well developed relative to posterior ones. Here, we study somitogenesis in the marsupial, Monodelphis domestica, and document two heterochronies that may be important in generating the unusual body plan of the newborn marsupial. First, we demonstrate a 4-fold change in somitogenesis rate along the anterior-posterior axis, which appears to be due to somitogenesis slowing posteriorly. Second, we show that somitogenesis, particularly in the cervical region, initiates earlier in Monodelphis relative to other developmental events in the embryo. The early initiation of somitogenesis may contribute to the early development of the cervical region and forelimbs. Other elements of somitogenesis appear to be conserved. When compared to mouse, we see similar expression of genes involved in the clock and wavefront, and genes of the Wnt, Notch, and fibroblast growth factor (FGF) pathways also cycle in Monodelphis. Further, we could not discern differences in somite maturation rate along the anterior-posterior axis in Monodelphis, and thus rate of maturation of the somites does not appear to contribute to the steep anterior-posterior gradient.


Assuntos
Monodelphis/embriologia , Somitos/embriologia , Animais , Padronização Corporal/genética , Fatores de Crescimento de Fibroblastos/genética , Fatores de Crescimento de Fibroblastos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Monodelphis/genética , Monodelphis/metabolismo , Receptores Notch/genética , Receptores Notch/metabolismo , Somitos/metabolismo , Proteínas Wnt/genética , Proteínas Wnt/metabolismo
12.
J Exp Zool B Mol Dev Evol ; 318(4): 279-93, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22821864

RESUMO

Proper regulation of growth is essential to all stages of life, from development of the egg into an embryo to the maintenance of normal cell cycle progression in adults. However, despite growth's importance to basic biology and health, little is known about how mammalian growth is regulated. In this study, we investigated the molecular basis of the highly disparate growth of opossum fore- and hind limbs in utero. We first used a novel, opossum-specific microarray to identify several growth-related genes that are differentially expressed in opossum fore- and hind limbs of comparable developmental stages. These genes included Igf1. Given Igf1's role in the growth of other systems, we further investigated the role of Igf1 in opossum limb growth. Supporting the microarray results, RT-PCR indicated that Igf1 levels are approximately two times higher in opossum fore- than hind limbs. Consistent with this, while Igf1 transcripts were readily detectable in opossum forelimbs using whole-mount in situ hybridization, they were not detectable in opossum hind limbs. Furthermore, opossum limbs treated with exogenous Igf1 protein experienced significantly greater cellular proliferation and growth than control limbs in vitro. Taken together, results suggest that the differential expression of Igf1 in developing opossum limbs contributes to their divergent rate of growth, and the unique limb phenotype of opossum newborns. This study establishes the opossum limb as a new mammalian model system for study of organ growth.


Assuntos
Extremidades/embriologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Fator de Crescimento Insulin-Like I/metabolismo , Monodelphis/embriologia , Animais , Primers do DNA/genética , Imuno-Histoquímica , Hibridização In Situ , Análise em Microsséries , Monodelphis/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
13.
J Evol Biol ; 25(5): 862-72, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22356604

RESUMO

Studies of morphological integration can provide insight into developmental patterns, even in extinct taxa known only from skeletal remains, thus making them an important tool for studies of evolutionary development. However, interpreting patterns of integration and assessing their significance for organismal evolution requires detailed understanding of the developmental interactions that shape integration and how those interactions change through ontogeny. Thus far, relatively little comparative data have been produced for this important topic, and the data that do exist are overwhelmingly from humans and their close relatives or from laboratory models such as mice. Here, we compare data on shape, variance and integration through postnatal ontogeny for a placental mammal, the least shrew, Cryptotis parva, and a marsupial mammal, the gray short-tailed opossum, Monodelphis domestica. Cranial variance decreased dramatically from early to late ontogeny in Cryptotis, but remained stable through ontogeny in Monodelphis, potentially reflecting functional constraints related to the short gestation and early ossification of oral bones in marsupials. Both Cryptotis and Monodelphis showed significant changes in cranial integration through ontogeny, with a mixture of increased, decreased and stable levels of integration in different cranial regions. Of particular note is that Monodelphis showed an unambiguous decrease in integration of the oral region through ontogeny, potentially relating to their early ossification. Selection at different stages of development may have markedly different effects if patterns of integration change substantially through ontogeny. Our results suggest that high integration of the oral region combined with functional constraints for suckling during early postnatal ontogeny may drive the stagnant variance observed in Monodelphis and potentially other marsupials.


Assuntos
Monodelphis/embriologia , Osteogênese , Musaranhos/embriologia , Crânio/embriologia , Animais , Evolução Biológica , Feminino , Monodelphis/crescimento & desenvolvimento , Monodelphis/fisiologia , Morfogênese , Gravidez , Análise de Componente Principal , Musaranhos/crescimento & desenvolvimento , Musaranhos/fisiologia , Crânio/crescimento & desenvolvimento , Crânio/fisiologia , Especificidade da Espécie , Coloração e Rotulagem , Fatores de Tempo
14.
Dev Dyn ; 240(1): 232-9, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21108317

RESUMO

To understand developmental mechanisms of evolutionary change, we must first know how different morphologies form. The vast majority of our knowledge on the developmental genetics of tooth formation derives from studies in mice, which have relatively derived mammalian dentitions. The marsupial Monodelphis domestica has a more plesiomorphic heterodont dentition with incisors, canines, premolars, and molars on both the upper and the lower jaws, and a deciduous premolar. The complexity of the M. domestica dentition ranges from simple, unicusped incisors to conical, sharp canines to multicusped molars. We examine the development of the teeth in M. domestica, with a specific focus on the enamel knot, a signaling center in the embryonic tooth that controls shape. We show that the tooth germs of M. domestica express fibroblast growth factor (FGF) genes and Sprouty genes in a manner similar to wild-type mouse molar germs, but with a few key differences.


Assuntos
Evolução Biológica , Dentição , Mamíferos/embriologia , Monodelphis/embriologia , Dente/embriologia , Proteínas Adaptadoras de Transdução de Sinal , Animais , Embrião de Mamíferos , Desenvolvimento Embrionário/genética , Desenvolvimento Embrionário/fisiologia , Fatores de Crescimento de Fibroblastos/genética , Fatores de Crescimento de Fibroblastos/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Mamíferos/genética , Marsupiais/embriologia , Marsupiais/genética , Marsupiais/fisiologia , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Dados de Sequência Molecular , Monodelphis/genética , Monodelphis/fisiologia , Fosfoproteínas/genética , Dente/anatomia & histologia , Dente/metabolismo
15.
Anat Rec (Hoboken) ; 293(8): 1325-32, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20665811

RESUMO

Marsupials give birth after short gestation times to neonates that have an intriguing combination of precocial and altricial features, based on their functional necessity after birth. Perhaps most noticeably, marsupial newborns have highly developed forelimbs, which provide the propulsion necessary for the newborn's crawl to the teat. To achieve their advanced state at birth, the development of marsupial forelimbs is accelerated. The development of the newborn's hind limb, which plays no part in the crawl, is not accelerated, and is likely even delayed. Given the large differences in the rate of limb outgrowth among marsupials and placentals, we hypothesize that the pathways underlying the early development and outgrowth of marsupial limbs, especially that of their forelimbs, will also be divergent. As a first step toward testing this, we examine the development of one of the two major signaling centers of the developing limb, the apical ectodermal ridge (AER), in a marsupial, Monodelphis domestica. We found that, while both opossum limbs have reduced physical AER's, in the opossum forelimb this reduction has been taken to the extreme. Where the M. domestica forelimb should have an AER, it instead has only a few patches of disorganized cells. These results make the marsupial, M. domestica, the only known amniote (without reduced limbs) to exhibit no morphological AER. However, both M. domestica limbs normally express Fgf8, a molecular marker of the AER.


Assuntos
Ectoderma/embriologia , Membro Anterior/embriologia , Monodelphis/embriologia , Animais , Ectoderma/citologia , Ectoderma/metabolismo , Fator 8 de Crescimento de Fibroblasto/metabolismo , Membro Anterior/citologia , Membro Anterior/metabolismo , Membro Posterior/citologia , Membro Posterior/embriologia , Membro Posterior/metabolismo , Botões de Extremidades/embriologia , Camundongos , Monodelphis/anatomia & histologia , Monodelphis/metabolismo
16.
Neural Dev ; 5: 8, 2010 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-20302607

RESUMO

BACKGROUND: The metatherian Monodelphis domestica, commonly known as the South-American short-tailed opossum, is an appealing animal model for developmental studies on cortico-cerebral development. Given its phylogenetic position, it can help in tracing evolutionary origins of key traits peculiar to the eutherian central nervous system. The capability of its pup to regenerate damaged cortico-spinal connections makes it an ideal substrate for regenerative studies. Recent sequencing of its genome and the ex utero accessibility of its developing cerebral cortex further enhance its experimental interest. However, at the moment, a comprehensive cellular and molecular characterization of its cortical development is missing. RESULTS: A systematic analysis of opossum cortico-cerebral development was performed, including: origin of cortical neurons; migration of these neurons from their birthplaces to their final layer destinations; and molecular differentiation of distinct neocortical laminae. We observed that opossum projection neurons and interneurons are generated by pallial and subpallial precursors, respectively, similar to rodents. A six-layered cortex with a eutherian-like molecular profile is laid down, according to the inside-out rule. However, neocortical projection neurons are generated by apical neural precursors and almost no basal progenitors may be found in the neuronogenic neopallial primordium. In the opossum neocortex, Tbr2, the hallmark of eutherian basal progenitors, is transiently expressed by postmitotic progenies of apical precursors prior to the activation of more mature neuronal markers. CONCLUSIONS: The neocortical developmental program predates Eutheria-Methatheria branching. However, in metatherians, unlike eutherians, a basal proliferative compartment is not needed for the formation of a six-layered neuronal blueprint.


Assuntos
Monodelphis/embriologia , Neocórtex/citologia , Neocórtex/embriologia , Neurogênese/fisiologia , Neurônios/citologia , Células-Tronco/citologia , Animais , Evolução Biológica , Biomarcadores/análise , Biomarcadores/metabolismo , Padronização Corporal/fisiologia , Bromodesoxiuridina , Diferenciação Celular/fisiologia , Movimento Celular/fisiologia , Eletroporação , Imunofluorescência , Hibridização In Situ , Camundongos , Microscopia Confocal , Neocórtex/metabolismo , Neurônios/metabolismo , Técnicas de Cultura de Órgãos , Filogenia , Especificidade da Espécie , Células-Tronco/metabolismo , Proteínas com Domínio T/análise , Proteínas com Domínio T/metabolismo
17.
Cereb Cortex ; 20(5): 1071-81, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-19726493

RESUMO

The major lineages of mammals (Eutheria, Metatheria, and Monotremata) diverged more than 100 million years ago and have undergone independent changes in the neocortex. We found that adult South American gray short-tailed opossum (Monodelphis domestica) and tammar wallaby (Macropus eugenii) possess a significantly lower number of cerebral cortical neurons compared with the mouse (Mus musculus). To determine whether the difference is reflected in the development of the cortical germinal zones, the location of progenitor cell divisions was examined in opossum, tammar wallaby, and rat. The basic pattern of the cell divisions was conserved, but the emergence of a distinctive band of dividing cells in the subventricular zone (SVZ) occurred relatively later in the opossum (postnatal day [P14]) and the tammar wallaby (P40) than in rodents. The planes of cell divisions in the ventricular zone (VZ) were similar in all species, with comparable mRNA expression patterns of Brn2, Cux2, NeuroD6, Tbr2, and Pax6 in opossum (P12 and P20) and mouse (embryonic day 15 and P0). In conclusion, the marsupial neurodevelopmental program utilizes an organized SVZ, as indicated by the presence of intermediate (or basal) progenitor cell divisions and gene expression patterns, suggesting that the SVZ emerged prior to the Eutherian-Metatherian split.


Assuntos
Ventrículos Laterais , Monodelphis , Neocórtex , Animais , Animais Recém-Nascidos , Contagem de Células/métodos , Embrião de Mamíferos , Feminino , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Proteínas de Homeodomínio/metabolismo , Ventrículos Laterais/citologia , Ventrículos Laterais/embriologia , Ventrículos Laterais/crescimento & desenvolvimento , Macropodidae , Monodelphis/anatomia & histologia , Monodelphis/embriologia , Monodelphis/crescimento & desenvolvimento , Neocórtex/citologia , Neocórtex/embriologia , Neocórtex/crescimento & desenvolvimento , Neurônios/metabolismo , Gravidez , Ratos , Ratos Wistar , Fuso Acromático/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA