Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 824
Filtrar
1.
Ecotoxicol Environ Saf ; 281: 116617, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38905940

RESUMO

Hydrogen sulphide (H2S) is considered an immunotoxicant, and its presence in the water can influence the mucosal barrier functions of fish. However, there is a significant knowledge gap on how fish mucosa responds to low environmental H2S levels. The present study investigated the consequences of prolonged exposure to sub-lethal levels of H2S on the mucosal defences of Atlantic salmon (Salmo salar). Fish were continuously exposed to two levels of H2S (low: 0.05 µM; and high: 0.12 µM) for 12 days. Unexposed fish served as control. Molecular and histological profiling focused on the changes in the skin, gills and olfactory rosette. In addition, metabolomics and proteomics were performed on the skin and gill mucus. The gene expression profile indicated that the gills and olfactory rosette were more sensitive to H2S than the skin. The olfactory rosette showed a dose-dependent response, but not the gills. Genes related to stress responses were triggered at mucosal sites by H2S. Moreover, H2S elicited strong inflammatory responses, particularly in the gills. All mucosal organs demonstrated the key molecular repertoire for sulphide detoxification, but their temporal and spatial expression was not substantially affected by sub-lethal H2S levels. Mucosal barrier integrity was not considerably affected by H2S. Mucus metabolomes of the skin and gills were unaffected, but a matrix-dependent response was identified. Comparing the high-concentration group's skin and gills mucus metabolomes identified altered amino acid biosynthesis and metabolism pathways. The skin and gill mucus exhibited distinct proteomic profiles. Enrichment analysis revealed that proteins related to immunity and metabolism were affected in both mucus matrices. The present study expands our knowledge of the defence mechanisms against H2S at mucosal sites in Atlantic salmon. The findings offer insights into the health and welfare consequences of sub-lethal H2S, which can be incorporated into the risk assessment protocols in salmon land-based farms.


Assuntos
Brânquias , Sulfeto de Hidrogênio , Salmo salar , Pele , Poluentes Químicos da Água , Animais , Salmo salar/genética , Sulfeto de Hidrogênio/toxicidade , Brânquias/efeitos dos fármacos , Brânquias/metabolismo , Pele/efeitos dos fármacos , Pele/metabolismo , Poluentes Químicos da Água/toxicidade , Mucosa/efeitos dos fármacos , Muco/metabolismo , Muco/efeitos dos fármacos
2.
Microsc Res Tech ; 87(7): 1453-1466, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38407429

RESUMO

Aluminum (Al) is used in everyday life and present in food drugs, packaging, industry, and agriculture. Although it is the most common metal in the Earth crust, a correlation has been demonstrated between its presence and various pathologies, even serious ones, especially of a neurological type. However, there is a histological gap regarding the role Al can have in contact with the covering and secreting epithelia. The alterations of the ventral and dorsal foot mucocytes and their secretions of the snail Eobania vermiculata caused by Al were investigated in situ by histochemical and lectin-histochemical techniques. Administration to different experimental groups took place for 3 and 9 days with 50 and 200 µM of AlCl3. Several types of mucocytes were detected with a prevalent secretion of acid glycans in the foot of E. vermiculata. Sulfated glycans prevail in the dorsal region, with one type showing only fucosylated residues and another also having galactosaminylated and glycosaminylated residues. Carboxylated glycans prevail in the ventral region, with presence of galactosaminylated, glycosaminylated, and fucosylated residuals in both cells. Snails treated presented a general decrease of mucin amount in the secreting cells and affected the mucus composition. These changes could alter the rheological and functional properties of the mucus with possible implications for the health of the treated animals. RESEARCH HIGHLIGHTS: Snails were fed with Al-contaminated lettuce at different concentrations. In the foot mucocytes produced mucus with prevailing acidic glycans. In the treated resulted a reduction in the amount of mucus and an alteration of glycan composition.


Assuntos
Alumínio , Muco , Caramujos , Animais , Caramujos/efeitos dos fármacos , Caramujos/química , Muco/química , Muco/metabolismo , Muco/efeitos dos fármacos , Alumínio/toxicidade , Polissacarídeos/farmacologia , Mucinas/metabolismo , Lectinas/metabolismo
3.
Int J Mol Sci ; 23(3)2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-35163010

RESUMO

Repurposing of the anthelminthic drug niclosamide was proposed as an effective treatment for inflammatory airway diseases such as asthma, cystic fibrosis, and chronic obstructive pulmonary disease. Niclosamide may also be effective for the treatment of viral respiratory infections, such as SARS-CoV-2, respiratory syncytial virus, and influenza. While systemic application of niclosamide may lead to unwanted side effects, local administration via aerosol may circumvent these problems, particularly when the drug is encapsulated into small polyethylene glycol (PEG) hydrospheres. In the present study, we examined whether PEG-encapsulated niclosamide inhibits the production of mucus and affects the pro-inflammatory mediator CLCA1 in mouse airways in vivo, while effects on mucociliary clearance were assessed in excised mouse tracheas. The potential of encapsulated niclosamide to inhibit TMEM16A whole-cell Cl- currents and intracellular Ca2+ signalling was assessed in airway epithelial cells in vitro. We achieved encapsulation of niclosamide in PEG-microspheres and PEG-nanospheres (Niclo-spheres). When applied to asthmatic mice via intratracheal instillation, Niclo-spheres strongly attenuated overproduction of mucus, inhibited secretion of the major proinflammatory mediator CLCA1, and improved mucociliary clearance in tracheas ex vivo. These effects were comparable for niclosamide encapsulated in PEG-nanospheres and PEG-microspheres. Niclo-spheres inhibited the Ca2+ activated Cl- channel TMEM16A and attenuated mucus production in CFBE and Calu-3 human airway epithelial cells. Both inhibitory effects were explained by a pronounced inhibition of intracellular Ca2+ signals. The data indicate that poorly dissolvable compounds such as niclosamide can be encapsulated in PEG-microspheres/nanospheres and deposited locally on the airway epithelium as encapsulated drugs, which may be advantageous over systemic application.


Assuntos
Niclosamida/administração & dosagem , Pneumonia/tratamento farmacológico , Sistema Respiratório/efeitos dos fármacos , Animais , Asma/tratamento farmacológico , Asma/metabolismo , Asma/patologia , COVID-19/complicações , Células Cultivadas , Modelos Animais de Doenças , Portadores de Fármacos/química , Composição de Medicamentos , Humanos , Hidrogéis/química , Instilação de Medicamentos , Camundongos , Microesferas , Muco/efeitos dos fármacos , Muco/metabolismo , Nanosferas/administração & dosagem , Nanosferas/química , Niclosamida/química , Niclosamida/farmacocinética , Pneumonia/patologia , Polietilenoglicóis/química , Mucosa Respiratória/efeitos dos fármacos , Mucosa Respiratória/metabolismo , Sistema Respiratório/metabolismo , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/fisiologia , Traqueia , Tratamento Farmacológico da COVID-19
4.
Drug Deliv ; 29(1): 305-315, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35037529

RESUMO

Oral drug delivery to treat diabetes is being increasingly researched. The mucus and the epithelial cell layers hinder drug delivery. We designed a self-ablating nanoparticle to achieve smart oral delivery to overcome the gastrointestinal barrier. We used the zwitterionic dilauroyl phosphatidylcholine, which exhibits a high affinity toward Oligopeptide transporter 1, to modify poly(lactic-co-glycolic acid) nanoparticles and load hemagglutinin-2 peptide to facilitate its escape from lysosomes. Nanoparticles exhibit a core-shell structure, the lipid layer is degraded by the lysosomes when the nanoparticles are captured by lysosomes, then the inner core of the nanoparticles gets exposed. The results revealed that the self-ablating nanoparticles exhibited higher encapsulation ability than the self-assembled nanoparticles (77% vs 64%) and with better stability. Quantitative cellular uptake, cellular uptake mechanisms, and trans-monolayer cellular were studied, and the results revealed that the cellular uptake achieved using the self-ablating nanoparticles was higher than self-assembling nanoparticles, and the number of uptake pathways via which the self-ablating nanoparticles functioned were higher than the self-assembling nanoparticles. Intestinal mucus permeation, in vivo intestinal circulation, was studied, and the results revealed that the small self-assembling nanoparticles exhibit a good extent of intestinal uptake in the presence of mucus. In vitro flip-flop, intestinal circulation revealed that the uptake of the self-ablating nanoparticles was 1.20 times higher than the self-assembled nanoparticles. Pharmacokinetic study and the pharmacodynamic study showed that the bioavailability and hypoglycemic effect of self-ablating nanoparticles were better than self-assembled nanoparticles.


Assuntos
Hipoglicemiantes/farmacologia , Liraglutida/farmacologia , Sistemas de Liberação de Fármacos por Nanopartículas/química , Animais , Transporte Biológico , Células CACO-2 , Sobrevivência Celular/efeitos dos fármacos , Química Farmacêutica , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Humanos , Hipoglicemiantes/administração & dosagem , Hipoglicemiantes/farmacocinética , Absorção Intestinal/efeitos dos fármacos , Absorção Intestinal/fisiologia , Lipídeos/química , Liraglutida/administração & dosagem , Liraglutida/farmacocinética , Muco/efeitos dos fármacos , Tamanho da Partícula , Fosfatidilcolinas/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley , Propriedades de Superfície
5.
Comput Math Methods Med ; 2021: 1341644, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34650619

RESUMO

BACKGROUND: Patients with stable chronic obstructive pulmonary disease (COPD) have been observed to benefit from tiotropium bromide. However, there are few studies of tiotropium bromide on sputum and sputum viscosity. To evaluate the effect of tiotropium bromide on mucus hypersecretion, a randomized, double-blind controlled trial was performed. METHODS: 120 cases of patients with pulmonary function grade II were divided into two groups, which include the treatment group given tiotropium bromide powder inhalation (18 µg, inhalation, QD) and the control group given formoterol fumarate powder inhalation (12 µg, inhalation, BID) plus ambroxol hydrochloride tablets (60 mg, oral, TID). After 3 months of treatment, the pulmonary function and α 1-acid glycoprotein (α 1-AGP) in sputum were detected, and the changes of glycoprotein and Ca2+ content were evaluated by Miller classification. RESULTS: Three patients (2 cases in the treatment group and 1 case in the control group) were dropped due to loss of follow-up, and 117 cases of patients were enrolled in this study. After 3 months of treatment, the sputum character score, α1-acid glycoprotein, Ca2+ content, and lung function of the two groups were significantly improved; group comparison analyses revealed that there was no significant difference in the content of α 1-AGP, Ca2+ in sputum, and lung function between the two groups (P > 0.05), but the improvement of sputum properties was significant (P < 0.05), and the treatment group was better than the control group (t = -2.77; P = 0.007). CONCLUSIONS: Inhaled tiotropium bromide can effectively inhibit the mucus hypersecretion in stable COPD patients, improve the sputum properties and lung function of patients, and improve the quality of life of patients.


Assuntos
Muco/efeitos dos fármacos , Muco/fisiologia , Antagonistas Muscarínicos/uso terapêutico , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Brometo de Tiotrópio/uso terapêutico , Administração por Inalação , Ambroxol/administração & dosagem , Cálcio/metabolismo , Biologia Computacional , Método Duplo-Cego , Fumarato de Formoterol/administração & dosagem , Humanos , Antagonistas Muscarínicos/administração & dosagem , Orosomucoide/metabolismo , Ventilação Pulmonar/efeitos dos fármacos , Qualidade de Vida , Escarro/efeitos dos fármacos , Escarro/fisiologia , Brometo de Tiotrópio/administração & dosagem
6.
Biomolecules ; 11(10)2021 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-34680064

RESUMO

Hyaluronan (HA) is widely used for eye drops as lubricant to counteract dry eye disease. High and low molecular weight HA are currently used in ophthalmology. However, a large portion of the current literature on friction and lubrication addresses articular (joint) cartilage. Therefore, eye drops compositions based on HA and its derivatized forms are extensively characterized providing data on the tribological and mucoadhesive properties. The physiochemical properties are investigated in buffers used commonly in eye drops formulations. The tribological investigation reveals that amphiphilic HA-C12 decreases the friction coefficient. At the same time, the combination of trehalose/HA or HAC12 enhances up to eighty-fold the mucoadhesiveness. Thus, it is predicted a prolonged residence time on the surface of the eye. The incorporation of trehalose enhances the protection of human keratinocytes (HaCaT) cells, as demonstrated in an in-vitro cell-desiccation model. The presence of trehalose increases the friction coefficient. Medium molecular weight HA shows significantly lower friction coefficient than high molecular weight HA. This research represents a first, wide array of features of diverse HA forms for eye drops contributing to increase the knowledge of these preparations. The results here presented also provide valuable information for the design of highly performing HA-formulations addressing specific needs before preclinic.


Assuntos
Sistemas de Liberação de Medicamentos , Olho/efeitos dos fármacos , Ácido Hialurônico/farmacologia , Lubrificação , Adesividade , Animais , Dessecação , Filtração , Fricção , Células HaCaT , Humanos , Ácido Hialurônico/síntese química , Ácido Hialurônico/química , Muco/efeitos dos fármacos , Nefelometria e Turbidimetria , Soluções Oftálmicas/farmacologia , Espectroscopia de Prótons por Ressonância Magnética , Reologia , Esterilização , Viscosidade
7.
Mol Med Rep ; 24(6)2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34590155

RESUMO

Formononetin has proven to be anti­inflammatory and able to alleviate symptoms of certain allergic diseases. The present study aimed to determine and elucidate the potential effects of formononetin in allergic rhinitis. JME/CF15 cells were pretreated with formononetin at different doses, followed by stimulation with IL­13. Cell Counting Kit­8 assay was performed to determine the cytotoxicity of formononetin. The expression levels of inflammation­related proteins, histamine, IgE, TNF­α, IL­1ß, IL­6, granulocyte­macrophage colony­stimulating factor and eotaxin in IL­13­stimulated JME/CF15 cells were detected using ELISAs. The expression levels of phosphorylated­NF­κB p65, NF­κB p65 and cyclooxygenase­2 (Cox­2) were analyzed using western blotting. Reverse transcription­quantitative PCR, western blotting and immunofluorescence were performed to measure the levels of mucin 5AC oligomeric mucus/gel­forming. Expression levels of sirtuin 1 (SIRT1) and nuclear erythroid factor 2­related factor 2 (Nrf2) proteins were also measured using western blotting. The results of the present study revealed that formononetin exerted no cytotoxic effect on the viability of JME/CF15 cells. Following stimulation of JME/CF15 cells with IL­13, formononetin suppressed the upregulated expression levels of proinflammatory cytokines. IL­13­induced formation of mucus was also attenuated by formononetin treatment. Furthermore, it was found that the SIRT1/Nrf2 signaling pathway was activated in formononetin­treated JME/CF15 cells, whereas treatment with the SIRT1 inhibitor, EX527, reversed the effects of formononetin on IL­13­induced inflammation and mucus formation in JME/CF15 cells. In conclusion, the findings of the current study indicated that formononetin may activate the SIRT1/Nrf2 signaling pathway, thereby inhibiting IL­13­induced inflammation and mucus formation in JME/CF15 cells. These results suggested that formononetin may represent a promising agent for the treatment of allergic rhinitis.


Assuntos
Inflamação/tratamento farmacológico , Isoflavonas/farmacologia , Muco/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/metabolismo , Mucosa Nasal/efeitos dos fármacos , Mucosa Nasal/metabolismo , Sirtuína 1/metabolismo , Anti-Inflamatórios/farmacologia , Citocinas/metabolismo , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Humanos , Interleucina-13 , Rinite Alérgica/tratamento farmacológico , Transdução de Sinais
8.
Nanomedicine ; 37: 102432, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34186258

RESUMO

Nasal administration offers a possibility of delivering drugs to the brain. In the present work, nasal drug delivery systems were designed based on cationic Eudragit® EPO (EPO) and anionic Eudragit® L100-55 (L100-55) methacrylate copolymers. Two types of nanocarriers were prepared using interpolyelectrolyte complexation between these polymers. The first type of nanoparticles was prepared by forming interpolyelectrolyte complexes between unmodified EPO and L100-55. The second type of nanoparticles was formed through the complexation between PEGylated L100-55 and EPO. For this purpose, PEGylated L100-55 was synthesized by chemical conjugation of L100-55 with O-(2-aminoethyl)polyethylene glycol. The mucoadhesive properties of these nanoparticles were evaluated ex vivo using sheep nasal mucosa. Nanoparticles based on EPO and L100-55 exhibited mucoadhesive properties towards nasal mucosa, whereas PEGylated nanoparticles were non-mucoadhesive hence displayed mucus-penetrating properties. Both types of nanoparticles were used to formulate haloperidol and their ability to deliver the drug to the brain was evaluated in rats in vivo.


Assuntos
Encéfalo/efeitos dos fármacos , Sistemas de Liberação de Medicamentos , Nanopartículas/química , Polieletrólitos/farmacologia , Resinas Acrílicas/química , Resinas Acrílicas/farmacologia , Administração Intranasal , Animais , Humanos , Muco/efeitos dos fármacos , Mucosa Nasal/efeitos dos fármacos , Polieletrólitos/química , Polietilenoglicóis/química , Polietilenoglicóis/farmacologia , Polímeros/química , Polímeros/farmacologia , Ácidos Polimetacrílicos/química , Ácidos Polimetacrílicos/farmacologia , Ovinos , Solubilidade/efeitos dos fármacos
9.
Eur J Pharmacol ; 904: 174123, 2021 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-33974881

RESUMO

Cystic fibrosis (CF) is a recessive inherited disease caused by mutations affecting anion transport by the epithelial ion channel cystic fibrosis transmembrane conductance regulator (CFTR). The disease is characterized by mucus accumulation in the airways and intestine, but the major cause of mortality in CF is airway mucus accumulation, leading to bacterial colonization, inflammation and respiratory failure. Several drug targets are under evaluation to alleviate airway mucus obstruction in CF and one of these targets is the epithelial sodium channel ENaC. To explore effects of ENaC inhibitors on mucus properties, we used two model systems to investigate mucus characteristics, mucus attachment in mouse ileum and mucus bundle transport in piglet airways. We quantified mucus attachment in explants from CFTR null (CF) mice and tracheobronchial explants from newborn CFTR null (CF) piglets to evaluate effects of ENaC or sodium/hydrogen exchanger (NHE) inhibitors on mucus attachment. ENaC inhibitors detached mucus in the CF mouse ileum, although the ileum lacks ENaC expression. This effect was mimicked by two NHE inhibitors. Airway mucus bundles were immobile in untreated newborn CF piglets but were detached by the therapeutic drug candidate AZD5634 (patent WO, 2015140527). These results suggest that the ENaC inhibitor AZD5634 causes detachment of CF mucus in the ileum and airway via NHE inhibition and that drug design should focus on NHE instead of ENaC inhibition.


Assuntos
Fibrose Cística/tratamento farmacológico , Fibrose Cística/metabolismo , Bloqueadores do Canal de Sódio Epitelial/farmacologia , Canais Epiteliais de Sódio/metabolismo , Pulmão/metabolismo , Muco/metabolismo , Trocadores de Sódio-Hidrogênio/antagonistas & inibidores , Animais , Animais Recém-Nascidos , Bicarbonatos/farmacologia , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Canais Epiteliais de Sódio/efeitos dos fármacos , Feminino , Concentração de Íons de Hidrogênio/efeitos dos fármacos , Íleo/efeitos dos fármacos , Íleo/metabolismo , Pulmão/efeitos dos fármacos , Masculino , Camundongos , Muco/efeitos dos fármacos , Trocadores de Sódio-Hidrogênio/genética , Suínos
10.
Nutrients ; 13(3)2021 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-33807914

RESUMO

Intestinal mucus protects epithelial and immune cells from the gut resident microorganisms, and provides growth-promoting factors as mucus-derived O-glycans for beneficial bacteria. A lack of intestinal protective mucus results in changes in the commensal microflora composition, mucosal immune system reprogramming, and inflammation. Previous work has shown that fucose, the terminal glycan chain component of the intestinal glycoprotein Mucin2, and fucoidan polysaccharides have an anti-inflammatory effect in some mouse models of colitis. This study evaluates the effect of fucose on reproductive performance in heterozygous mutant Muc2 female mice. We found that even though Muc2+/- females are physiologically indistinguishable from C57Bl/6 mice, they have a significantly reduced reproductive performance upon dietary fucose supplementation. Metagenomic analysis reveals that the otherwise healthy wild-type siblings of Muc2-/- animals have reduced numbers of some of the intestinal commensal bacterial species, compared to C57BL/6 mice. We propose that the changes in beneficial microflora affect the immune status in Muc2+/- mice, which causes implantation impairment. In accordance with this hypothesis, we find that macrophage polarization during pregnancy is impaired in Muc2+/- females upon addition of fucose. Metabolic profiling of peritoneal macrophages from Muc2+/- females reveals their predisposition towards anaerobic glycolysis in favor of oxidative phosphorylation, compared to C57BL/6-derived cells. In vitro experiments on phagocytosis activity and mitochondrial respiration suggest that fucose affects oxidative phosphorylation in a genotype-specific manner, which might interfere with implantation depending on the initial status of macrophages. This hypothesis is further confirmed in BALB/c female mice, where fucose caused pregnancy loss and opposed implantation-associated M2 macrophage polarization. Taken together, these data suggest that intestinal microflora affects host immunity and pregnancy outcome. At the same time, dietary fucose might act as a differential regulator of macrophage polarization during implantation, depending on the immune status of the host.


Assuntos
Suplementos Nutricionais , Fucose/efeitos adversos , Ativação de Macrófagos/efeitos dos fármacos , Mucina-2/metabolismo , Reprodução/efeitos dos fármacos , Animais , Implantação do Embrião/efeitos dos fármacos , Feminino , Microbioma Gastrointestinal/efeitos dos fármacos , Mucosa Intestinal/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Metagenômica , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Muco/efeitos dos fármacos , Gravidez
11.
Laryngoscope ; 131(11): 2530-2539, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33864646

RESUMO

OBJECTIVES/HYPOTHESIS: Cigarette smoke (CS) is a primary risk factor for the development of numerous benign and malignant laryngeal diseases. The epithelium and mucus lining the vocal folds (VF) are the first barriers against CS. The primary objective of this study was to investigate epithelial and mucus barrier changes in the mouse laryngeal mucosa upon exposure to subacute CS. The secondary objective was to compare mucus barrier changes in mice and human smokers and nonsmokers. Study Design Animal model. METHODS: Mice were exposed to CS for 4 weeks for 4 hours (N = 12, high dose [HD]) or 1 hour (N = 12, low dose [LD]) per day. Air-exposed mice were used as a control group (N = 10). Larynges were harvested and VF epithelial barrier integrity was evaluated including cellular proliferation and expression of cell junctions. We also investigated mucus production by examining mucus cell area and mucin expression in mice and human smokers and nonsmokers. RESULTS: HD CS increased VF epithelial cellular proliferation but did not alter the expression of cell junctions. HD CS also induced hypertrophy of the mucus-producing submucosal glands. However, only LD CS increased MUC5AC gene expression. MUC5AC staining appeared elevated in laryngeal specimens from smokers, but this was not significant as compared to nonsmokers. CONCLUSIONS: These findings help us identify potential adaptive mechanisms to CS exposure as well as set the foundation for further study of key aspects of epithelial and mucus barrier integrity that may be implicated in laryngeal disease development following prolonged smoking. LEVEL OF EVIDENCE: NA Laryngoscope, 131:2530-2539, 2021.


Assuntos
Fumar Cigarros/efeitos adversos , Mucosa Laríngea/efeitos dos fármacos , Nicotiana/toxicidade , Fumaça/efeitos adversos , Prega Vocal/efeitos dos fármacos , Adulto , Animais , Modelos Animais de Doenças , Epitélio/efeitos dos fármacos , Epitélio/metabolismo , Epitélio/patologia , Feminino , Humanos , Mucosa Laríngea/metabolismo , Mucosa Laríngea/patologia , Laringoscopia , Masculino , Camundongos , Mucinas/análise , Mucinas/metabolismo , Muco/efeitos dos fármacos , Muco/metabolismo , não Fumantes , Fumantes , Testes de Toxicidade Subaguda , Prega Vocal/diagnóstico por imagem , Prega Vocal/patologia , Adulto Jovem
12.
Pol J Vet Sci ; 24(1): 23-28, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33847087

RESUMO

The aim of this study was to determine the beneficial effect of natural substances - enterocin M (Ent M; the proteinaceous substance produced by Enterococcus faecium CCM8558) and sage plant ( Salvia officinalis L.) extract on the production of mucus in the rabbits small intestine and caecum. Sixty four post-weaned rabbits (meat line M91) were divided into three experimental groups (EG - Ent M; SG - sage extract; ESG - combination Ent M with sage extract) and control group (CG). The experiment lasted for 35 days, the natural substances were administered during the first 21 days, Ent M in EG/ESG, sage extract in SG/ESG. The beneficial effect on mucus production quantity occured in the duodenum (p⟨0.001) and jejunum (p⟨0.01) in ESG compared to that found in CG on day 21, the prolonged effect in EG in the duodenum (p⟨0.001) compared to that observed in CG at the end of the experiment and to that in EG on day 21. The novelty of the study is in the application and monitoring the effect of non-rabbit-derived probiotic strain ( Enterococcus faecium CCM8558) bacteriocin - Enterocin M and sage plant extract on mucus quantity (expressed in gram) in different segments of the rabbit small intestine as well as the caecum. The results obtained indicate that supplementation of selected natural substances in the feed has the potent stimulatory effects on mucus production in the rabbit small intestine.


Assuntos
Bacteriocinas/farmacologia , Ceco/efeitos dos fármacos , Suplementos Nutricionais , Intestino Delgado/efeitos dos fármacos , Muco/efeitos dos fármacos , Extratos Vegetais/farmacologia , Coelhos , Salvia officinalis/química , Animais , Ceco/metabolismo , Intestino Delgado/metabolismo , Muco/metabolismo , Extratos Vegetais/química
13.
Eur J Pharmacol ; 902: 174100, 2021 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-33878335

RESUMO

Tectochrysin, a flavonoid compound, can be isolated from propolis, Alpinia oxyphylla Miq, and Lychnophora markgravii. This study evaluated the efficacy of tectochrysin in the treatment of shrimp tropomyosin (ST)-induced mouse asthma. Mice were sensitized with intraperitoneal (i.p.) injection of ST together with aluminum hydroxide as an adjuvant to establish a mouse model of asthma. Mice were i.p.-treated daily with tectochrysin. IgE levels in plasma, Th2 cytokines from both bronchoalveolar lavage (BAL) fluid and splenocytes, and CD200R on basophils in peripheral blood were measured. Histological analyses of lung tissues and accumulation of leukocytes in BAL fluid were performed. Lung eosinophil peroxidase, catalase and glutathione peroxidase activities were examined. ST was found to markedly increase eosinophilic inflammation and Th2 response in mice. Tectochrysin treatment reduced the level of IgE in plasma, the percentage of eosinophils in total white blood cells in peripheral blood, the total number of cells in BAL fluid, and eosinophil peroxidase activity in lung tissues. Tectochrysin attenuated ST-induced infiltration of eosinophils and epithelial mucus secretion in lung tissues and suppressed the overproduction of Th2 cytokines (IL-4 and IL-5) in BAL fluid. Tectochrysin also attenuated Th2 cytokine (IL-4 and IL-5) production from antigen-stimulated murine splenocytes in vitro, decreased the expression of CD200R on basophils in peripheral blood of asthmatic mice and inhibited IL-4 secretion from IgE-sensitized RBL-2H3 cells. In addition, tectochrysin enhanced catalase and glutathione peroxidase activities in lung tissues. Our findings demonstrate that TEC ameliorates allergic airway inflammation by suppressing Th2 response and oxidative stress.


Assuntos
Antiasmáticos/farmacologia , Anti-Inflamatórios não Esteroides/farmacologia , Asma/tratamento farmacológico , Flavonoides/farmacologia , Hipersensibilidade/tratamento farmacológico , Estresse Oxidativo/efeitos dos fármacos , Células Th2/imunologia , Alérgenos/imunologia , Animais , Antiasmáticos/administração & dosagem , Anti-Inflamatórios não Esteroides/administração & dosagem , Asma/induzido quimicamente , Asma/imunologia , Asma/patologia , Basófilos/metabolismo , Catalase/metabolismo , Modelos Animais de Doenças , Eosinófilos/metabolismo , Feminino , Flavonoides/administração & dosagem , Glutationa Peroxidase/metabolismo , Hipersensibilidade/imunologia , Imunoglobulina E/sangue , Injeções Intraperitoneais , Camundongos Endogâmicos C57BL , Muco/efeitos dos fármacos , Hipersensibilidade a Frutos do Mar/tratamento farmacológico , Hipersensibilidade a Frutos do Mar/imunologia , Tropomiosina/imunologia
14.
Front Immunol ; 12: 633621, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33777020

RESUMO

One of the main targets for the use of phytogenics in aquafeeds is the mucosal tissues as they constitute a physical and biochemical shield against environmental and pathogenic threats, comprising elements from both the innate and acquired immunity. In the present study, the modulation of the skin transcriptional immune response, the bacterial growth capacity in skin mucus, and the overall health condition of gilthead seabream (Sparus aurata) juveniles fed a dietary supplementation of garlic essential oil, carvacrol, and thymol were assessed. The enrichment analysis of the skin transcriptional profile of fish fed the phytogenic-supplemented diet revealed the regulation of genes associated to cellular components involved in the secretory pathway, suggesting the stimulation, and recruitment of phagocytic cells. Genes recognized by their involvement in non-specific immune response were also identified in the analysis. The promotion of the secretion of non-specific immune molecules into the skin mucus was proposed to be involved in the in vitro decreased growth capacity of pathogenic bacteria in the mucus of fish fed the phytogenic-supplemented diet. Although the mucus antioxidant capacity was not affected by the phytogenics supplementation, the regulation of genes coding for oxidative stress enzymes suggested the reduction of the skin oxidative stress. Additionally, the decreased levels of cortisol in mucus indicated a reduction in the fish allostatic load due to the properties of the tested additive. Altogether, the dietary garlic, carvacrol, and thymol appear to promote the gilthead seabream skin innate immunity and the mucus protective capacity, decreasing its susceptibility to be colonized by pathogenic bacteria.


Assuntos
Imunidade Inata/efeitos dos fármacos , Muco/metabolismo , Óleos Voláteis/farmacologia , Dourada/imunologia , Via Secretória/efeitos dos fármacos , Pele/efeitos dos fármacos , Ração Animal/análise , Animais , Aquicultura , Cimenos/química , Cimenos/farmacologia , Suplementos Nutricionais/análise , Alho/química , Imunidade Inata/genética , Imunidade nas Mucosas/efeitos dos fármacos , Muco/efeitos dos fármacos , Muco/microbiologia , Óleos Voláteis/classificação , Dourada/genética , Via Secretória/imunologia , Timol/química , Timol/farmacologia
15.
Carbohydr Polym ; 261: 117873, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33766360

RESUMO

The natural mucus cover has been a major obstacle to prevent enterocyte targeting particles from contact with the receptors. Thus, mucus penetration and intestinal targeting should be designed into one system. Based on the concept that biotin specifically recognizes epithelium receptors, enterocyte targeting muco-inert nanocomplexes were designed. Firstly, biotinylated chitosan (CS-Biotin) copolymers with different degree of substitution were synthesized and characterized. The nanocomplexes between CS-Biotin and insulin were prepared via self-assembly method. Thereafter, the nanocomplexes were fabricated by coating with various molecular weight hyaluronic acid (HA), which improved penetration efficiency in the mucus layer and small intestine in a HA molecular weight dependent manner. In vivo study indicated that hypoglycemic effect of the nanocomplexes was biotin modification degree and HA molecular weight dependent, with HA (200)-coated CS-Biotin21.8%/Insulin polyelectrolyte complex presenting the best performance. In conclusion, biotin decorated muco-inert nanocomplexes with HA coating are a promising platform for oral insulin delivery.


Assuntos
Biotina/metabolismo , Portadores de Fármacos/síntese química , Sistemas de Liberação de Medicamentos/métodos , Enterócitos/metabolismo , Insulina/administração & dosagem , Muco/metabolismo , Administração Oral , Animais , Biotina/química , Permeabilidade da Membrana Celular/efeitos dos fármacos , Células Cultivadas , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Portadores de Fármacos/uso terapêutico , Enterócitos/efeitos dos fármacos , Ácido Hialurônico/química , Ácido Hialurônico/metabolismo , Hipoglicemiantes/administração & dosagem , Insulina/farmacocinética , Absorção Intestinal/efeitos dos fármacos , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Muco/efeitos dos fármacos , Nanopartículas/química , Nanopartículas/metabolismo , Nanopartículas/uso terapêutico , Polímeros/química , Polímeros/farmacocinética , Polímeros/uso terapêutico , Ratos , Ratos Sprague-Dawley , Suínos
16.
Biomed Pharmacother ; 138: 111479, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33774313

RESUMO

BACKGROUND: Constipation, mainly characterized by the difficulty in defecation, is a clinical symptom caused by a variety of factors. It can be manifested as normal or slow colonic transport abnormalities, which can occur alone or concurrently with defecation disorders. As there is not uniform definition and assessment standard, no clear plan could be used for the treatment of constipation. Although rhubarb, a traditional Chinese medicine, plays a therapeutic role in diseases involving constipation symptoms, the detailed mechanism of it in treating constipation remains unclear. METHODS: A model of constipation-induced by diphenoxylate was prepared. Immunofluorescent staining was used to detect the expression of mucin 2 (MUC2), calnexin and chymase in colon. Western blotting was used to detect changes of tryptase and calnexin in the colon. And real-time polymerase chain reaction (PCR) was utilized to detect the changes of immunoglobulin-binding protein (Bip), X-box binding protein 1 (Xbp1) and C/EBP homologous protein (CHOP) of colonic goblet cells in mRNA levels. ELISA and biochemical kits were utilized to detect the changes of MUC2, Trefoil factor 3 (TFF3), acetylcholine, histamine and C-C motif chemokine ligand 5 (CCL5) in the colon. And the changes of colonic mucosa and intestinal flora of constipation model mice caused by rhubarb extract (RE) were analyzed to identify the mechanism of RE on the treatment of constipation. RESULTS: RE promotes the secretion of colonic mucus by recruiting mast cells and enhancing the content of histamine and Ach in the mice colon. In the process, RE causes up-regulation of Bip and CHOP mRNA expression and down-regulation of Xbp1 and Xbp1s mRNA expression that induces ER stress of colonic epithelium associated with changes in the intestinal flora diversity and short-chain fatty acids content. CONCLUSION: RE could relieve constipation by promoting the secretion of colonic mucus via mast cells activation and improving the intestinal microenvironment.


Assuntos
Colo/efeitos dos fármacos , Constipação Intestinal/tratamento farmacológico , Microbioma Gastrointestinal/efeitos dos fármacos , Muco/efeitos dos fármacos , Extratos Vegetais/uso terapêutico , Rheum , Animais , Colo/metabolismo , Colo/patologia , Constipação Intestinal/metabolismo , Constipação Intestinal/patologia , Microbioma Gastrointestinal/fisiologia , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Muco/metabolismo , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/farmacologia
17.
FEBS J ; 288(18): 5459-5473, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33713543

RESUMO

In the intestine, mucins are expressed and secreted by goblet cells and enterocytes in a constitutive manner and in response to secretagogues to form a protective mucus layer. This protective barrier is often lost in inflammatory bowel disease (IBD). Interestingly, extracellular nucleotides, through P2Y receptors, were identified as mucin secretagogues in mucinous epithelia. These nucleotides are found in the intestine's extracellular milieu under basal conditions and in higher concentrations in pathologies such as IBD. It was observed that the mucus layer was affected in P2ry6 knockout mice suffering from dextran sodium sulfate (DSS)-induced colitis. P2ry6-/- mice were more sensitive to DSS-induced colitis, resulting in larger ulcers and increased disease activity index. Interestingly, the absence of P2Y6 receptor expression negatively affected the mucus quality, as shown by a reduction in sulfomucin staining and the absence of a dense internal fucosylated mucin layer in P2ry6-/- mice. Hence, we cannot rule out that the absence of P2Y6 receptors in knockout animals could negatively impact mucin secretion. However, we did not measure a reduction in the number of goblet cells, as previously reported. Instead, the results suggest that goblet cells rapidly discharged mucins to compensate for the mucus layer's increased lability, which resulted in empty goblet cells that are less visible to mucin staining. This study's results, along with previous reports, point toward a protective role for the P2Y6 receptor in IBD.


Assuntos
Colite/genética , Doenças Inflamatórias Intestinais/genética , Mucinas/genética , Receptores Purinérgicos P2/genética , Animais , Colite/induzido quimicamente , Colite/patologia , Sulfato de Dextrana/toxicidade , Regulação da Expressão Gênica/genética , Células Caliciformes/efeitos dos fármacos , Humanos , Doenças Inflamatórias Intestinais/induzido quimicamente , Doenças Inflamatórias Intestinais/patologia , Mucosa Intestinal/efeitos dos fármacos , Intestinos/efeitos dos fármacos , Intestinos/patologia , Camundongos , Camundongos Knockout , Mucinas/farmacologia , Muco/efeitos dos fármacos
18.
Sci Rep ; 11(1): 6393, 2021 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-33737583

RESUMO

Cystic fibrosis (CF) is characterized by an airway obstruction caused by a thick mucus due to a malfunctioning Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) protein. The sticky mucus restricts drugs in reaching target cells limiting the efficiency of treatments. The development of new approaches to enhance drug delivery to the lungs represents CF treatment's main challenge. In this work, we report the production and characterization of hybrid core-shell nanoparticles (hNPs) comprising a PLGA core and a dipalmitoylphosphatidylcholine (DPPC) shell engineered for inhalation. We loaded hNPs with a 7-mer peptide nucleic acid (PNA) previously considered for its ability to modulate the post-transcriptional regulation of the CFTR gene. We also investigated the in vitro release kinetics of hNPs and their efficacy in PNA delivery across the human epithelial airway barrier using an ex vivo model based on human primary nasal epithelial cells (HNEC) from CF patients. Confocal analyses and hNPs transport assay demonstrated the ability of hNPs to overcome the mucus barrier and release their PNA cargo within the cytoplasm, where it can exert its biological function.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/genética , Fibrose Cística/tratamento farmacológico , Nanopartículas/química , Ácidos Nucleicos Peptídicos/farmacologia , 1,2-Dipalmitoilfosfatidilcolina/química , 1,2-Dipalmitoilfosfatidilcolina/farmacologia , Obstrução das Vias Respiratórias/tratamento farmacológico , Obstrução das Vias Respiratórias/genética , Obstrução das Vias Respiratórias/patologia , Fibrose Cística/genética , Fibrose Cística/patologia , Sistemas de Liberação de Medicamentos , Humanos , Pulmão/efeitos dos fármacos , Pulmão/patologia , Muco/efeitos dos fármacos , Mucosa Nasal/efeitos dos fármacos , Ácidos Nucleicos Peptídicos/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/farmacologia
19.
J Tradit Chin Med ; 41(1): 17-25, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33522193

RESUMO

OBJECTIVE: To evaluate the effectiveness and safety of Xuanbai Chengqi decoction (, XBCQD) plus Western Medicine (WM) in treatment of severe pneumonia with symptom pattern of phlegm-heat obstructing lung. METHODS: Randomized controlled trials (RCTs) investigating the effect of XBCQD on severe pneumonia with symptom pattern of phlegm-heat obstructing lung, were included in this study. Seven electronic databases were searched up to March 2019. Meta-analysis was conducted by Review Manager 5.3 software. Risk ratio (RR) and mean difference (MD) with 95% confidence interval (CI) were used as effect estimation. RESULTS: Eleven RCTs were included, involving 992 participants. Meta-analysis showed that XBCQD combined with WM achieved better effectiveness than WM alone in terms of total effective rate [RR = 1.23, 95%CI (1.16, 1.30)], clinical pulmonary infection score [CPIS, MD = -2.02, 95%CI (-2.42, -1.63)], acute physiology and chronic health evaluation Ⅱ [APACHEⅡ, MD = -6.81, 95% CI (-8.26, 5.37)], mechanical ventilation time [MD = -101.41, 95%CI (-140.47, -62.34)], and lactic acid content in arterial blood [MD = -2.41, 95%CI (-2.64, -2.18)]. CONCLUSION: XBCQD combined with WM had better benefit than WM alone to the patients of severe pneumonia with the symptom pattern of phlegm-heat obstructing lung. However, due to low quality of the included studies, more rigorously designed studies were required to further evaluate the effectiveness and safety of XBCQD in the treatment of severe pneumonia with symptom pattern of phlegm-heat obstructing lung.


Assuntos
Quimioterapia Combinada , Medicamentos de Ervas Chinesas/administração & dosagem , Pneumonia/tratamento farmacológico , Temperatura Alta , Humanos , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Muco/química , Muco/efeitos dos fármacos , Muco/metabolismo , Pneumonia/fisiopatologia , Ensaios Clínicos Controlados Aleatórios como Assunto , Resultado do Tratamento
20.
Biochem Pharmacol ; 187: 114387, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33358825

RESUMO

Airway epithelial purinergic receptors control key components of the mucociliary clearance (MCC), the dominant component of pulmonary host defense. In healthy airways, the periciliary liquid (PCL) is optimally hydrated, thus acting as an efficient lubricant layer over which the mucus layer moves by ciliary force. When the hydration of the airway surface decreases, the mucus becomes hyperconcentrated, the PCL collapses, and the "thickened" mucus layer adheres to cell surfaces, causing plaque/plug formation. Mucus accumulation is a major contributing factor to the progression of chronic obstructive lung diseases such as cystic fibrosis (CF) and chronic bronchitis (CB). Mucus hydration is regulated by finely tuned mechanisms of luminal Cl- secretion and Na+ absorption with concomitant osmotically driven water flow. These activities are regulated by airway surface liquid (ASL) concentrations of adenosine and ATP, acting on airway epithelial A2B and P2Y2 receptors, respectively. The goal of this article is to provide an overview of our understanding of the role of purinergic receptors in the regulation of airway epithelial ion/fluid transport and the mechanisms of nucleotide release and metabolic activities that contribute to airway surface hydration in healthy and chronically obstructed airways.


Assuntos
Depuração Mucociliar/fisiologia , Muco/metabolismo , Receptores Purinérgicos/metabolismo , Mucosa Respiratória/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Humanos , Pulmão/citologia , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Pneumopatias/tratamento farmacológico , Pneumopatias/metabolismo , Depuração Mucociliar/efeitos dos fármacos , Muco/efeitos dos fármacos , Agonistas Purinérgicos/administração & dosagem , Antagonistas Purinérgicos/administração & dosagem , Mucosa Respiratória/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA