Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 827
Filtrar
1.
J Med Chem ; 67(9): 7470-7486, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38690769

RESUMO

We assessed factors that determine the tissue-specific bioactivation of ProTide prodrugs by comparing the disposition and activation of remdesivir (RDV), its methylpropyl and isopropyl ester analogues (MeRDV and IsoRDV, respectively), the oral prodrug GS-621763, and the parent nucleotide GS-441524 (Nuc). RDV and MeRDV yielded more active metabolite remdesivir-triphosphate (RDV-TP) than IsoRDV, GS-621763, and Nuc in human lung cell models due to superior cell permeability and higher susceptivity to cathepsin A. Intravenous administration to mice showed that RDV and MeRDV delivered significantly more RDV-TP to the lung than other compounds. Nevertheless, all four ester prodrugs exhibited very low oral bioavailability (<2%), with Nuc being the predominant metabolite in blood. In conclusion, ProTides prodrugs, such as RDV and MeRDV, are more efficient in delivering active metabolites to the lung than Nuc, driven by high cell permeability and susceptivity to cathepsin A. Optimizing ProTides' ester structures is an effective strategy for enhancing prodrug activation in the lung.


Assuntos
Adenosina/análogos & derivados , Antivirais , Catepsina A , Pulmão , Pró-Fármacos , Pró-Fármacos/química , Pró-Fármacos/metabolismo , Pró-Fármacos/farmacocinética , Pró-Fármacos/farmacologia , Animais , Camundongos , Antivirais/farmacocinética , Antivirais/farmacologia , Antivirais/química , Antivirais/metabolismo , Humanos , Catepsina A/metabolismo , Pulmão/metabolismo , Permeabilidade da Membrana Celular/efeitos dos fármacos , Monofosfato de Adenosina/análogos & derivados , Monofosfato de Adenosina/farmacocinética , Monofosfato de Adenosina/metabolismo , Monofosfato de Adenosina/química , Monofosfato de Adenosina/farmacologia , Alanina/análogos & derivados , Alanina/química , Alanina/farmacocinética , Alanina/metabolismo , Alanina/farmacologia , Permeabilidade , Ariloxifosforamidatos
2.
Arch Biochem Biophys ; 756: 109995, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38621448

RESUMO

T4 polynucleotide kinase (T4 PNK) phosphorylates the 5'-terminus of DNA and RNA substrates. It is widely used in molecular biology. Single nucleotides can serve as substrates if a 3'-phosphate group is present. In this study, the T4 PNK-catalyzed conversion of adenosine 3'-monophosphate (3'-AMP) to adenosine-3',5'-bisphosphate was characterized using isothermal titration calorimetry (ITC). Although ITC is typically used to study ligand binding, in this case the instrument was used to evaluate enzyme kinetics by monitoring the heat production due to reaction enthalpy. The reaction was initiated with a single injection of 3'-AMP substrate into the sample cell containing T4 PNK and ATP at pH 7.6 and 30 °C, and Michaelis-Menten analysis was performed on the reaction rates derived from the plot of differential power versus time. The Michaelis-Menten constant, KM, was 13 µM, and the turnover number, kcat, was 8 s-1. The effect of inhibitors was investigated using pyrophosphate (PPi). PPi caused a dose-dependent decrease in the apparent kcat and increase in the apparent KM under the conditions tested. Additionally, the intrinsic reaction enthalpy and the activation energy of the T4 PNK-catalyzed phosphorylation of 3'-AMP were determined to be -25 kJ/mol and 43 kJ/mol, respectively. ITC is seldom used as a tool to study enzyme kinetics, particularly for technically-challenging enzymes such as kinases. This study demonstrates that quantitative analysis of kinase activity can be amenable to the ITC single injection approach.


Assuntos
Calorimetria , Polinucleotídeo 5'-Hidroxiquinase , Cinética , Calorimetria/métodos , Polinucleotídeo 5'-Hidroxiquinase/metabolismo , Polinucleotídeo 5'-Hidroxiquinase/química , Monofosfato de Adenosina/química , Monofosfato de Adenosina/metabolismo , Termodinâmica , Bacteriófago T4/enzimologia , Difosfatos/química , Difosfatos/metabolismo , Fosforilação
3.
ACS Chem Biol ; 19(5): 1093-1105, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38646883

RESUMO

Viral macrodomains that can bind to or hydrolyze protein adenosine diphosphate ribosylation (ADP-ribosylation) have emerged as promising targets for antiviral drug development. Many inhibitor development efforts have been directed against the severe acute respiratory syndrome coronavirus 2 macrodomain 1 (SARS-CoV-2 Mac1). However, potent inhibitors for viral macrodomains are still lacking, with the best inhibitors still in the micromolar range. Based on GS-441524, a remdesivir precursor, and our previous studies, we have designed and synthesized potent binders of SARS-CoV-2 Mac1 and other viral macrodomains including those of Middle East respiratory syndrome coronavirus (MERS-CoV), Venezuelan equine encephalitis virus (VEEV), and Chikungunya virus (CHIKV). We show that the 1'-CN group of GS-441524 promotes binding to all four viral macrodomains tested while capping the 1″-OH of GS-441524-diphosphate-ribose with a simple phenyl ring further contributes to binding. Incorporating these two structural features, the best binders show 20- to 6000-fold increases in binding affinity over ADP-ribose for SARS-CoV-2, MERS-CoV, VEEV, and CHIKV macrodomains. Moreover, building on these potent binders, we have developed two highly sensitive fluorescence polarization tracers that only require nanomolar proteins and can effectively resolve the binding affinities of nanomolar inhibitors. Our findings and probes described here will facilitate future development of more potent viral macrodomain inhibitors.


Assuntos
Antivirais , Polarização de Fluorescência , SARS-CoV-2 , Humanos , Adenosina Difosfato Ribose/metabolismo , Adenosina Difosfato Ribose/química , Monofosfato de Adenosina/análogos & derivados , Monofosfato de Adenosina/química , Monofosfato de Adenosina/farmacologia , Monofosfato de Adenosina/metabolismo , Antivirais/farmacologia , Antivirais/química , Antivirais/metabolismo , Vírus Chikungunya/efeitos dos fármacos , COVID-19/virologia , Tratamento Farmacológico da COVID-19 , Vírus da Encefalite Equina Venezuelana/efeitos dos fármacos , Vírus da Encefalite Equina Venezuelana/metabolismo , Coronavírus da Síndrome Respiratória do Oriente Médio , Ligação Proteica , Domínios Proteicos , SARS-CoV-2/efeitos dos fármacos
4.
Biochem Biophys Res Commun ; 712-713: 149938, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38640739

RESUMO

Polymerization of nucleotides under prebiotic conditions simulating the early Earth has been extensively studied. Several independent methods have been used to verify that RNA-like polymers can be produced by hot wet-dry cycling of nucleotides. However, it has not been shown that these RNA-like polymers are similar to biological RNA with 3'-5' phosphodiester bonds. In the results described here, RNA-like polymers were generated from 5'-monophosphate nucleosides AMP and UMP. To confirm that the polymers resemble biological RNA, ribonuclease A should catalyze hydrolysis of the 3'-5' phosphodiester bonds between pyrimidine nucleotides to each other or to purine nucleotides, but not purine-purine nucleotide bonds. Here we show AFM images of specific polymers produced by hot wet-dry cycling of AMP, UMP and AMP/UMP (1:1) solutions on mica surfaces, before and after exposure to ribonuclease A. AMP polymers were unaffected by ribonuclease A but UMP polymers disappeared. This indicates that a major fraction of the bonds in the UMP polymers is indeed 3'-5' phosphodiester bonds. Some of the polymers generated from the AMP/UMP mixture also showed clear signs of cleavage. Because ribonuclease A recognizes the ester bonds in the polymers, we show for the first time that these prebiotically produced polymers are in fact similar to biological RNA but are likely to be linked by a mixture of 3'-5' and 2'-5' phosphodiester bonds.


Assuntos
RNA , Ribonuclease Pancreático , RNA/química , RNA/metabolismo , Ribonuclease Pancreático/química , Ribonuclease Pancreático/metabolismo , Uridina Monofosfato/química , Uridina Monofosfato/metabolismo , Microscopia de Força Atômica , Temperatura Alta , Polímeros/química , Monofosfato de Adenosina/química , Monofosfato de Adenosina/metabolismo , Hidrólise , Polimerização
5.
Nat Commun ; 15(1): 3603, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38684662

RESUMO

The ability to sense chemical gradients and respond with directional motility and chemical activity is a defining feature of complex living systems. There is a strong interest among scientists to design synthetic systems that emulate these properties. Here, we realize and control such behaviors in a synthetic system by tailoring multivalent interactions of adenosine nucleotides with catalytic microbeads. We first show that multivalent interactions of the bead with gradients of adenosine mono-, di- and trinucleotides (AM/D/TP) control both the phoretic motion and a proton-transfer catalytic reaction, and find that both effects are diminished greatly with increasing valence of phosphates. We exploit this behavior by using enzymatic hydrolysis of ATP to AMP, which downregulates multivalent interactivity in situ. This produces a sudden increase in transport of the catalytic microbeads (a phoretic jump), which is accompanied by increased catalytic activity. Finally, we show how this enzymatic activity can be systematically tuned, leading to simultaneous in situ spatial and temporal control of the location of the microbeads, as well as the products of the reaction that they catalyze. These findings open up new avenues for utilizing multivalent interaction-mediated programming of complex chemo-mechanical behaviors into active systems.


Assuntos
Trifosfato de Adenosina , Trifosfato de Adenosina/metabolismo , Trifosfato de Adenosina/química , Hidrólise , Catálise , Coloides/química , Microesferas , Monofosfato de Adenosina/metabolismo , Monofosfato de Adenosina/química , Adenosina/metabolismo , Adenosina/química
6.
J Chem Inf Model ; 64(1): 150-163, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38117131

RESUMO

This study explores ligand-driven conformational changes in adenylate kinase (AK), which is known for its open-to-close conformational transitions upon ligand binding and release. By utilizing string free energy simulations, we determine the free energy profiles for both enzyme opening and ligand release and compare them with profiles from the apoenzyme. Results reveal a three-step ligand release process, which initiates with the opening of the adenosine triphosphate-binding subdomain (ATP lid), followed by ligand release and concomitant opening of the adenosine monophosphate-binding subdomain (AMP lid). The ligands then transition to nonspecific positions before complete dissociation. In these processes, the first step is energetically driven by ATP lid opening, whereas the second step is driven by ATP release. In contrast, the AMP lid opening and its ligand release make minor contributions to the total free energy for enzyme opening. Regarding the ligand binding mechanism, our results suggest that AMP lid closure occurs via an induced-fit mechanism triggered by AMP binding, whereas ATP lid closure follows conformational selection. This difference in the closure mechanisms provides an explanation with implications for the debate on ligand-driven conformational changes of AK. Additionally, we determine an X-ray structure of an AK variant that exhibits significant rearrangements in the stacking of catalytic arginines, explaining its reduced catalytic activity. In the context of apoenzyme opening, the sequence of events is different. Here, the AMP lid opens first while the ATP lid remains closed, and the free energy associated with ATP lid opening varies with orientation, aligning with the reported AK opening and closing rate heterogeneity. Finally, this study, in conjunction with our previous research, provides a comprehensive view of the intricate interplay between various structural elements, ligands, and catalytic residues that collectively contribute to the robust catalytic power of the enzyme.


Assuntos
Trifosfato de Adenosina , Adenilato Quinase , Adenilato Quinase/química , Ligantes , Apoenzimas/metabolismo , Monofosfato de Adenosina/química , Monofosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Conformação Proteica
7.
Protein J ; 42(5): 533-546, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37402109

RESUMO

Tuberculosis caused by Mycobacterium tuberculosis (M.tb) has killed millions worldwide. Antibiotic resistance leads to the ineffectiveness of the current therapies. Aminoacyl tRNA synthetase (aaRS) class of proteins involved in protein synthesis are promising bacterial targets for developing new therapies. Here, we carried out a systematic comparative study on the aaRS sequences from M.tb and human. We listed important M.tb aaRS that could be explored as potential M.tb targets alongside the detailed conformational space analysis of methionyl-tRNA synthetase (MetRS) in apo- and substrate-bound form, which is among the proposed targets. Understanding the conformational dynamics is central to the mechanistic understanding of MetRS, as the substrate binding leads to the conformational changes causing the reaction to proceed. We performed the most complete simulation study of M.tb MetRS for 6 microseconds (2 systems × 3 runs × 1 microsecond) in the apo and substrate-bound states. Interestingly, we observed differential features, showing comparatively large dynamics for the holo simulations, whereas the apo structures became slightly compact with reduced solvent exposed area. In contrast, the ligand size decreased significantly in holo structures possibly to relax ligand conformation. Our findings correlate with experimental studies, thus validating our protocol. Adenosine monophosphate moiety of the substrate exhibited quite higher fluctuations than the methionine. His21 and Lys54 were found to be the important residues forming prominent hydrogen bond and salt-bridge interactions with the ligand. The ligand-protein affinity decreased during simulations as computed by MMGBSA analysis over the last 500 ns trajectories, which indicates the conformational changes upon ligand binding. These differential features could be further explored for designing new M.tb inhibitors.


Assuntos
Aminoacil-tRNA Sintetases , Metionina tRNA Ligase , Mycobacterium tuberculosis , Humanos , Metionina tRNA Ligase/química , Metionina tRNA Ligase/metabolismo , Mycobacterium tuberculosis/metabolismo , Ligantes , Aminoacil-tRNA Sintetases/metabolismo , Monofosfato de Adenosina/química
8.
Food Chem ; 429: 136863, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37490820

RESUMO

The umami taste of pea protein ingredients can be desirable or undesirable based on the food application. The compounds contributing to the umami perception of pea protein isolate (PPI) were investigated. Sensory-guided prep-liquid chromatography fractionation of a 10% aqueous PPI solution revealed one well-known compound, monosodium glutamate (MSG), however, it was reported at a subthreshold concentration. Two umami enhancing compounds 5'-adenosine monophosphate (AMP) and 5'-uridine monophosphate (UMP) were subsequently identified after the LC fractions were re-evaluated with MSG. Sensory recombination studies, utilizing the aqueous PPI solution as the base, confirmed AMP and UMP were umami enhancers of MSG and contributed approximately 81% of the perceived umami intensity. However UMP was only reported to enhance umami perception in combination with AMP (not individually) indicating synergistic interactions were observed between the two enhancer compounds. Therefore the presence of all three compounds are important for umami perception and provide an improved basis to tailor the flavor profile in PPI products.


Assuntos
Paladar , Proteínas de Ervilha , Ultrafiltração , Peso Molecular , Glutamato de Sódio/química , Uridina Monofosfato/química , Monofosfato de Adenosina/química
9.
Phys Chem Chem Phys ; 25(19): 13508-13520, 2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37132325

RESUMO

SARS-CoV-2 RNA dependent RNA polymerase (RdRp) serves as a highly promising antiviral drug target such as for a Remdesivir nucleotide analogue (RDV-TP or RTP). In this work, we mainly used alchemical all-atom simulations to characterize relative binding free energetics between the nucleotide analogue RTP and natural cognate substrate ATP upon initial binding and pre-catalytic insertion into the active site of SARS-CoV-2 RdRp. Natural non-cognate substrate dATP and mismatched GTP were also examined for computation control. We first identified significant differences in dynamical responses between nucleotide initial binding and subsequent insertion configurations to the open and closed active sites of the RdRp, respectively, though the RdRp protein conformational changes between the active site's open and closed states are subtle. Our alchemical simulations indicated that upon initial binding (active site open), RTP and ATP show similar binding free energies to the active sites while in the insertion state (active site closed), ATP is more stabilized (∼-2.4 kcal mol-1) than RTP in free energetics. Additional analyses show, however, that RTP is more stabilized in binding energetics than ATP, in both the insertion and initial binding states, with RTP more stabilized due to the electrostatic energy in the insertion state and due to vdW energy in the initial binding state. Hence, it appears that natural cognate ATP still excels at association stability with the RdRp active site due to that ATP maintains sufficient flexibilities e.g., in base pairing with the template, which exemplifies an entropic contribution to the cognate substrate stabilization. These findings highlight the importance of substrate flexibilities in addition to energetic stabilization in antiviral nucleotide analogue design.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/metabolismo , Domínio Catalítico , RNA Viral , Tratamento Farmacológico da COVID-19 , Monofosfato de Adenosina/química , Antivirais/química , Trifosfato de Adenosina/metabolismo
10.
ACS Chem Biol ; 18(1): 102-111, 2023 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-36623177

RESUMO

Guvermectin is a novel plant growth regulator that has been registered as a new agrochemical in China. It is an adenosine analogue with an unusual psicofuranose instead of ribose. Herein, the gene cluster responsible for guvermectin biosynthesis in Streptomyces caniferus NEAU6 is identified using gene interruption and heterologous expression experiments. A key intermediate psicofuranine 6'-phosphate (PMP) is chemically synthesized, and the functions of GvmB, C, D, and E are verified by individual stepwise enzyme reactions in vitro. The results also show that the biosynthesis of guvermectin is coupled with adenosine production by a single cluster. The higher catalytic efficiency of GvmB on PMP than AMP ensures the effective biosynthesis of guvermectin. Moreover, a phosphoribohydrolase GvmA is employed in the pathway that can hydrolyze AMP but not PMP and shows higher catalytic efficiency for the AMP hydrolysis than that of the AMP dephosphorylation by GvmB, leading to shunting of adenosine biosynthesis toward the production of guvermectin. Finally, the crystal structure of GvmE in complex with the product PMP has been solved. Glu160 at the C-terminal is identified as the acid/base for protonation/deprotonation of N7 of the adenine ring, demonstrating that GvmE is a noncanonical adenine phosphoribosyltransferase.


Assuntos
Adenina Fosforribosiltransferase , Ácido Glutâmico , Adenina Fosforribosiltransferase/química , Adenosina , Monofosfato de Adenosina/química , Modelos Moleculares
11.
J Mol Graph Model ; 118: 108338, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36201878

RESUMO

We report a novel model of the selective binding mechanism of adenosine-specific DNA aptamer. Our theoretical investigations of AMP (Adenosine monophosphate) dissociation from aptamer-AMP complexes reveals new details of aptamer molecular specificity and stabilisation factors. Umbrella sampling MD calculations using parmbsc1 force field shows that the disordered structure of the internal loop of the unbound aptamer hairpin has a characteristic packing of guanines, which prevents barrier-free penetration of ligands into the site cavity. Also, this disordered structure of the unbound aptamer has a network of hydrogen bonds stabilising the cavity near the target guanines within the binding sites during the whole binding process. We suggested that the first AMP molecule binds to the disordered structure of the site closest to the aptamer hairpin stem and spends some free energy on ordering of the internal loop. Then the second AMP molecule binds to the ordered site closest to the aptamer hairpin loop with a lower energy gain. As a result, the induced-fit binding model is the most applicable for this aptamer and does not contradict the modern experimental NMR and calorimetry data.


Assuntos
Aptâmeros de Nucleotídeos , Aptâmeros de Nucleotídeos/química , Adenosina , Conformação de Ácido Nucleico , Estudos de Amostragem , Monofosfato de Adenosina/química , Sítios de Ligação
12.
Phys Chem Chem Phys ; 24(44): 27136-27145, 2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36345610

RESUMO

The amino acid arginine plays a key role in the interaction of proteins with adenosine phosphates, as its protonated guanidinium side group is capable of building multipodal H-bonding interactions with the oxygen atoms of the phosphate, phosphoester and ribose moieties and with the nitrogen atoms of adenine. Protein interactions often take place in competition with other ionic species, typically metal cations, which are prone to build concerted coordination arrangements with the same centers of negative charge as guanidinium. We report on a vibrational spectroscopy and computational investigation of a positively charged ternary complex formed by adenosine monophosphate (AMP) with methyl guanidinium and Na+. Following a bottom-up approach, an analogous complex with ribose phosphate is characterized as well, which serves to assess the individual role of the phosphate, sugar and adenine moieties in the binding process and to compare, within a single complex, the interactions associated with diffuse versus localized charge distributions of guanidinium and the alkali cation, respectively. The results indicate that Na+ is preferentially hosted in a semi-rigid pocket formed by the phosphoester-adenosine backbone of AMP and displaces guanidinium to a peripheral binding to the phosphate anionic end group. This suggests that the control of the salt concentration may constitute an effective route to modulate protein-AMP complexation.


Assuntos
Nucleotídeos de Adenina , Arginina , Arginina/química , Guanidina/química , Monofosfato de Adenosina/química , Íons , Fosfatos/química , Sódio , Adenina
13.
Nucleic Acids Res ; 50(13): 7560-7569, 2022 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-35819229

RESUMO

5'-Adenylated oligonucleotides (AppOligos) are widely used for single-stranded DNA/RNA ligation in next-generation sequencing (NGS) applications such as microRNA (miRNA) profiling. The ligation between an AppOligo adapter and target molecules (such as miRNA) no longer requires ATP, thereby minimizing potential self-ligations and simplifying library preparation procedures. AppOligos can be produced by chemical synthesis or enzymatic modification. However, adenylation via chemical synthesis is inefficient and expensive, while enzymatic modification requires pre-phosphorylated substrate and additional purification. Here we cloned and characterized the Pfu RNA ligase encoded by the PF0353 gene in the hyperthermophilic archaea Pyrococcus furiosus. We further engineered fusion enzymes containing both Pfu RNA ligase and T4 polynucleotide kinase. One fusion enzyme, 8H-AP, was thermostable and can directly catalyze 5'-OH-terminated DNA substrates to adenylated products. The newly discovered Pfu RNA ligase and the engineered fusion enzyme may be useful tools for applications using AppOligos.


Assuntos
Monofosfato de Adenosina/química , Técnicas Genéticas , MicroRNAs , Oligonucleotídeos/química , Polinucleotídeo 5'-Hidroxiquinase , DNA/química , DNA Ligases/metabolismo , DNA de Cadeia Simples , Polinucleotídeo 5'-Hidroxiquinase/genética , Pyrococcus furiosus/enzimologia , RNA Ligase (ATP)/metabolismo
14.
Biochemistry ; 61(13): 1392-1403, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35731976

RESUMO

The two RNA-dependent RNA polymerase inhibitors remdesivir and favipiravir were originally developed and approved as broad-spectrum antiviral drugs for the treatment of harmful viral infections such as Ebola and influenza. With the outbreak of the global SARS-CoV-2 pandemic, the two drugs were repurposed for the treatment of COVID-19 patients. Clinical studies suggested that the efficacy of the drugs is enhanced in the case of an early or even prophylactic application. Because the contact between drug molecules and the plasma membrane is essential for a successful permeation process of the substances and therefore for their intracellular efficiency, drug-induced effects on the membrane structure are likely and have already been shown for other substances. We investigated the impact of remdesivir and favipiravir on lipid bilayers in model and cell membranes via several biophysical approaches. The measurements revealed that the embedding of remdesivir molecules in the lipid bilayer results in a disturbance of the membrane structure of the tested phospholipid vesicles. Nevertheless, in a cell-based assay, the presence of remdesivir induced only weak hemolysis of the treated erythrocytes. In contrast, no experimental indication for an effect on the structure and integrity of the membrane was detected in the case of favipiravir. Regarding potential prophylactic or accompanying use of the drugs in the therapy of COVID-19, the physiologically relevant impacts associated with the drug-induced structural modifications of the membrane might be important to understand side effects and/or low effectivities.


Assuntos
Tratamento Farmacológico da COVID-19 , Bicamadas Lipídicas , Monofosfato de Adenosina/análogos & derivados , Monofosfato de Adenosina/química , Monofosfato de Adenosina/farmacologia , Alanina/análogos & derivados , Alanina/química , Alanina/farmacologia , Amidas , Antivirais/química , Humanos , Pirazinas , RNA Polimerase Dependente de RNA , SARS-CoV-2
15.
Antimicrob Agents Chemother ; 66(7): e0019822, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35708323

RESUMO

In vitro selection of remdesivir-resistant severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) revealed the emergence of a V166L substitution, located outside of the polymerase active site of the Nsp12 protein, after 9 passages of a single lineage. V166L remained the only Nsp12 substitution after 17 passages (10 µM remdesivir), conferring a 2.3-fold increase in 50% effective concentration (EC50). When V166L was introduced into a recombinant SARS-CoV-2 virus, a 1.5-fold increase in EC50 was observed, indicating a high in vitro barrier to remdesivir resistance.


Assuntos
Tratamento Farmacológico da COVID-19 , SARS-CoV-2 , Monofosfato de Adenosina/análogos & derivados , Monofosfato de Adenosina/química , Alanina/análogos & derivados , Alanina/metabolismo , Antivirais/química , Humanos
16.
Biomolecules ; 12(5)2022 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-35625598

RESUMO

Human adenylate kinase 1 (hAK1) plays a vital role in the energetic and metabolic regulation of cell life, and impaired functions of hAK1 are closely associated with many diseases. In the presence of Mg2+ ions, hAK1 in vivo can catalyze two ADP molecules into one ATP and one AMP molecule, activating the downstream AMP signaling. The ADP-binding also initiates AK1 transition from an open conformation to a closed conformation. However, how substrate binding triggers the conformational transition of hAK1 is still unclear, and the underlying molecular mechanisms remain elusive. Herein, we determined the solution structure of apo-hAK1 and its key residues for catalyzing ADP, and characterized backbone dynamics characteristics of apo-hAK1 and hAK1-Mg2+-ADP complex (holo-hAK1) using NMR relaxation experiments. We found that ADP was primarily bound to a cavity surrounded by the LID, NMP, and CORE domains of hAK1, and identified several critical residues for hAK1 catalyzing ADP including G16, G18, G20, G22, T39, G40, R44, V67, D93, G94, D140, and D141. Furthermore, we found that apo-hAK1 adopts an open conformation with significant ps-ns internal mobility, and Mg2+-ADP binding triggered conformational transition of hAK1 by suppressing the ps-ns internal motions of α3α4 in the NMP domain and α7α8 in the LID domain. Both α3α4 and α7α8 fragments became more rigid so as to fix the substrate, while the catalyzing center of hAK1 experiences promoted µs-ms conformational exchange, potentially facilitating catalysis reaction and conformational transition. Our results provide the structural basis of hAK1 catalyzing ADP into ATP and AMP, and disclose the driving force that triggers the conformational transition of hAK1, which will deepen understanding of the molecular mechanisms of hAK1 functions.


Assuntos
Trifosfato de Adenosina , Difosfato de Adenosina/metabolismo , Monofosfato de Adenosina/química , Trifosfato de Adenosina/química , Adenilato Quinase , Humanos , Modelos Moleculares , Conformação Proteica
17.
J Mol Biol ; 434(7): 167478, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35123996

RESUMO

Despite decades of research and the availability of the full genomic sequence of the baker's yeast Saccharomyces cerevisiae, still a large fraction of its genome is not functionally annotated. This hinders our ability to fully understand cellular activity and suggests that many additional processes await discovery. The recent years have shown an explosion of high-quality genomic and structural data from multiple organisms, ranging from bacteria to mammals. New computational methods now allow us to integrate these data and extract meaningful insights into the functional identity of uncharacterized proteins in yeast. Here, we created a database of sensitive sequence similarity predictions for all yeast proteins. We use this information to identify candidate enzymes for known biochemical reactions whose enzymes are unidentified, and show how this provides a powerful basis for experimental validation. Using one pathway as a test case we pair a new function for the previously uncharacterized enzyme Yhr202w, as an extra-cellular AMP hydrolase in the NAD degradation pathway. Yhr202w, which we now term Smn1 for Scavenger MonoNucleotidase 1, is a highly conserved protein that is similar to the human protein E5NT/CD73, which is associated with multiple cancers. Hence, our new methodology provides a paradigm, that can be adopted to other organisms, for uncovering new enzymatic functions of uncharacterized proteins.


Assuntos
Monofosfato de Adenosina , Nucleotidases , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Humanos , Monofosfato de Adenosina/química , Nucleotidases/química , Saccharomyces cerevisiae/enzimologia , Proteínas de Saccharomyces cerevisiae/química , Análise de Sequência de Proteína/métodos
18.
Molecules ; 27(2)2022 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-35056802

RESUMO

A novel series of 1-aryl-N-[4-phenyl-5-(arylazo)thiazol-2-yl)methanimines has been synthesized via the condensation of 2-amino-4-phenyl-5-arylazothiazole with various aromatic aldehydes. The synthesized imines were characterized by spectroscopic techniques, namely 1H and 13C-NMR, FTIR, MS, and Elemental Analysis. A molecular comparative docking study for 3a-f was calculated, with reference to two approved drugs, Molnupiravir and Remdesivir, using 7BQY (Mpro; PDB code 7BQY; resolution: 1.7 A°) under identical conditions. The binding scores against 7BQY were in the range of -7.7 to -8.7 kcal/mol for 3a-f. The high scores of the compounds indicated an enhanced binding affinity of the molecules to the receptor. This is due to the hydrophobic interactions and multi-hydrogen bonds between 3a-f ligands and the receptor's active amino acid residues. The main aim of using in silco molecular docking was to rank 3a-f with respect to the approved drugs, Molnupiravir and Remdesivir, using free energy methods as greener pastures. A further interesting comparison presented the laydown of the ligands before and after molecular docking. These results and other supporting statistical analyses suggested that ligands 3a-f deserve further investigation in the context of potential therapeutic agents for COVID-19. Free-cost, PASS, SwissADME, and Way2drug were used in this research paper to determine the possible biological activities and cytotoxicity of 3a-f.


Assuntos
Antivirais/química , Tratamento Farmacológico da COVID-19 , Iminas/química , Tiazóis/química , Monofosfato de Adenosina/análogos & derivados , Monofosfato de Adenosina/química , Alanina/análogos & derivados , Alanina/química , Antivirais/síntese química , Antivirais/farmacocinética , Antivirais/toxicidade , Sítios de Ligação , Simulação por Computador , Proteases 3C de Coronavírus/química , Citidina/análogos & derivados , Citidina/química , Hidroxilaminas/química , Iminas/síntese química , Iminas/farmacocinética , Iminas/toxicidade , Simulação de Acoplamento Molecular , SARS-CoV-2/efeitos dos fármacos , Tiazóis/síntese química , Tiazóis/farmacocinética , Tiazóis/toxicidade
19.
Int J Mol Sci ; 23(1)2022 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-35008944

RESUMO

(1R,5S)-1-Hydroxy-3,6-dioxa-bicyclo[3.2.1]octan-2-one, available by an efficient catalytic pyrolysis of cellulose, has been applied as a chiral building block in the synthesis of seven new nucleoside analogues, with structural modifications on the nucleobase moiety and on the carboxyl- derived unit. The inverted configuration by Mitsunobu reaction used in their synthesis was verified by 2D-NOESY correlations, supported by the optimized structure employing the DFT methods. An in silico screening of these compounds as inhibitors of SARS-CoV-2 RNA-dependent RNA polymerase has been carried out in comparison with both remdesivir, a mono-phosphoramidate prodrug recently approved for COVID-19 treatment, and its ribonucleoside metabolite GS-441524. Drug-likeness prediction and data by docking calculation indicated compound 6 [=(3S,5S)-methyl 5-(hydroxymethyl)-3-(6-(4-methylpiperazin-1-yl)-9H-purin-9-yl)tetrahydrofuran-3-carboxylate] as the best candidate. Furthermore, molecular dynamics simulation showed a stable interaction of structure 6 in RNA-dependent RNA polymerase (RdRp) complex and a lower average atomic fluctuation than GS-441524, suggesting a well accommodation in the RdRp binding pocket.


Assuntos
Antivirais/síntese química , Celulose/química , RNA-Polimerase RNA-Dependente de Coronavírus/antagonistas & inibidores , Nucleosídeos/síntese química , SARS-CoV-2/enzimologia , Adenosina/análogos & derivados , Adenosina/química , Adenosina/farmacocinética , Monofosfato de Adenosina/análogos & derivados , Monofosfato de Adenosina/química , Monofosfato de Adenosina/farmacocinética , Alanina/análogos & derivados , Alanina/química , Alanina/farmacocinética , Antivirais/química , Antivirais/farmacocinética , Biologia Computacional , RNA-Polimerase RNA-Dependente de Coronavírus/química , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Nucleosídeos/química , Nucleosídeos/farmacocinética , Pirólise , SARS-CoV-2/efeitos dos fármacos
20.
Med Chem ; 18(3): 382-393, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34365955

RESUMO

BACKGROUND: During the current SARS-CoV-2 pandemic, the identification of effective antiviral drugs is crucial. Unfortunately, no specific treatment or vaccine is available to date. OBJECTIVE: Here, we aimed to predict the interactions with SARS-CoV-2 proteins and protein targets from the human body for some flavone molecules (kaempferol, morin, pectolinarin, myricitrin, and herbacetin) in comparison to synthetic compounds (hydroxychloroquine, remdesivir, ribavirin, ritonavir, AMD-070, favipiravir). METHODS: Using MOE software and advanced bioinformatics and cheminformatics portals, we conducted an extensive analysis based on various structural and functional features of compounds, such as their amphiphilic field, flexibility, and steric features. The structural similarity analysis of natural and synthetic compounds was performed using Tanimoto coefficients. The interactions of some compounds with SARS-CoV-2 3CLprotease or RNA-dependent RNA polymerase were described using 2D protein-ligand interaction diagrams based on known crystal structures. The potential targets of considered compounds were identified using the SwissTargetPrediction web tool. RESULTS: Our results showed that remdesivir, pectolinarin, and ritonavir present a strong structural similarity which may be correlated to their similar biological activity. As common molecular targets of compounds in the human body, ritonavir, kaempferol, morin, and herbacetin can activate multidrug resistance-associated proteins, while remdesivir, ribavirin, and pectolinarin appear as ligands for adenosine receptors. CONCLUSION: Our evaluation recommends remdesivir, pectolinarin, and ritonavir as promising anti- SARS-CoV-2 agents.


Assuntos
Tratamento Farmacológico da COVID-19 , Flavonas , Monofosfato de Adenosina/análogos & derivados , Monofosfato de Adenosina/química , Monofosfato de Adenosina/metabolismo , Monofosfato de Adenosina/farmacologia , Alanina/análogos & derivados , Antivirais/química , Biologia Computacional , Flavonas/farmacologia , Humanos , SARS-CoV-2
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA