Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.057
Filtrar
1.
Sci Rep ; 14(1): 10702, 2024 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-38729976

RESUMO

Coccidiosis, an intestinal disease caused by Eimeria parasites, is responsible for major losses in the poultry industry by impacting chicken health. The gut microbiota is associated with health factors, such as nutrient exchange and immune system modulation, requiring understanding on the effects of Eimeria infection on the gut microbiota. This study aimed to determine the effects of Eimeria acervulina infection on the luminal and mucosal microbiota of the cecum (CeL and CeM) and ileum (IlL and IlM) at multiple time points (days 3, 5, 7, 10, and 14) post-infection. E. acervulina infection decreased evenness in CeL microbiota at day 10, increased richness in CeM microbiota at day 3 before decreasing richness at day 14, and decreased richness in IlL microbiota from day 3 to 10. CeL, CeM, and IlL microbiota differed between infected and control birds based on beta diversity at varying time points. Infection reduced relative abundance of bacterial taxa and some predicted metabolic pathways known for short-chain fatty acid production in CeL, CeM, and IlL microbiota, but further understanding of metabolic function is required. Despite E. acervulina primarily targeting the duodenum, our findings demonstrate the infection can impact bacterial diversity and abundance in the cecal and ileal microbiota.


Assuntos
Ceco , Galinhas , Coccidiose , Eimeria , Microbioma Gastrointestinal , Íleo , Doenças das Aves Domésticas , Animais , Galinhas/microbiologia , Galinhas/parasitologia , Ceco/microbiologia , Ceco/parasitologia , Eimeria/fisiologia , Íleo/microbiologia , Íleo/parasitologia , Coccidiose/veterinária , Coccidiose/parasitologia , Doenças das Aves Domésticas/microbiologia , Doenças das Aves Domésticas/parasitologia , Mucosa Intestinal/microbiologia , Mucosa Intestinal/parasitologia
2.
PLoS Pathog ; 20(5): e1011820, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38718306

RESUMO

The production of IFN-γ is crucial for control of multiple enteric infections, but its impact on intestinal epithelial cells (IEC) is not well understood. Cryptosporidium parasites exclusively infect epithelial cells and the ability of interferons to activate the transcription factor STAT1 in IEC is required for parasite clearance. Here, the use of single cell RNA sequencing to profile IEC during infection revealed an increased proportion of mid-villus enterocytes during infection and induction of IFN-γ-dependent gene signatures that was comparable between uninfected and infected cells. These analyses were complemented by in vivo studies, which demonstrated that IEC expression of the IFN-γ receptor was required for parasite control. Unexpectedly, treatment of Ifng-/- mice with IFN-γ showed the IEC response to this cytokine correlates with a delayed reduction in parasite burden but did not affect parasite development. These data sets provide insight into the impact of IFN-γ on IEC and suggest a model in which IFN-γ signalling to uninfected enterocytes is important for control of Cryptosporidium.


Assuntos
Criptosporidiose , Interferon gama , Mucosa Intestinal , Camundongos Knockout , Animais , Interferon gama/metabolismo , Interferon gama/imunologia , Criptosporidiose/imunologia , Criptosporidiose/parasitologia , Camundongos , Mucosa Intestinal/parasitologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/imunologia , Cryptosporidium , Células Epiteliais/parasitologia , Células Epiteliais/metabolismo , Células Epiteliais/imunologia , Enterócitos/parasitologia , Enterócitos/metabolismo , Enterócitos/imunologia , Camundongos Endogâmicos C57BL , Receptor de Interferon gama , Fator de Transcrição STAT1/metabolismo , Receptores de Interferon/metabolismo , Receptores de Interferon/genética , Transdução de Sinais
3.
Immunol Cell Biol ; 102(5): 396-406, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38648862

RESUMO

Increased permeability of the intestinal epithelial layer is linked to the pathogenesis and perpetuation of a wide range of intestinal and extra-intestinal diseases. Infecting humans with controlled doses of helminths, such as human hookworm (termed hookworm therapy), is proposed as a treatment for many of the same diseases. Helminths induce immunoregulatory changes in their host which could decrease epithelial permeability, which is highlighted as a potential mechanism through which helminths treat disease. Despite this, the influence of a chronic helminth infection on epithelial permeability remains unclear. This study uses the chronically infecting intestinal helminth Heligmosomoides polygyrus to reveal alterations in the expression of intestinal tight junction proteins and epithelial permeability during the infection course. In the acute infection phase (1 week postinfection), an increase in intestinal epithelial permeability is observed. Consistent with this finding, jejunal claudin-2 is upregulated and tricellulin is downregulated. By contrast, in the chronic infection phase (6 weeks postinfection), colonic claudin-1 is upregulated and epithelial permeability decreases. Importantly, this study also investigates changes in epithelial permeability in a small human cohort experimentally challenged with the human hookworm, Necator americanus. It demonstrates a trend toward small intestinal permeability increasing in the acute infection phase (8 weeks postinfection), and colonic and whole gut permeability decreasing in the chronic infection phase (24 weeks postinfection), suggesting a conserved epithelial response between humans and mice. In summary, our findings demonstrate dynamic changes in epithelial permeability during a chronic helminth infection and provide another plausible mechanism by which chronic helminth infections could be utilized to treat disease.


Assuntos
Mucosa Intestinal , Permeabilidade , Animais , Humanos , Mucosa Intestinal/parasitologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/imunologia , Doença Crônica , Nematospiroides dubius/imunologia , Camundongos , Necator americanus , Enteropatias Parasitárias/imunologia , Junções Íntimas/metabolismo , Proteínas de Junções Íntimas/metabolismo , Intestino Delgado/parasitologia , Intestino Delgado/imunologia , Feminino , Camundongos Endogâmicos C57BL , Masculino , Helmintíase/imunologia , Helmintíase/parasitologia , Necatoríase/imunologia , Proteína 2 com Domínio MARVEL/metabolismo
4.
Acta Trop ; 249: 107076, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37977254

RESUMO

The research aimed to describe a new Trichinella spiralis dipeptidyl peptidase 1 (TsDPP1) and investigate its functions in the larval invasion of intestinal epithelial cells (IECs). The gene TsDPP1 was successfully replicated and produced in Escherichia coli BL21 (DE3), showing a strong immune response. TsDPP1 was detected in diverse stages of T. spiralis and showed significant expression in the intestine infective larvae (IIL) and adult worms at 6 days post infection, as confirmed by qPCR and Western blot analysis. The primary localization of TsDPP1 in this parasite was observed in cuticles, stichosomes, and embryos by using the indirect immunofluorescence assay (IIFA). rTsDPP1 exhibited the enzymatic function of natural dipeptidyl peptidase and showed specific binding to IECs, and the binding site was found to be localized on cell membrane. Following transfection with dsRNA-TsDPP1, the expression of TsDPP1 mRNA and protein in muscle larvae (ML) were decreased by approximately 63.52 % and 58.68 %, correspondingly. The activity of TsDPP1 in the ML and IIL treated with dsRNA-TsDPP1 was reduced by 42.98 % and 45.07 %, respectively. The acceleration of larval invasion of IECs was observed with rTsDPP1, while the invasion was suppressed by anti-rTsDPP1 serum. The ability of the larvae treated with dsRNA-TsDPP1 to invade IECs was hindered by 31.23 %. In mice infected with dsRNA-treated ML, the intestinal IIL, and adults experienced a significant decrease in worm burdens and a noticeable reduction in adult female length and fecundity compared to the PBS group. These findings indicated that TsDPP1 significantly impedes the invasion, growth, and reproductive capacity of T. spiralis in intestines, suggesting its potential as a target for anti-Trichinella vaccines.


Assuntos
Catepsina C , Proteínas de Helminto , Mucosa Intestinal , Trichinella spiralis , Triquinelose , Animais , Feminino , Camundongos , Células Epiteliais/parasitologia , Proteínas de Helminto/genética , Proteínas de Helminto/metabolismo , Larva/patogenicidade , Camundongos Endogâmicos BALB C , Trichinella spiralis/genética , Trichinella spiralis/patogenicidade , Triquinelose/parasitologia , Catepsina C/genética , Catepsina C/metabolismo , Mucosa Intestinal/parasitologia
5.
Nature ; 611(7937): 787-793, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36323781

RESUMO

Emerging studies indicate that cooperation between neurons and immune cells regulates antimicrobial immunity, inflammation and tissue homeostasis. For example, a neuronal rheostat provides excitatory or inhibitory signals that control the functions of tissue-resident group 2 innate lymphoid cells (ILC2s) at mucosal barrier surfaces1-4. ILC2s express NMUR1, a receptor for neuromedin U (NMU), which is a prominent cholinergic neuropeptide that promotes ILC2 responses5-7. However, many functions of ILC2s are shared with adaptive lymphocytes, including the production of type 2 cytokines8,9 and the release of tissue-protective amphiregulin (AREG)10-12. Consequently, there is controversy regarding whether innate lymphoid cells and adaptive lymphocytes perform redundant or non-redundant functions13-15. Here we generate a new genetic tool to target ILC2s for depletion or gene deletion in the presence of an intact adaptive immune system. Transgenic expression of iCre recombinase under the control of the mouse Nmur1 promoter enabled ILC2-specific deletion of AREG. This revealed that ILC2-derived AREG promotes non-redundant functions in the context of antiparasite immunity and tissue protection following intestinal damage and inflammation. Notably, NMU expression levels increased in inflamed intestinal tissues from both mice and humans, and NMU induced AREG production in mouse and human ILC2s. These results indicate that neuropeptide-mediated regulation of non-redundant functions of ILC2s is an evolutionarily conserved mechanism that integrates immunity and tissue protection.


Assuntos
Imunidade Inata , Mucosa Intestinal , Linfócitos , Neuropeptídeos , Animais , Humanos , Camundongos , Citocinas/imunologia , Citocinas/metabolismo , Imunidade Inata/imunologia , Inflamação/imunologia , Inflamação/parasitologia , Inflamação/patologia , Linfócitos/imunologia , Neuropeptídeos/metabolismo , Neuropeptídeos/fisiologia , Anfirregulina , Mucosa Intestinal/imunologia , Mucosa Intestinal/parasitologia , Mucosa Intestinal/patologia
6.
Immunohorizons ; 6(8): 630-641, 2022 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-35985797

RESUMO

We have recently demonstrated that basophils are protective against intestinal permeability during malaria and contribute to reduced parasite transmission to mosquitoes. Given that IL-18 is an early cytokine/alarmin in malaria and has been shown to activate basophils, we sought to determine the role of the basophil IL-18R in this protective phenotype. To address this, we infected control [IL18r flox/flox or basoIL-18R (+)] mice and mice with basophils lacking the IL-18R [IL18r flox/flox × Basoph8 or basoIL-18R (-)] with Plasmodium yoelii yoelii 17XNL, a nonlethal strain of mouse malaria. Postinfection (PI), intestinal permeability, ileal mastocytosis, bacteremia, and levels of ileal and plasma cytokines and chemokines were measured through 10 d PI. BasoIL-18R (-) mice exhibited greater intestinal permeability relative to basoIL-18R (+) mice, along with increased plasma levels of proinflammatory cytokines at a single time point PI, day 4 PI, a pattern not observed in basoIL-18R (+) mice. Surprisingly, mosquitoes fed on basoIL-18R (-) mice became infected less frequently than mosquitoes fed on basoIL-18R (+) mice, with no difference in gametocytemia, a pattern that was distinct from that observed previously with basophil-depleted mice. These findings suggest that early basophil-dependent protection of the intestinal barrier in malaria is mediated by IL-18, and that basophil IL-18R-dependent signaling differentially regulates the inflammatory response to infection and parasite transmission.


Assuntos
Culicidae , Mucosa Intestinal , Malária , Parasitos , Receptores de Interleucina-18 , Animais , Basófilos , Permeabilidade da Membrana Celular , Culicidae/parasitologia , Citocinas , Imunidade , Interleucina-18 , Mucosa Intestinal/parasitologia , Malária/parasitologia , Camundongos , Receptores de Interleucina-18/metabolismo , Receptores de Interleucina-18/fisiologia
7.
Exp Parasitol ; 240: 108329, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35868574

RESUMO

Intestinal epithelial cells (IECs) reside in a highly anaerobic environment that is subject to daily fluctuations in partial oxygen pressure (pO2), depending on intestinal tissue perfusion. This condition, known as physiological hypoxia, has a major impact on the maintenance of gut homeostasis, such as effects on the integrity and function of the intestinal epithelial barrier. Giardia lamblia is a microaerophilic protozoan parasite that infects and colonizes the small intestine of its host, causing watery diarrhea. The disease, known as giardiasis, is associated with enhanced intestinal permeability and disruption or reorganization of tight junction (TJ) proteins between IECs. Given the central role of oxygen in gut homeostasis, in this study, we aimed to evaluate whether pO2 affects intestinal permeability (flux of ions and macromolecules) and TJ protein expression in human IECs during G. lamblia infection. Using human cell lines HuTu-80 and Caco-2 as models of "loose" (low resistance) and "tight" (high resistance) intestines, respectively, we elucidated that low pO2 drives intestinal barrier dysfunction in IECs infected with trophozoites through dephosphorylation of protein kinase C (PKC α/ß II). Additionally, we demonstrated that IECs infected with trophozoites in the presence of a pharmacological PKC activator (phorbol 12-myristate 13-acetate) partially restored the barrier function, which was correlated with increased protein expression levels of zonula occludens (ZO)-2 and occludin. Collectively, these results support the emerging theory that molecular oxygen impacts gut homeostasis during Giardia infection via direct host signaling pathways. These findings further our knowledge regarding Giardia-host interactions and the pathophysiological mechanisms of human giardiasis.


Assuntos
Giardia lamblia , Giardíase , Células CACO-2 , Células Epiteliais/parasitologia , Giardia lamblia/metabolismo , Giardíase/parasitologia , Humanos , Mucosa Intestinal/parasitologia , Oxigênio/metabolismo , Permeabilidade , Junções Íntimas/metabolismo , Proteína da Zônula de Oclusão-1/metabolismo
8.
Int J Mol Sci ; 22(19)2021 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-34639039

RESUMO

The mucus layer in the intestine plays a critical role in regulation of host-microbe interactions and maintaining homeostasis. Disruptions of the mucus layer due to genetic, environmental, or immune factors may lead to inflammatory bowel diseases (IBD). IBD frequently are accompanied with infections, and therefore are treated with antibiotics. Hence, it is important to evaluate risks of antibiotic treatment in individuals with vulnerable gut barrier and chronic inflammation. Mice with a knockout of the Muc2 gene, encoding the main glycoprotein component of the mucus, demonstrate a close contact of the microbes with the gut epithelium which leads to chronic inflammation resembling IBD. Here we demonstrate that the Muc2-/- mice harboring a gut protozoan infection Tritrichomonas sp. are susceptible to an antibiotic-induced depletion of the bacterial microbiota. Suppression of the protozoan infection with efficient metronidazole dosage or L-fucose administration resulted in amelioration of an illness observed in antibiotic-treated Muc2-/- mice. Fucose is a monosaccharide presented abundantly in gut glycoproteins, including Mucin2, and is known to be involved in host-microbe interactions, in particular in microbe adhesion. We suppose that further investigation of the role of fucose in protozoan adhesion to host cells may be of great value.


Assuntos
Fucose/metabolismo , Mucina-2/deficiência , Infecções por Protozoários/etiologia , Infecções por Protozoários/metabolismo , Tritrichomonas/fisiologia , Animais , Antibacterianos/farmacologia , Suscetibilidade a Doenças , Feminino , Mucosa Intestinal/metabolismo , Mucosa Intestinal/parasitologia , Mucosa Intestinal/patologia , Camundongos , Camundongos Knockout , Mortalidade , Infecções por Protozoários/tratamento farmacológico , Infecções por Protozoários/mortalidade , Tritrichomonas/classificação
9.
Immunity ; 54(11): 2547-2564.e7, 2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-34715017

RESUMO

Cryptosporidium can cause severe diarrhea and morbidity, but many infections are asymptomatic. Here, we studied the immune response to a commensal strain of Cryptosporidium tyzzeri (Ct-STL) serendipitously discovered when conventional type 1 dendritic cell (cDC1)-deficient mice developed cryptosporidiosis. Ct-STL was vertically transmitted without negative health effects in wild-type mice. Yet, Ct-STL provoked profound changes in the intestinal immune system, including induction of an IFN-γ-producing Th1 response. TCR sequencing coupled with in vitro and in vivo analysis of common Th1 TCRs revealed that Ct-STL elicited a dominant antigen-specific Th1 response. In contrast, deficiency in cDC1s skewed the Ct-STL CD4 T cell response toward Th17 and regulatory T cells. Although Ct-STL predominantly colonized the small intestine, colon Th1 responses were enhanced and associated with protection against Citrobacter rodentium infection and exacerbation of dextran sodium sulfate and anti-IL10R-triggered colitis. Thus, Ct-STL represents a commensal pathobiont that elicits Th1-mediated intestinal homeostasis that may reflect asymptomatic human Cryptosporidium infection.


Assuntos
Criptosporidiose/imunologia , Criptosporidiose/parasitologia , Cryptosporidium/imunologia , Células Dendríticas/imunologia , Interações Hospedeiro-Parasita/imunologia , Mucosa Intestinal/imunologia , Mucosa Intestinal/parasitologia , Células Th1/imunologia , Animais , Células Dendríticas/metabolismo , Modelos Animais de Doenças , Homeostase , Mucosa Intestinal/metabolismo , Camundongos , Microbiota , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Células Th1/metabolismo
10.
Exp Parasitol ; 230: 108158, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34534534

RESUMO

Our aim was to evaluate the impact of immunosuppression on the development of giardiasis. Thirty-six gerbils (4-6 weeks old) were distributed in four groups containing nine animals each: Control (CT); Control-Infected by Giardia lamblia (CTIn), Immunosuppressed (IS), and Immunosuppressed-Infected by G. lamblia (ISIn). Animals in the IS and ISIn groups received intramuscular dexamethasone solution for 25 days. On the 11th day, the animals in the CTIn and ISIn groups were inoculated with G. lamblia. After 14 days of infection, the 25th day of the experiment, all groups were euthanized. Four hours after euthanasia, the intestinal permeability was evaluated and sections of the duodenum and spleen were harvested for morphometric and histopathological analyses. Immunosuppressed groups showed a significant increase in intestinal permeability compared to control and infected groups. Considering that the infection can become chronic in immunosuppressed groups, we should be alert to the possibilities of chronic inflammatory changes, both locally and systemically, due to the loss of the intestinal barrier. Lesions were observed in the duodenal mucosa of the gerbils of the CTIn group, with reduced villi size, crypt hyperplasia, edema, and the presence of inflammatory infiltrate in the lamina propria. In the ISIn group, we observed no inflammation, long and intact villi, and a significant increase in the area of intestinal mucins, despite the large number of trophozoites identified. Our results suggest that exacerbation of the immune response has a direct relationship with the appearance of lesions during enteritis produced by G. lamblia in the assessed model.


Assuntos
Dexametasona/uso terapêutico , Enterite/tratamento farmacológico , Enterite/parasitologia , Giardíase/tratamento farmacológico , Glucocorticoides/uso terapêutico , Animais , Dexametasona/farmacologia , Modelos Animais de Doenças , Duodeno/parasitologia , Duodeno/patologia , Enterite/imunologia , Feminino , Gerbillinae , Giardia lamblia/efeitos dos fármacos , Giardia lamblia/imunologia , Giardia lamblia/patogenicidade , Giardíase/imunologia , Giardíase/parasitologia , Glucocorticoides/farmacologia , Terapia de Imunossupressão , Mucosa Intestinal/parasitologia , Mucosa Intestinal/patologia , Masculino , Carga Parasitária , Permeabilidade , Baço/patologia
11.
mBio ; 12(5): e0212721, 2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34488445

RESUMO

Interferon (IFN) signaling is key to mucosal immunity in the gastrointestinal tract, but cellular regulatory elements that determine interferon gamma (IFN-γ)-mediated antimicrobial defense in intestinal epithelial cells are not fully understood. We report here that a long noncoding RNA (lncRNA), GenBank accession no. XR_001779380, was increased in abundance in murine intestinal epithelial cells following infection by Cryptosporidium, an important opportunistic pathogen in AIDS patients and a common cause of diarrhea in young children. Expression of XR_001779380 in infected intestinal epithelial cells was triggered by TLR4/NF-κB/Cdc42 signaling and epithelial-specific transcription factor Elf3. XR_001779380 primed epithelial cells for IFN-γ-mediated gene transcription through facilitating Stat1/Swi/Snf-associated chromatin remodeling. Interactions between XR_001779380 and Prdm1, which is expressed in neonatal but not adult intestinal epithelium, attenuated Stat1/Swi/Snf-associated chromatin remodeling induced by IFN-γ, contributing to suppression of IFN-γ-mediated epithelial defense in neonatal intestine. Our data demonstrate that XR_001779380 is an important regulator in IFN-γ-mediated gene transcription and age-associated intestinal epithelial antimicrobial defense. IMPORTANCE Epithelial cells along the mucosal surface provide the front line of defense against luminal pathogen infection in the gastrointestinal tract. These epithelial cells represent an integral component of a highly regulated communication network that can transmit essential signals to cells in the underlying intestinal mucosa that, in turn, serve as targets of mucosal immune mediators. LncRNAs are recently identified long noncoding transcripts that can regulate gene transcription through their interactions with other effect molecules. In this study, we demonstrated that lncRNA XR_001779380 was upregulated in murine intestinal epithelial cells following infection by a mucosal protozoan parasite Cryptosporidium. Expression of XR_001779380 in infected cells primed host epithelial cells for IFN-γ-mediated gene transcription, relevant to age-dependent intestinal antimicrobial defense. Our data provide new mechanistic insights into how intestinal epithelial cells orchestrate intestinal mucosal defense against microbial infection.


Assuntos
Criptosporidiose/imunologia , Cryptosporidium parvum/fisiologia , Interferon gama/imunologia , Mucosa Intestinal/imunologia , RNA Longo não Codificante/imunologia , Fatores Etários , Animais , Criptosporidiose/genética , Criptosporidiose/parasitologia , Cryptosporidium parvum/genética , Células Epiteliais/imunologia , Células Epiteliais/parasitologia , Humanos , Imunidade nas Mucosas , Interferon gama/genética , Mucosa Intestinal/parasitologia , Camundongos , NF-kappa B/genética , NF-kappa B/imunologia , RNA Longo não Codificante/genética , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/imunologia
12.
Infect Immun ; 89(12): e0022521, 2021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-34460289

RESUMO

Heligmosomoides polygyrus is a helminth which naturally infects mice and is widely used as a laboratory model of chronic small intestinal helminth infection. While it is known that infection with H. polygyrus alters the composition of the host's bacterial microbiota, the functional implications of this alteration are unclear. We investigated the impact of H. polygyrus infection on short-chain fatty acid (SCFA) levels in the mouse intestine and sera. We found that helminth infection resulted in significantly upregulated levels of the branched SCFA isovaleric acid, exclusively in the proximal small intestine, which is the site of H. polygyrus colonization. We next set out to test the hypothesis that elevating local levels of isovaleric acid was a strategy used by H. polygyrus to promote its own fitness within the mammalian host. To test this, we supplemented the drinking water of mice with isovalerate during H. polygyrus infection and examined whether this affected helminth fecundity or chronicity. We did not find that isovaleric acid supplementation affected helminth chronicity; however, we found that it did promote helminth fecundity, as measured by helminth egg output in the feces of mice. Through antibiotic treatment of helminth-infected mice, we found that the bacterial microbiota was required in order to support elevated levels of isovaleric acid in the proximal small intestine during helminth infection. Overall, our data reveal that during H. polygyrus infection there is a microbiota-dependent localized increase in the production of isovaleric acid in the proximal small intestine and that this supports helminth fecundity in the murine host.


Assuntos
Ácidos Graxos Voláteis/metabolismo , Interações Hospedeiro-Parasita , Mucosa Intestinal/metabolismo , Mucosa Intestinal/parasitologia , Nematospiroides dubius/fisiologia , Infecções por Strongylida/metabolismo , Infecções por Strongylida/parasitologia , Animais , Modelos Animais de Doenças , Metabolismo dos Lipídeos , Camundongos
13.
J Exp Med ; 218(9)2021 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-34283207

RESUMO

Type 2 inflammation is associated with epithelial cell responses, including goblet cell hyperplasia, that promote worm expulsion during intestinal helminth infection. How these epithelial responses are regulated remains incompletely understood. Here, we show that mice deficient in the prostaglandin D2 (PGD2) receptor CRTH2 and mice with CRTH2 deficiency only in nonhematopoietic cells exhibited enhanced worm clearance and intestinal goblet cell hyperplasia following infection with the helminth Nippostrongylus brasiliensis. Small intestinal stem, goblet, and tuft cells expressed CRTH2. CRTH2-deficient small intestinal organoids showed enhanced budding and terminal differentiation to the goblet cell lineage. During helminth infection or in organoids, PGD2 and CRTH2 down-regulated intestinal epithelial Il13ra1 expression and reversed Type 2 cytokine-mediated suppression of epithelial cell proliferation and promotion of goblet cell accumulation. These data show that the PGD2-CRTH2 pathway negatively regulates the Type 2 cytokine-driven epithelial program, revealing a mechanism that can temper the highly inflammatory effects of the anti-helminth response.


Assuntos
Citocinas/metabolismo , Mucosa Intestinal/parasitologia , Prostaglandina D2/metabolismo , Receptores Imunológicos/metabolismo , Receptores de Prostaglandina/metabolismo , Infecções por Strongylida/parasitologia , Animais , Feminino , Gastroenterite/parasitologia , Gastroenterite/patologia , Células Caliciformes/patologia , Interações Hospedeiro-Parasita/fisiologia , Mucosa Intestinal/patologia , Masculino , Camundongos Endogâmicos C57BL , Nippostrongylus/patogenicidade , Organoides , Receptores Imunológicos/genética , Receptores de Prostaglandina/genética , Infecções por Strongylida/patologia
14.
Sci Rep ; 11(1): 11609, 2021 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-34078952

RESUMO

The purpose of this pilot study was to evaluate and determine the concentration of prostaglandin GF2α (PGF2α) and isoprostane 8-iso-PGF2α in plasma and intestine of specific pathogen-free (SPF) Leghorn chickens challenged with Eimeria maxima, with or without dietary supplementation of curcumin using solid-phase microextraction and ultra-performance liquid chromatography/tandem mass spectrometry. Eighty 1-day-old male SPF chickens were randomly allocated to one of four groups with four replicates (n = 5 chickens/replicate). Groups consisted of: (1) Control (no challenge), (2) Curcumin (no challenge), (3) Eimeria maxima (challenge), and (4) Eimeria maxima (challenge) + curcumin. At day 28 of age, all chickens in the challenge groups were orally gavaged with 40,000 sporulated E. maxima oocysts. No significant differences (P > 0.05) were observed in the groups regardless of the treatment or challenge with E. maxima. Enteric levels of both isoprostane 8-iso-PGF2α and PGF2α at 7 days and 9 days post-challenge were significantly increased (P < 0.01) compared to the non-challenge control chickens. Interestingly, the enteric levels of both isoprostane 8-iso-PGF2α and PGF2α at 7 days post-challenge were significantly reduced in chickens fed curcumin, compared to control chickens challenge with E. maxima. At 9 days post-challenge, only levels of isoprostane 8-iso-PGF2α in the enteric samples were significantly reduced in chickens challenged with E. maxima supplemented with curcumin, compared with E. maxima challenge chickens. No differences of isoprostane 8-iso-PGF2α or PGF2α were observed in plasma at both days of evaluation. Similarly, no significant differences were observed between the challenge control or chickens challenge with E. maxima and supplemented with curcumin at both times of evaluation. The results of this pilot study suggests that the antioxidant anti-inflammatory properties of curcumin reduced the oxidative damage and subsequent intestinal mucosal over-production of lipid oxidation products. Further studies to confirm and extend these results in broiler chickens are required.


Assuntos
Anti-Inflamatórios/farmacologia , Coccidiose/tratamento farmacológico , Curcumina/farmacologia , Dinoprosta/análogos & derivados , Dinoprosta/antagonistas & inibidores , Eimeria/efeitos dos fármacos , Doenças das Aves Domésticas/tratamento farmacológico , Ração Animal , Animais , Animais Recém-Nascidos , Galinhas/crescimento & desenvolvimento , Galinhas/parasitologia , Coccidiose/metabolismo , Coccidiose/parasitologia , Coccidiose/veterinária , Suplementos Nutricionais , Dinoprosta/metabolismo , Eimeria/crescimento & desenvolvimento , Eimeria/patogenicidade , Inflamação , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/parasitologia , Masculino , Oocistos/efeitos dos fármacos , Oocistos/crescimento & desenvolvimento , Oocistos/patogenicidade , Estresse Oxidativo , Doenças das Aves Domésticas/metabolismo , Doenças das Aves Domésticas/parasitologia , Organismos Livres de Patógenos Específicos
15.
Trop Biomed ; 38(1): 160-171, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33797541

RESUMO

Trichinella spiralis is an important foodborne zoonotic parasite and it is necessary to develop vaccine to prevent T. spiralis infection in food animals. T. spiralis aspartic protease-2 (TsASP2) has been demonstrated to play a crucial role in larval invasion of intestinal epithelium cells (IECs). The purpose of this study was to assess the interaction between TsASP2 and IECs and to investigate the immune protection elicited by vaccination with rTsASP2. The results showed that the enzymatic activity of native aspartic protease was detected in crude proteins of all T. spiralis development stages other than NBL stage, the highest activity was observed in the IIL stage. The results of Western blot showed that TsASP2 protein was expressed at ML, IIL and AW but not NBL, and the TsASP2 expression level at IIL stage was significantly higher than those of other three worm stages (P < 0.05). The specific binding between rTsASP2 and IECs was observed by immunofluorescence test (IFT) and confocal microscopy, and the binding site was localized at the IEC membrane and this binding ability was inhibited by aspartic protease specific inhibitor pepstain A. The results of ELISA showed that the binding ability was protein dose-dependent. Vaccination with rTsASP2 triggered a mixed Th1/Th2 humoral and mucosal immune responses, as demonstrated by the elevation levels of Th1/Th2 cytokines (IFN-γ and IL-4) secreted by the spleen and mesenteric lymph nodes (MLNs) of immunized mice. The mice vaccinated with rTsASP2 exhibited a 54.17% reduction in enteral adult worms and a 54.58% reduction in muscle larvae after T. spiralis challenge. The results demonstrated that TsASP2 might be a potential molecular target for anti-Trichinella vaccines.


Assuntos
Ácido Aspártico Proteases/metabolismo , Enterócitos/parasitologia , Proteínas de Helminto/metabolismo , Mucosa Intestinal/parasitologia , Triquinelose/parasitologia , Animais , Feminino , Imunidade Humoral , Imunidade nas Mucosas , Camundongos , Camundongos Endogâmicos BALB C , Trichinella spiralis/enzimologia , Triquinelose/imunologia , Vacinação , Vacinas/imunologia
16.
Commun Biol ; 4(1): 377, 2021 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-33742093

RESUMO

Mammalian three-dimensional (3D) enteroids mirror in vivo intestinal organisation and are powerful tools to investigate intestinal cell biology and host-pathogen interactions. We have developed complex multilobulated 3D chicken enteroids from intestinal embryonic villi and adult crypts. These avian enteroids develop optimally in suspension without the structural support required to produce mammalian enteroids, resulting in an inside-out enteroid conformation with media-facing apical brush borders. Histological and transcriptional analyses show these enteroids comprise of differentiated intestinal epithelial cells bound by cell-cell junctions, and notably, include intraepithelial leukocytes and an inner core of lamina propria leukocytes. The advantageous polarisation of these enteroids has enabled infection of the epithelial apical surface with Salmonella Typhimurium, influenza A virus and Eimeria tenella without the need for micro-injection. We have created a comprehensive model of the chicken intestine which has the potential to explore epithelial and leukocyte interactions and responses in host-pathogen, food science and pharmaceutical research.


Assuntos
Eimeria tenella/patogenicidade , Células Epiteliais , Vírus da Influenza A/patogenicidade , Mucosa Intestinal , Leucócitos , Salmonella typhimurium/patogenicidade , Animais , Células Cultivadas , Microambiente Celular , Galinhas , Eimeria tenella/imunologia , Células Epiteliais/imunologia , Células Epiteliais/microbiologia , Células Epiteliais/parasitologia , Células Epiteliais/virologia , Interações Hospedeiro-Patógeno , Vírus da Influenza A/imunologia , Mucosa Intestinal/imunologia , Mucosa Intestinal/microbiologia , Mucosa Intestinal/parasitologia , Mucosa Intestinal/virologia , Leucócitos/imunologia , Leucócitos/microbiologia , Leucócitos/parasitologia , Leucócitos/virologia , Camundongos Endogâmicos C57BL , Organoides , Permeabilidade , Fagocitose , Fenótipo , Codorniz , Salmonella typhimurium/imunologia
17.
Cell ; 184(5): 1214-1231.e16, 2021 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-33636133

RESUMO

Although enteric helminth infections modulate immunity to mucosal pathogens, their effects on systemic microbes remain less established. Here, we observe increased mortality in mice coinfected with the enteric helminth Heligmosomoides polygyrus bakeri (Hpb) and West Nile virus (WNV). This enhanced susceptibility is associated with altered gut morphology and transit, translocation of commensal bacteria, impaired WNV-specific T cell responses, and increased virus infection in the gastrointestinal tract and central nervous system. These outcomes were due to type 2 immune skewing, because coinfection in Stat6-/- mice rescues mortality, treatment of helminth-free WNV-infected mice with interleukin (IL)-4 mirrors coinfection, and IL-4 receptor signaling in intestinal epithelial cells mediates the susceptibility phenotypes. Moreover, tuft cell-deficient mice show improved outcomes with coinfection, whereas treatment of helminth-free mice with tuft cell-derived cytokine IL-25 or ligand succinate worsens WNV disease. Thus, helminth activation of tuft cell-IL-4-receptor circuits in the gut exacerbates infection and disease of a neurotropic flavivirus.


Assuntos
Coinfecção , Nematospiroides dubius/fisiologia , Transdução de Sinais , Infecções por Strongylida/patologia , Vírus do Nilo Ocidental/fisiologia , Animais , Linfócitos T CD8-Positivos/imunologia , Modelos Animais de Doenças , Suscetibilidade a Doenças , Mucosa Intestinal/parasitologia , Mucosa Intestinal/virologia , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/parasitologia , Neurônios/virologia , Receptores de Interleucina-4/metabolismo , Fator de Transcrição STAT6/genética , Índice de Gravidade de Doença , Infecções por Strongylida/parasitologia
18.
Infect Immun ; 89(5)2021 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-33558327

RESUMO

Trichinellosis is one of most neglected foodborne zoonoses worldwide. During Trichinella spiralis infection, the intestinal immune response is the first line of defense and plays a vital role in the host's resistance. Previous studies indicate that purinergic P2X7 receptor (P2X7R) and pyrin domain-containing protein 3 (NLRP3) inflammasome are involved in the intestinal immune response in T. spiralis infection. However, the precise role of P2X7R and its effect on NLRP3 remains largely underdetermined. In this study, we aimed to investigate the role of P2X7R in the activation of NLRP3 in macrophages during the intestinal immune response against T. spiralis We found that T. spiralis infection upregulated expression of P2X7R and activation of NLRP3 in macrophages in mice. In vivo, P2X7R deficiency resulted in increased intestinal adult and muscle larval burdens, along with decreased expression of NLRP3/interleukin-1ß (IL-1ß) in macrophages from the infected mice with T. spiralis In In vitro experiments, P2X7R blockade inhibited activation of NLRP3/IL-1ß via NF-κB and thus reduced the capacity of macrophages to kill newborn larvae of T. spiralis These results indicate that P2X7R mediates the elimination of T. spiralis by activating the NF-κB/NLRP3/IL-1ß pathway in macrophages. Our findings contribute to the understanding of the intestinal immune mechanism of T. spiralis infection.


Assuntos
Interleucina-1beta/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Transdução de Sinais , Trichinella spiralis , Animais , Modelos Animais de Doenças , Expressão Gênica , Mucosa Intestinal/metabolismo , Mucosa Intestinal/parasitologia , Mucosa Intestinal/patologia , Camundongos , Camundongos Knockout , Carga Parasitária , Antagonistas do Receptor Purinérgico P2X/farmacologia , Receptores Purinérgicos P2X7/genética , Triquinelose/imunologia , Triquinelose/metabolismo , Triquinelose/parasitologia
19.
Genes (Basel) ; 12(1)2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33478058

RESUMO

Mitochondrial integrity and homeostasis in the midgut are key factors controlling mosquito fitness and anti-pathogen resistance. Targeting genes that regulate mitochondrial dynamics represents a potential strategy for limiting mosquito-borne diseases. AMP-activated protein kinase (AMPK) is a key cellular energy sensor found in nearly all eukaryotic cells. When activated, AMPK inhibits anabolic pathways that consume ATP and activates catabolic processes that synthesize ATP. In this study, we overexpressed a truncated and constitutively active α-subunit of AMPK under the control of the midgut-specific carboxypeptidase promotor in the midgut of female Anopheles stephensi. As expected, AMPK overexpression in homozygous transgenic mosquitoes was associated with changes in nutrient storage and metabolism, decreasing glycogen levels at 24 h post-blood feeding when transgene expression was maximal, and concurrently increasing circulating trehalose at the same time point. When transgenic lines were challenged with Plasmodium falciparum, we observed a significant decrease in the prevalence and intensity of infection relative to wild type controls. Surprisingly, we did not observe a significant difference in the survival of adult mosquitoes fed either sugar only or both sugar and bloodmeals throughout adult life. This may be due to the limited period that the transgene was activated before homeostasis was restored. However, we did observe a significant decrease in egg production, suggesting that manipulation of AMPK activity in the mosquito midgut resulted in the re-allocation of resources away from egg production. In summary, this work identifies midgut AMPK activity as an important regulator of metabolism, reproduction, and innate immunity in An. stephensi, a highly invasive and important malaria vector species.


Assuntos
Proteínas Quinases Ativadas por AMP/genética , Anopheles/genética , Proteínas de Insetos/genética , Mucosa Intestinal/enzimologia , Malária Falciparum/prevenção & controle , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Animais Geneticamente Modificados , Anopheles/enzimologia , Anopheles/metabolismo , Anopheles/parasitologia , Resistência à Doença/genética , Resistência à Doença/imunologia , Metabolismo Energético/genética , Metabolismo Energético/imunologia , Feminino , Engenharia Genética , Interações Hospedeiro-Parasita/genética , Imunidade Inata/genética , Proteínas de Insetos/metabolismo , Mucosa Intestinal/parasitologia , Malária Falciparum/parasitologia , Malária Falciparum/transmissão , Mitocôndrias/metabolismo , Mosquitos Vetores/enzimologia , Mosquitos Vetores/genética , Mosquitos Vetores/metabolismo , Mosquitos Vetores/parasitologia , Plasmodium falciparum/patogenicidade , Reprodução
20.
PLoS Pathog ; 17(1): e1009241, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33481946

RESUMO

The gastrointestinal epithelium guides the immune system to differentiate between commensal and pathogenic microbiota, which relies on intimate links with the type I IFN signal pathway. Epithelial cells along the epithelium provide the front line of host defense against pathogen infection in the gastrointestinal tract. Increasing evidence supports the regulatory potential of long noncoding RNAs (lncRNAs) in immune defense but their role in regulating intestinal epithelial antimicrobial responses is still unclear. Cryptosporidium, a protozoan parasite that infects intestinal epithelial cells, is an important opportunistic pathogen in AIDS patients and a common cause of diarrhea in young children in developing countries. Recent advances in Cryptosporidium research have revealed a strong type I IFN response in infected intestinal epithelial cells. We previously identified a panel of host cell lncRNAs that are upregulated in murine intestinal epithelial cells following microbial challenge. One of these lncRNAs, NR_033736, is upregulated in intestinal epithelial cells following Cryptosporidium infection and displays a significant suppressive effect on type I IFN-controlled gene transcription in infected host cells. NR_033736 can be assembled into the ISGF3 complex and suppresses type I IFN-mediated gene transcription. Interestingly, upregulation of NR_033736 itself is triggered by the type I IFN signaling. Moreover, NR_033736 modulates epithelial anti-Cryptosporidium defense. Our data suggest that upregulation of NR_033736 provides negative feedback regulation of type I IFN signaling through suppression of type I IFN-controlled gene transcription, and consequently, contributing to fine-tuning of epithelial innate defense against microbial infection.


Assuntos
Criptosporidiose/imunologia , Cryptosporidium/imunologia , Interferon Tipo I/metabolismo , RNA Longo não Codificante/genética , Transdução de Sinais , Animais , Animais Recém-Nascidos , Criptosporidiose/parasitologia , Diarreia/imunologia , Diarreia/parasitologia , Células Epiteliais/parasitologia , Trato Gastrointestinal/imunologia , Trato Gastrointestinal/parasitologia , Humanos , Mucosa Intestinal/imunologia , Mucosa Intestinal/parasitologia , Intestinos/parasitologia , Camundongos , Transcrição Gênica , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA