Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(1)2022 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-35008975

RESUMO

The bacterium Moorella thermoacetica produces the most heat-resistant spores of any spoilage-causing microorganism known in the food industry. Previous work by our group revealed that the resistance of these spores to wet heat and biocides was lower when spores were produced at a lower temperature than the optimal temperature. Here, we used electron microcopy to characterize the ultrastructure of the coat of the spores formed at different sporulation temperatures; we found that spores produced at 55 °C mainly exhibited a lamellar inner coat tightly associated with a diffuse outer coat, while spores produced at 45 °C showed an inner and an outer coat separated by a less electron-dense zone. Moreover, misarranged coat structures were more frequently observed when spores were produced at the lower temperature. We then analyzed the proteome of the spores obtained at either 45 °C or 55 °C with respect to proteins putatively involved in the spore coat, exosporium, or in spore resistance. Some putative spore coat proteins, such as CotSA, were only identified in spores produced at 55 °C; other putative exosporium and coat proteins were significantly less abundant in spores produced at 45 °C. Altogether, our results suggest that sporulation temperature affects the structure and protein composition of M. thermoacetica spores.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Moorella , Esporos Bacterianos , Temperatura , Proteínas de Bactérias/ultraestrutura , Moorella/metabolismo , Moorella/ultraestrutura , Proteoma , Proteômica/métodos , Esporos Bacterianos/ultraestrutura , Relação Estrutura-Atividade
2.
Sci Rep ; 11(1): 2139, 2021 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-33495538

RESUMO

Biohybrids composed of microorganisms and nanoparticles have emerged as potential systems for bioenergy and high-value compound production from CO2 and light energy, yet the cellular and metabolic processes within the biological component of this system are still elusive. Here we dissect the biohybrid composed of the anaerobic acetogenic bacterium Moorella thermoacetica and cadmium sulphide nanoparticles (CdS) in terms of physiology, metabolism, enzymatics and transcriptomic profiling. Our analyses show that while the organism does not grow on L-cysteine, it is metabolized to acetate in the biohybrid system and this metabolism is independent of CdS or light. CdS cells have higher metabolic activity, despite an inhibitory effect of Cd2+ on key enzymes, because of an intracellular storage compound linked to arginine metabolism. We identify different routes how cysteine and its oxidized form can be innately metabolized by the model acetogen and what intracellular mechanisms are triggered by cysteine, cadmium or blue light.


Assuntos
Carbono/metabolismo , Cisteína/metabolismo , Metabolismo Energético , Acetatos/metabolismo , Transporte Biológico/efeitos dos fármacos , Cádmio/farmacologia , Isótopos de Carbono , Misturas Complexas , Cisteína/farmacologia , Metabolismo Energético/efeitos dos fármacos , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Luz , Espectroscopia de Ressonância Magnética , Moorella/genética , Moorella/crescimento & desenvolvimento , Moorella/efeitos da radiação , Moorella/ultraestrutura , Oxirredução , Transcriptoma/genética
3.
Science ; 351(6268): 74-7, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26721997

RESUMO

Improving natural photosynthesis can enable the sustainable production of chemicals. However, neither purely artificial nor purely biological approaches seem poised to realize the potential of solar-to-chemical synthesis. We developed a hybrid approach, whereby we combined the highly efficient light harvesting of inorganic semiconductors with the high specificity, low cost, and self-replication and -repair of biocatalysts. We induced the self-photosensitization of a nonphotosynthetic bacterium, Moorella thermoacetica, with cadmium sulfide nanoparticles, enabling the photosynthesis of acetic acid from carbon dioxide. Biologically precipitated cadmium sulfide nanoparticles served as the light harvester to sustain cellular metabolism. This self-augmented biological system selectively produced acetic acid continuously over several days of light-dark cycles at relatively high quantum yields, demonstrating a self-replicating route toward solar-to-chemical carbon dioxide reduction.


Assuntos
Ácido Acético/metabolismo , Biocatálise , Moorella/metabolismo , Fotossíntese , Compostos de Cádmio/química , Dióxido de Carbono/metabolismo , Luz , Microscopia Eletrônica , Moorella/efeitos da radiação , Moorella/ultraestrutura , Nanopartículas/química , Fotoperíodo , Sulfetos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA