Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 11(1): 19354, 2021 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-34588468

RESUMO

In order to elucidate the active polyoxotungstate (POT) species that inhibit fungal polyphenol oxidase (AbPPO4) in sodium citrate buffer at pH 6.8, four Wells-Dawson phosphotungstates [α/ß-PV2WVI18O62]6- (intact form), [α2-PV2WVI17O61]10- (monolacunary), [PV2WVI15O56]12- (trilacunary) and [H2PV2WVI12O48]12- (hexalacunary) were investigated. The speciation of the POT solutions under the dopachrome assay (50 mM Na-citrate buffer, pH 6.8; L-3,4-dihydroxyphenylalanine as a substrate) conditions were determined by 183W-NMR, 31P-NMR spectroscopy and mass spectrometry. The intact Wells-Dawson POT [α/ß-PV2WVI18O62]6- shows partial (~ 69%) disintegration into the monolacunary [α2-PV2WVI17O61]10- anion with moderate activity (Ki = 9.7 mM). The monolacunary [α2-PV2WVI17O61]10- retains its structural integrity and exhibits the strongest inhibition of AbPPO4 (Ki = 6.5 mM). The trilacunary POT [PV2WVI15O56]12- rearranges to the more stable monolacunary [α2-PV2WVI17O61]10- (~ 62%) accompanied by release of free phosphates and shows the weakest inhibition (Ki = 13.6 mM). The hexalacunary anion [H2PV2WVI12O48]12- undergoes time-dependent hydrolysis resulting in a mixture of [H2PV2WVI12O48]12-, [PV8WVI48O184]40-, [PV2WVI19O69(H2O)]14- and [α2-PV2WVI17O61]10- which together leads to comparable inhibitory activity (Ki = 7.5 mM) after 48 h. For the solutions of [α/ß-PV2WVI18O62]6-, [α2-PV2WVI17O61]10- and [PV2WVI15O56]12- the inhibitory activity is correlated to the degree of their rearrangement to [α2-PV2WVI17O61]10-. The rearrangement of hexalacunary [H2PV2WVI12O48]12- into at least four POTs with a negligible amount of monolacunary anion interferes with the correlation of activity to the degree of their rearrangement to [α2-PV2WVI17O61]10-. The good inhibitory effect of the Wells-Dawson [α2-PV2WVI17O61]10- anion is explained by the low charge density of its protonated forms Hx[α2-PV2WVI17O61](10-x)- (x = 3 or 4) at pH 6.8.


Assuntos
Agaricus/enzimologia , Proteínas Fúngicas/antagonistas & inibidores , Monofenol Mono-Oxigenase/antagonistas & inibidores , Compostos de Tungstênio/farmacologia , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Monofenol Mono-Oxigenase/ultraestrutura , Espectrometria de Massas por Ionização por Electrospray , Compostos de Tungstênio/química
2.
Int J Biol Macromol ; 165(Pt B): 2049-2059, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-33086111

RESUMO

Composite polycaprolactone-chitosan material was produced by an electrospinning method and used as a support for immobilization of tyrosinase by mixed ionic interactions and hydrogen bonds formation. The morphology of the fibers and enzyme deposition were confirmed by SEM images. Further, multivariate polynomial regression was used to model the experimental data and to determine optimal conditions for immobilization process, which were found to be pH 7, temperature 25 °C and 16 h process duration. Under these conditions, novel type of biocatalytic system was produced with immobilization yield of 93% and expressed activity of 95%. Furthermore, as prepared system was applied in batch experiments related to biodegradation of bisphenol A under various remediation conditions. It was found that over 80% of the pollutant was removed after 120 min of the process, in the temperature range 15-45 °C and pH 6-9, using solutions at concentration up to 3 mg/L. Experimental data collected proved that the stability and reusability of the tyrosinase were significantly improved upon immobilization: the immobilized biomolecule retained around 90% of its initial activity after 30 days of storage, and was still capable to remove over 80% of bisphenol A even after 10 repeated uses. By contrast, free enzyme was able to remove over 80% of bisphenol A at pH 7-8 and temperature range 15-35 °C, and retained less than 60% of its initial activity after 30 days of storage.


Assuntos
Compostos Benzidrílicos/isolamento & purificação , Quitosana/química , Enzimas Imobilizadas/metabolismo , Monofenol Mono-Oxigenase/metabolismo , Fenóis/isolamento & purificação , Poliésteres/química , Agaricales/enzimologia , Biodegradação Ambiental , Enzimas Imobilizadas/ultraestrutura , Concentração de Íons de Hidrogênio , Monofenol Mono-Oxigenase/ultraestrutura , Espectroscopia de Infravermelho com Transformada de Fourier
3.
PLoS Biol ; 16(12): e3000077, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30596633

RESUMO

Tyrosinase (EC 1.14.18.1), a copper-containing monooxygenase, catalyzes the conversion of phenol to the corresponding ortho-quinone. The Streptomyces tyrosinase is generated as a complex with a "caddie" protein that facilitates the transport of two copper ions into the active center. In our previous study, the Tyr98 residue in the caddie protein, which is accommodated in the pocket of active center of tyrosinase, has been found to be converted to a reactive quinone through the formations of the µ-η2:η2-peroxo-dicopper(II) and Cu(II)-dopasemiquinone intermediates. Until now-despite extensive studies for the tyrosinase reaction based on the crystallographic analysis, low-molecular-weight models, and computer simulations-the catalytic mechanism has been unable to be made clear at an atomic level. To make the catalytic mechanism of tyrosinase clear, in the present study, the cryo-trapped crystal structures were determined at very high resolutions (1.16-1.70 Å). The structures suggest the existence of an important step for the tyrosinase reaction that has not yet been found: that is, the hydroxylation reaction is triggered by the movement of CuA, which induces the syn-to-anti rearrangement of the copper ligands after the formation of µ-η2:η2-peroxo-dicopper(II) core. By the rearrangement, the hydroxyl group of the substrate is placed in an equatorial position, allowing the electrophilic attack to the aromatic ring by the Cu2O2 oxidant.


Assuntos
Cobre/metabolismo , Monofenol Mono-Oxigenase/fisiologia , Monofenol Mono-Oxigenase/ultraestrutura , Benzoquinonas/metabolismo , Sítios de Ligação/fisiologia , Catálise , Cristalografia por Raios X/métodos , Hidroxilação , Ligantes , Modelos Moleculares , Monofenol Mono-Oxigenase/metabolismo , Fenóis/química , Streptomyces/genética , Streptomyces/metabolismo , Tirosina/metabolismo
4.
Arch Biochem Biophys ; 465(2): 320-7, 2007 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-17698026

RESUMO

The key structural features that define the reaction mechanism of the binuclear copper enzyme Tyrosinase (Ty) from Streptomyces antibioticus were investigated by X-ray absorption spectroscopy. The data for the met form, the halide bound derivative and the adduct with the competitive inhibitor and transition state analogue Kojic acid were analysed using the recently developed MXAN package. This analysis permitted the definition of structural clusters that include all atoms within 5A from the metal ions of the active site. The data obtained for the different forms provide validation of the structural models previously proposed on the basis of the magnetic properties investigated by both pulsed EPR and paramagnetic NMR spectroscopies. The structural model of the reaction center obtained in this solution study is compared with the crystallographic structures recently proposed for several derivatives of bacterial Ty to suggest that only one of these structures is relevant to solution conditions.


Assuntos
Absorciometria de Fóton , Modelos Químicos , Modelos Moleculares , Monofenol Mono-Oxigenase/química , Monofenol Mono-Oxigenase/ultraestrutura , Peptídeos/química , Streptomyces antibioticus/enzimologia , Sítios de Ligação , Simulação por Computador , Ativação Enzimática , Transição de Fase , Ligação Proteica
5.
Biochem J ; 371(Pt 2): 515-23, 2003 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-12466021

RESUMO

Tyrosinases, which are widely distributed among animals, plants and fungi, are involved in many biologically essential functions, including pigmentation, sclerotization, primary immune response and host defence. In the present study, we present a structural and physicochemical characterization of two new tyrosinases from the crustaceans Palinurus elephas (European spiny lobster) and Astacus leptodactylus (freshwater crayfish). In vivo, the purified crustacean tyrosinases occur as hexamers composed of one subunit type with a molecular mass of approx. 71 kDa. The tyrosinase hexamers appear to be similar to the haemocyanins, based on electron microscopy. Thus a careful purification protocol was developed to discriminate clearly between tyrosinases and the closely related haemocyanins. The physicochemical properties of haemocyanins and tyrosinases are different with respect to electronegativity and hydrophobicity. The hexameric nature of arthropod tyrosinases suggests that these proteins were the ideal predecessors from which to develop the oxygen-carrier protein haemocyanin, with its allosteric and co-operative properties, later on.


Assuntos
Crustáceos/enzimologia , Monofenol Mono-Oxigenase/química , Monofenol Mono-Oxigenase/metabolismo , Animais , Astacoidea/enzimologia , Cromatografia por Troca Iônica , Evolução Molecular , Hemolinfa/enzimologia , Cinética , Substâncias Macromoleculares , Microscopia Eletrônica , Monofenol Mono-Oxigenase/ultraestrutura , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA