Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
BMC Plant Biol ; 24(1): 505, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38840043

RESUMO

BACKGROUND: The climatic changes crossing the world menace the green life through limitation of water availability. The goal of this study was to determine whether Moringa oleifera Lam. trees cultivated under Tunisian arid climate, retain their tolerance ability to tolerate accentuated environmental stress factors such as drought and salinity. For this reason, the seeds of M. oleifera tree planted in Bouhedma Park (Tunisian arid area), were collected, germinated, and grown in the research area at the National Institute of Research in Rural Engineering, Waters and Forests (INRGREF) of Tunis (Tunisia). The three years aged trees were exposed to four water-holding capacities (25, 50, 75, and 100%) for 60 days to realise this work. RESULTS: Growth change was traduced by the reduction of several biometric parameters and fluorescence (Fv/Fm) under severe water restriction (25 and 50%). Whereas roots presented miraculous development in length face to the decrease of water availability (25 and 50%) in their rhizospheres. The sensitivity to drought-induced membrane damage (Malondialdehyde (MDA) content) and reactive oxygen species (ROS) liberation (hydrogen peroxide (H2O2) content) was highly correlated with ROS antiradical scavenging (ferric reducing antioxidant power (FRAP) and (2, 2'-diphenyl-1-picrylhydrazyle (DPPH)), phenolic components and osmolytes accumulation. The drought stress tolerance of M. oleifera trees was associated with a dramatic stimulation of superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR), ascorbate peroxidase (APX), and glutathione peroxidase (GPX) activities. CONCLUSION: Based on the several strategies adopted, integrated M. oleifera can grow under drought stress as accentuated adverse environmental condition imposed by climate change.


Assuntos
Moringa oleifera , Água , Moringa oleifera/fisiologia , Moringa oleifera/metabolismo , Água/metabolismo , Secas , Antioxidantes/metabolismo , Tunísia , Estresse Fisiológico , Espécies Reativas de Oxigênio/metabolismo , Análise Multivariada
2.
J Exp Bot ; 70(20): 5765-5772, 2019 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-31328237

RESUMO

As trees grow taller, hydraulic resistance can be expected to increase, causing photosynthetic productivity to decline. Yet leaves maintain productivity over vast height increases; this maintenance of productivity suggests that leaf-specific conductance remains constant as trees grow taller. Here we test the assumption of constant leaf-specific conductance with height growth and document the stem xylem anatomical adjustments involved. We measured the scaling of total leaf area, mean vessel diameter at terminal twigs and at the stem base, and total vessel number in 139 individuals of Moringa oleifera of different heights, and estimated a whole-plant conductance index from these measurements. Whole-plant conductance and total leaf area scaled at the same rate with height. Congruently, whole-plant conductance and total leaf area scaled isometrically. Constant conductance is made possible by intricate adjustments in anatomy, with conduit diameters in terminal twigs becoming wider, lowering per-vessel resistance, with a concomitant decrease in vessel number per unit leaf area with height growth. Selection maintaining constant conductance per unit leaf area with height growth (or at least minimizing drops in conductance) is likely a potent selective pressure shaping plant hydraulics, and crucially involved in the maintenance of photosynthetic productivity per leaf area across the terrestrial landscape.


Assuntos
Moringa oleifera/metabolismo , Moringa oleifera/fisiologia , Moringa oleifera/crescimento & desenvolvimento , Fotossíntese/fisiologia , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Folhas de Planta/fisiologia , Transpiração Vegetal/fisiologia , Xilema/crescimento & desenvolvimento , Xilema/metabolismo , Xilema/fisiologia
3.
Planta ; 249(5): 1503-1519, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30706136

RESUMO

MAIN CONCLUSION: Chitin-binding proteins behave as storage and antifungal proteins in the seeds of Moringa oleifera. Moringa oleifera is a tropical multipurpose tree. Its seed constituents possess coagulant, bactericidal, fungicidal, and insecticidal properties. Some of these properties are attributed to a group of polypeptides denominated M. oleifera chitin-binding proteins (in short, Mo-CBPs). Within this group, Mo-CBP2, Mo-CBP3, and Mo-CBP4 were previously purified to homogeneity. They showed high amino acid similarity with the 2S albumin storage proteins. These proteins also presented antimicrobial activity against human pathogenic yeast and phytopathogenic fungi. In the present study, the localization and expression of genes that encode Mo-CBPs and the biosynthesis and degradation of the corresponding proteins during morphogenesis and maturation of M. oleifera seeds at 15, 30, 60, and 90 days after anthesis (DAA) and germination, respectively, were assessed. The Mo-CBP transcripts and corresponding proteins were not detected at 15 and 30 days after anthesis (DAA). However, they accumulated at the latter stages of seed maturation (60 and 90 DAA), reaching the maximum level at 60 DAA. The degradation kinetics of Mo-CBPs during seed germination by in situ immunolocalization revealed a reduction in the protein content 48 h after sowing (HAS). Moreover, Mo-CBPs isolated from seeds at 60 and 90 DAA prevented the spore germination of Fusarium spp. Taken together, these results suggest that Mo-CBPs play a dual role as storage and defense proteins in the seeds of M. oleifera.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas de Transporte/farmacologia , Quitina/metabolismo , Moringa oleifera/metabolismo , Moringa oleifera/fisiologia , Sementes/metabolismo , Sementes/fisiologia , Antifúngicos/metabolismo , Antifúngicos/farmacologia , Fusarium/efeitos dos fármacos , Germinação/fisiologia
4.
Tree Physiol ; 38(11): 1640-1654, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30137639

RESUMO

Over the past decades, introduction of many fast-growing hygrophilic, and economically valuable plants into xeric environments has occurred. However, production and even survival of these species may be threatened by harsh climatic conditions unless an effective physiological and metabolic plasticity is available. Moringa oleifera Lam., a multipurpose tree originating from humid sub-tropical regions of India, is widely cultivated in many arid countries because of its multiple uses. We tested whether M. oleifera can adjust primary and secondary metabolism to efficiently cope with increasing water stress. It is shown that M. oleifera possesses an effective isohydric behavior. Water stress induced a quick and strong stomatal closure, driven by abscisic acid (ABA) accumulation, and leading to photosynthesis inhibition with consequent negative effects on biomass production. However, photochemistry was not impaired and maximal fluorescence and saturating photosynthesis remained unaffected in stressed leaves. We report for the first time that M. oleifera produces isoprene, and show that isoprene emission increased three-fold during stress progression. It is proposed that higher isoprene biosynthesis helps leaves cope with water stress through its antioxidant or membrane stabilizing action, and also indicates a general MEP (methylerythritol 4-phosphate) pathway activation that further helps protect photosynthesis under water stress. Increased concentrations of antioxidant flavonoids were also observed in water stressed leaves, and probably cooperate in limiting irreversible effects of the stress in M. oleifera leaves. The observed metabolic and phenotypic plasticity may facilitate the establishment of M. oleifera in xeric environments, sustaining the economic and environmental value of this plant.


Assuntos
Adaptação Fisiológica/fisiologia , Secas , Moringa oleifera/fisiologia , Dessecação , Estresse Fisiológico
5.
Sci Rep ; 8(1): 7995, 2018 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-29789671

RESUMO

Taste drives consumption of foods. The tropical tree Moringa oleifera is grown worldwide as a protein-rich leafy vegetable and for the medicinal value of its phytochemicals, in particular its glucosinolates, which can lead to a pronounced harsh taste. All studies to date have examined only cultivated, domestic variants, meaning that potentially useful variation in wild type plants has been overlooked. We examine whether domesticated and wild type M. oleifera differ in myrosinase or glucosinolate levels, and whether these different levels impact taste in ways that could affect consumption. We assessed taste and measured levels of protein, glucosinolate, myrosinase content, and direct antioxidant activity of the leaves of 36 M. oleifera accessions grown in a common garden. Taste tests readily highlighted differences between wild type and domesticated M. oleifera. There were differences in direct antioxidant potential, but not in myrosinase activity or protein quantity. However, these two populations were readily separated based solely upon their proportions of the two predominant glucosinolates (glucomoringin and glucosoonjnain). This study demonstrates substantial variation in glucosinolate composition within M. oleifera. The domestication of M. oleifera appears to have involved increases in levels of glucomoringin and substantial reduction of glucosoonjnain, with marked changes in taste.


Assuntos
Antioxidantes/análise , Glucosinolatos/análise , Glicosídeo Hidrolases/análise , Moringa oleifera , Proteínas de Plantas/análise , Paladar/fisiologia , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Dessecação , Domesticação , Glucosinolatos/metabolismo , Glicosídeo Hidrolases/metabolismo , Humanos , Moringa oleifera/química , Moringa oleifera/classificação , Moringa oleifera/fisiologia , Extratos Vegetais/química , Folhas de Planta/química , Proteínas de Plantas/metabolismo
7.
Plant Physiol Biochem ; 63: 200-8, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23274248

RESUMO

The main objective of this study was to assess whether recurring water stress occurring from seed germination to young plants of Moringa oleifera Lam. are able to mitigate the drought stress effects. Germination, gas exchange and biochemical parameters were analysed after three cycles of water deficit. Young plants were used 50 days after germination under three osmotic potentials (0.0, -0.3 and -0.4 MPa). For each germination treatment, control (irrigated) and stressed (10% of water control) plants were compared for a total of six treatments. There were two cycles of drought interspersed with 10 days of rehydration. The young plants of M. oleifera showed increased tolerance to repeated cycles of drought, maintaining high relative water content (RWC), high water use efficiency (WUE), increased photosynthetic pigments and increased activity of antioxidant enzymes. There was rapid recovery of the photosynthetic rate during the rehydration period. The stressed plants from the -0.3 and -0.4 MPa treatments showed higher tolerance compared to the control plants. The results suggest that seeds of M. oleifera subjected to mild water deficit have had increased the ability for drought tolerance when young plant.


Assuntos
Moringa oleifera/metabolismo , Sementes/metabolismo , Água/metabolismo , Secas , Germinação/fisiologia , Moringa oleifera/fisiologia , Pressão Osmótica , Fotossíntese/fisiologia , Sementes/fisiologia
8.
Med J Malaysia ; 63 Suppl A: 105-6, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19025007

RESUMO

Pollutants, especially heavy metals like cadmium, Chromium, lead and mercury, play a significant role in causing various water-borne diseases to humans. This study evaluates the sorption properties of bioactive constituents of Moringa oleifera seeds for decontamination of cadmium at laboratory scale. The performance of the bioactive constituent extracted by salt extraction method was enhanced by process optimization with various concentration of bioactive dosages, agitation speed, contact time, pH and heavy metal concentrations. Statistical optimization was carried out for evaluating the polynomial regression model through effect of linear, quadratic and interaction of the factors. The maximum removal of cadmium was 72% by using 0.2 g/l of bioactive dosage.


Assuntos
Intoxicação por Cádmio/prevenção & controle , Cádmio/toxicidade , Moringa oleifera/química , Preparações de Plantas/farmacologia , Sementes/química , Humanos , Concentração de Íons de Hidrogênio , Metais Pesados , Modelos Estatísticos , Moringa oleifera/fisiologia , Projetos Piloto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA