Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.244
Filtrar
1.
Methods Mol Biol ; 2808: 141-152, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38743368

RESUMO

Measles virus (MeV) infection of airway surface epithelial cells provides a site for final amplification before being released back into the environment via coughing and sneezing. Multiple cell lines have served as models of polarized epithelia for MeV infection, such as Caco2 cells (intestinal derived human epithelia) or MDCK cells (kidney derived canine epithelia). In this chapter, we describe the materials and air-liquid interface (ALI) culture conditions for maintaining four different cell lines derived from human airway epithelial cells: 16HBE14o-, Calu-3, H358, and NuLi-1. We provide methods for confirming transepithelial electrical resistance (TER) and preparing samples for microscopy as well as expected results from apical or basolateral MeV delivery. Polarized human airway derived cells serve as tissue culture models for investigating targeted questions about how MeV exits a human host. In addition, these methods are generalizable to studies of other respiratory viruses or the biology of ALI airway epithelial cells.


Assuntos
Técnicas de Cultura de Células , Células Epiteliais , Vírus do Sarampo , Humanos , Vírus do Sarampo/fisiologia , Células Epiteliais/virologia , Células Epiteliais/citologia , Técnicas de Cultura de Células/métodos , Sarampo/virologia , Linhagem Celular , Cães , Animais , Mucosa Respiratória/virologia , Mucosa Respiratória/citologia , Impedância Elétrica
2.
Mitochondrion ; 76: 101880, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38604459

RESUMO

Plasma membrane large-conductance calcium-activated potassium (BKCa) channels are important players in various physiological processes, including those mediated by epithelia. Like other cell types, human bronchial epithelial (HBE) cells also express BKCa in the inner mitochondrial membrane (mitoBKCa). The genetic relationships between these mitochondrial and plasma membrane channels and the precise role of mitoBKCa in epithelium physiology are still unclear. Here, we tested the hypothesis that the mitoBKCa channel is encoded by the same gene as the plasma membrane BKCa channel in HBE cells. We also examined the impact of channel loss on the basic function of HBE cells, which is to create a tight barrier. For this purpose, we used CRISPR/Cas9 technology in 16HBE14o- cells to disrupt the KCNMA1 gene, which encodes the α-subunit responsible for forming the pore of the plasma membrane BKCa channel. Electrophysiological experiments demonstrated that the disruption of the KCNMA1 gene resulted in the loss of BKCa-type channels in the plasma membrane and mitochondria. We have also shown that HBE ΔαBKCa cells exhibited a significant decrease in transepithelial electrical resistance which indicates a loss of tightness of the barrier created by these cells. We have also observed a decrease in mitochondrial respiration, which indicates a significant impairment of these organelles. In conclusion, our findings indicate that a single gene encodes both populations of the channel in HBE cells. Furthermore, this channel is critical for maintaining the proper function of epithelial cells as a cellular barrier.


Assuntos
Brônquios , Células Epiteliais , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta , Humanos , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/metabolismo , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/genética , Brônquios/metabolismo , Brônquios/citologia , Células Epiteliais/metabolismo , Linhagem Celular , Mitocôndrias/metabolismo , Sistemas CRISPR-Cas , Mucosa Respiratória/metabolismo , Mucosa Respiratória/citologia , Membrana Celular/metabolismo , Membranas Mitocondriais/metabolismo , Membranas Mitocondriais/fisiologia
3.
Science ; 384(6693): 269-270, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38669581
4.
Respir Res ; 25(1): 180, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664797

RESUMO

BACKGROUND: Pulmonary ionocytes have been identified in the airway epithelium as a small population of ion transporting cells expressing high levels of CFTR (cystic fibrosis transmembrane conductance regulator), the gene mutated in cystic fibrosis. By providing an infinite source of airway epithelial cells (AECs), the use of human induced pluripotent stem cells (hiPSCs) could overcome some challenges of studying ionocytes. However, the production of AEC epithelia containing ionocytes from hiPSCs has proven difficult. Here, we present a platform to produce hiPSC-derived AECs (hiPSC-AECs) including ionocytes and investigate their role in the airway epithelium. METHODS: hiPSCs were differentiated into lung progenitors, which were expanded as 3D organoids and matured by air-liquid interface culture as polarised hiPSC-AEC epithelia. Using CRISPR/Cas9 technology, we generated a hiPSCs knockout (KO) for FOXI1, a transcription factor that is essential for ionocyte specification. Differences between FOXI1 KO hiPSC-AECs and their wild-type (WT) isogenic controls were investigated by assessing gene and protein expression, epithelial composition, cilia coverage and motility, pH and transepithelial barrier properties. RESULTS: Mature hiPSC-AEC epithelia contained basal cells, secretory cells, ciliated cells with motile cilia, pulmonary neuroendocrine cells (PNECs) and ionocytes. There was no difference between FOXI1 WT and KO hiPSCs in terms of their capacity to differentiate into airway progenitors. However, FOXI1 KO led to mature hiPSC-AEC epithelia without ionocytes with reduced capacity to produce ciliated cells. CONCLUSION: Our results suggest that ionocytes could have role beyond transepithelial ion transport by regulating epithelial properties and homeostasis in the airway epithelium.


Assuntos
Células-Tronco Pluripotentes Induzidas , Mucosa Respiratória , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Mucosa Respiratória/metabolismo , Mucosa Respiratória/citologia , Diferenciação Celular/fisiologia , Células Cultivadas , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Células Epiteliais/metabolismo , Organoides/metabolismo
5.
J Virol ; 98(3): e0157623, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38323814

RESUMO

Adenovirus (AdV) infection of the respiratory epithelium is common but poorly understood. Human AdV species C types, such as HAdV-C5, utilize the Coxsackie-adenovirus receptor (CAR) for attachment and subsequently integrins for entry. CAR and integrins are however located deep within the tight junctions in the mucosa where they would not be easily accessible. Recently, a model for CAR-independent AdV entry was proposed. In this model, human lactoferrin (hLF), an innate immune protein, aids the viral uptake into epithelial cells by mediating interactions between the major capsid protein, hexon, and yet unknown host cellular receptor(s). However, a detailed understanding of the molecular interactions driving this mechanism is lacking. Here, we present a new cryo-EM structure of HAdV-5C hexon at high resolution alongside a hybrid structure of HAdV-5C hexon complexed with human lactoferrin (hLF). These structures reveal the molecular determinants of the interaction between hLF and HAdV-C5 hexon. hLF engages hexon primarily via its N-terminal lactoferricin (Lfcin) region, interacting with hexon's hypervariable region 1 (HVR-1). Mutational analyses pinpoint critical Lfcin contacts and also identify additional regions within hLF that critically contribute to hexon binding. Our study sheds more light on the intricate mechanism by which HAdV-C5 utilizes soluble hLF/Lfcin for cellular entry. These findings hold promise for advancing gene therapy applications and inform vaccine development. IMPORTANCE: Our study delves into the structural aspects of adenovirus (AdV) infections, specifically HAdV-C5 in the respiratory epithelium. It uncovers the molecular details of a novel pathway where human lactoferrin (hLF) interacts with the major capsid protein, hexon, facilitating viral entry, and bypassing traditional receptors such as CAR and integrins. The study's cryo-EM structures reveal how hLF engages hexon, primarily through its N-terminal lactoferricin (Lfcin) region and hexon's hypervariable region 1 (HVR-1). Mutational analyses identify critical Lfcin contacts and other regions within hLF vital for hexon binding. This structural insight sheds light on HAdV-C5's mechanism of utilizing soluble hLF/Lfcin for cellular entry, holding promise for gene therapy and vaccine development advancements in adenovirus research.


Assuntos
Adenovírus Humanos , Proteínas do Capsídeo , Lactoferrina , Receptores Virais , Internalização do Vírus , Humanos , Infecções por Adenovirus Humanos/metabolismo , Infecções por Adenovirus Humanos/virologia , Adenovírus Humanos/química , Adenovírus Humanos/genética , Adenovírus Humanos/metabolismo , Adenovírus Humanos/ultraestrutura , Sítios de Ligação/genética , Proteínas do Capsídeo/química , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Proteínas do Capsídeo/ultraestrutura , Microscopia Crioeletrônica , Lactoferrina/química , Lactoferrina/genética , Lactoferrina/metabolismo , Lactoferrina/ultraestrutura , Modelos Biológicos , Mutação , Ligação Proteica , Receptores Virais/química , Receptores Virais/genética , Receptores Virais/metabolismo , Receptores Virais/ultraestrutura , Solubilidade , Mucosa Respiratória/citologia , Mucosa Respiratória/metabolismo , Mucosa Respiratória/virologia
6.
J Immunol ; 208(5): 1021-1033, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35173036

RESUMO

Lung infections are a perennial leading cause of death worldwide. The lung epithelium comprises three main cell types: alveolar type I (AT1), alveolar type II (AT2), and bronchiolar cells. Constitutively, these three cell types express extremely low amounts of surface MHC class I (MHC I) molecules, that is, <1% of levels found on medullary thymic epithelial cells (ECs). We report that inhalation of the TLR4 ligand LPS upregulates cell surface MHC I by ∼25-fold on the three subtypes of mouse lung ECs. This upregulation is dependent on Nlrc5, Stat1, and Stat2 and caused by a concerted production of the three IFN families. It is nevertheless hampered, particularly in AT1 cells, by the limited expression of genes instrumental in the peptide loading of MHC I molecules. Genes involved in production and response to cytokines and chemokines were selectively induced in AT1 cells. However, discrete gene subsets were selectively downregulated in AT2 or bronchiolar cells following LPS inhalation. Genes downregulated in AT2 cells were linked to cell differentiation and cell proliferation, and those repressed in bronchiolar cells were primarily involved in cilium function. Our study shows a delicate balance between the expression of transcripts maintaining lung epithelium integrity and transcripts involved in Ag presentation in primary lung ECs.


Assuntos
Células Epiteliais Alveolares/metabolismo , Antígenos de Histocompatibilidade Classe I/metabolismo , Interferons/metabolismo , Lipopolissacarídeos/imunologia , Mucosa Respiratória/imunologia , Administração por Inalação , Células Epiteliais Alveolares/imunologia , Animais , Apresentação de Antígeno/imunologia , Bronquíolos/citologia , Bronquíolos/metabolismo , Diferenciação Celular/genética , Proliferação de Células/genética , Cílios/fisiologia , Citocinas/metabolismo , Inflamação/patologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Pulmão/imunologia , Pulmão/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mucosa Respiratória/citologia , Mucosa Respiratória/metabolismo , Fator de Transcrição STAT1/metabolismo , Fator de Transcrição STAT2/metabolismo , Regulação para Cima
7.
Food Chem Toxicol ; 161: 112852, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35131362

RESUMO

While an association between acrylamide (AC) exposure and the risk of developing cancer has been shown in some studies, there are very limited data on the relationship between AC exposure and lung cancer risk. Thus, we investigated the cytotoxic, genotoxic, and carcinogenic effects of AC on human lung bronchial epithelial cell line (BEAS-2B cells). AC (5 and 10 mM) significantly decreased the cell viability for all treatment times. The comet assay results showed that AC (0.5, 1 and 5 mM) increased the DNA tail (%), tail moment and olive tail moment. By using immunofluorescence, we found that AC (0.5, 1 and 5 mM) induced the formation of both phosphorylated form of the histone H2 variant H2AX (gH2AX) and p53-binding protein 1 (53BP1) foci. AC-treated BEAS-2B cells exhibited various morphological and cytoplasmic changes. The transformed cells can induce form foci and significantly increase the number of colonies in soft agar. We showed for the first time that AC could induce DNA strand breaks, cell transformation, and anchorage-independent growth in BEAS-2B cells. Therefore, AC exposure can induce carcinogenesis in lung cells and may be a risk for lung cancer formation. Further studies are necessary to make a possible risk assessment in humans.


Assuntos
Acrilamida/toxicidade , Testes de Carcinogenicidade , Sobrevivência Celular/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Pulmão/citologia , Testes de Mutagenicidade , Acrilamida/administração & dosagem , Acrilamida/química , Linhagem Celular , Relação Dose-Resposta a Droga , Feminino , Humanos , Neoplasias Pulmonares/induzido quimicamente , Masculino , Estrutura Molecular , Mucosa Respiratória/citologia
8.
Bioengineered ; 13(2): 3137-3147, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35037821

RESUMO

Asthma is a respiratory disease with complex pathogenesis. Sterol-responsive element-binding proteins 2 (SREBP2) was found to bind to promoter sequences of ABCA1 to suppress ABCA1 promoter activity. This study aimed to explore the expression level of SREBP2 and ATP-binding cassette transporter A1 (ABCA1), and their effects on the development of airway smooth muscle cells (ASMCs) in asthma. ASMCs were treated with different concentrations of TGF-ß1 (0, 0.5, 1, 5 and 10 ng/mL). Short hairpin SREBP2 (shSREBP2), SREBP2, shABCA1 or ABCA1 were transfected into ASMCs. Cell viability, proliferation, apoptosis, migration, and the expression of SREBP2, ABCA1 and related pathway proteins were detected by MTT assay, Brdu staining, flow cytometer, Transwell assay, qRT-PCR, and Western blotting, respectively. The results showed that TGF-ß1 increased the viability, proliferation, migration and inhibited apoptosis in ASMCs. Moreover, TGF-ß1 also decreased the expression of ABCA1, cleaved caspase-3, cleaved PARP, E-cadherin, and increased the expression of vimentin, TLR2, p-p65 and NFATc1. SREBP2 knockdown alleviated these TGF-ß1-induced changes. SREBP2 overexpression inhibited ABCA1 expression and apoptosis, and promoted cell migration and the expression of TLR2, p-p65, NFATc1 in ASMCs. ABCA1 overexpression alleviated these SREBP2-induced promoting and inhibition effects. In conclusion, SREBP2 activates TLR2/NF-κB/NFATc1 regulatory network and promotes TGF-ß1-induced cell movement through inhibiting ABCA1 expression.


Assuntos
Miócitos de Músculo Liso , Proteína de Ligação a Elemento Regulador de Esterol 2/fisiologia , Fator de Crescimento Transformador beta1/farmacologia , Transportador 1 de Cassete de Ligação de ATP/genética , Transportador 1 de Cassete de Ligação de ATP/metabolismo , Apoptose/efeitos dos fármacos , Apoptose/genética , Movimento Celular/efeitos dos fármacos , Movimento Celular/genética , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Células Cultivadas , Humanos , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/fisiologia , NF-kappa B/genética , NF-kappa B/metabolismo , Fatores de Transcrição NFATC/genética , Fatores de Transcrição NFATC/metabolismo , Mucosa Respiratória/citologia , Mucosa Respiratória/efeitos dos fármacos , Mucosa Respiratória/metabolismo , Sistema Respiratório/citologia , Sistema Respiratório/efeitos dos fármacos , Sistema Respiratório/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Receptor 2 Toll-Like/genética , Receptor 2 Toll-Like/metabolismo
9.
J Fluoresc ; 32(1): 397-404, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34977993

RESUMO

Reported here is a new [Cu4I4] cluster-based coordination polymer, namely [Cu4I4(bib)2]n·n(DMF) (1, bib = 1,4-bis(imidazolyl)butane, DMF = N,N'-dimethylformamide), which was synthesized by the self-assemble reaction of CuI, bib and KI under solvothermal conditions. Remarkably, compound 1 shows promising photocatalytic performance toward to the degradation of MB solution under visible light irradiation. For the COPD treatment, the ELISA detection kit was conducted to determine the content of INF-γ released by the respiratory tract mucosal epithelial cells. In addition to this, the activation levels of the NF-κB signaling pathway were still need to be assessed by the real time RT-PCR after the compound treatment.


Assuntos
Cobre/química , Cobre/farmacologia , Interferon gama/metabolismo , Doença Pulmonar Obstrutiva Crônica/metabolismo , Animais , Catálise , Células Epiteliais/metabolismo , Humanos , Dose Letal Mediana , Camundongos , NF-kappa B/metabolismo , Processos Fotoquímicos , Polímeros , Reação em Cadeia da Polimerase em Tempo Real , Mucosa Respiratória/citologia , Mucosa Respiratória/metabolismo , Transdução de Sinais , Difração de Raios X
10.
J Ethnopharmacol ; 283: 114694, 2022 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-34601084

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The flower buds of Tussilago farfara L. (Abbreviated as FTF) were widely used in traditional Chinese medicine (TCM) to treat respiratory diseases, including asthma, dry throat, great thirst, turbid saliva, stinky pus, and coughs caused by various causes. AIM OF STUDY: The aim of study is to explore the efficiency of FTF in vitro and in vivo for the treatment of lung inflammation, and to illustrate the possible mechanisms of FTF in treating inflammation-related respiratory diseases targeting NOD-like receptor 3 (NLRP3) inflammasome, nuclear factor erythroid 2-related factor 2 (Nrf2), and nuclear transcription factor-κB (NF-κB). METHODS: Lung inflammation model in vivo was induced by exposure of mice to cigarette smoke (CS) for two weeks. The levels of superoxide dismutase (SOD), malondialdehyde (MDA), inflammatory factors, and histology in lung tissues were investigated in presence or absence of ethanol extract of the flower buds of T. farfara L. (FTF-EtOH). In the cell-based models, nitric oxide (NO) assay, flow cytometry assay, enzyme-linked immunosorbent assay (Elisa), and glutathione (GSH) assay were used to explore the anti-inflammatory and anti-oxidant effects of FTF-EtOH. Possible anti-inflammatory mechanisms of FTF targeting NLRP3 inflammasome, Nrf2, and NF-κB have been determined using western blot, quantitative real-time reverse transcriptase-polymerase chain reaction (qRT-PCR), immunofluorescence assay, nuclear and cytoplasmic extraction, and ubiqutination assay. RESULTS: FTF-EtOH suppressed CS-induced overproduction of inflammatory factors [e.g., tumor necrosis factor-α (TNF-α) and interleukin-1ß (IL-1ß)], and upregulation of the content of intracellular MDA in the lung homogenate of mice. In cell-based models, FTF-EtOH reduced the lipopolysaccharide (LPS)-induced overproduction of inflammatory factors, and attenuated the CS extract-induced overgeneration of reactive oxygen species (ROS). Furthermore, FTF-EtOH up-regulated Nrf2 and its downstream genes through enhancing the stability of Nrf2 protein, and inhibited the activation of NF-κB and NLRP3 inflammasome, which have been confirmed by detecting the protein levels in the mouse model. CONCLUSIONS: FTF-EtOH effectively attenuated lung inflammation in vitro and in vivo. The protection of FTF-EtOH against inflammation was produced by activation of Nrf2 and inhibitions of NF-κB and NLRP3 inflammasome. These datas definitely support the ethnopharmacological use of FTF as an anti-inflammatory drug for treating respiratory diseases in TCM.


Assuntos
Inflamação/tratamento farmacológico , Pneumopatias/tratamento farmacológico , Fitoterapia , Extratos Vegetais/uso terapêutico , Fumaça/efeitos adversos , Tussilago/química , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Flores/química , Humanos , Inflamação/induzido quimicamente , Pneumopatias/induzido quimicamente , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Extratos Vegetais/química , Mucosa Respiratória/citologia , Nicotiana
11.
Kaohsiung J Med Sci ; 38(2): 87-96, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34529353

RESUMO

Pyroptosis is a novel proinflammatory programmed cell death process. This study was designed to investigate the functional mechanisms of long noncoding RNA growth arrest-specific transcript 5 (lncRNA GAS5) on lipopolysaccharide (LPS)-induced human bronchial epithelial cell (HBEC) pyroptosis. LPS was used to induce pyroptosis in HBECs, followed by the detection of the expression of GAS5, forkhead box O3 (FOXO3), and nuclear factor E2-related factor 2/heme oxygenase 1 (Nrf2/HO-1) signaling pathway-related factors. Cell viability was evaluated using CCK-8 assay, lactate dehydrogenase (LDH) release was assessed by LDH assay kit and caspase-1 activity by flow cytometry. Furthermore, expression of NOD-like receptor family pyrin domain containing 3 and pyroptosis-related proteins was evaluated using Western blot analysis, while enzyme-linked immunosorbent assay was used to determine the levels of inflammatory factors. The interaction between GAS5 and FOXO3 was confirmed using bioinformatic prediction, RNA immunoprecipitation assay, RNA pull-down, and dual-luciferase reporter gene assay. Treatment of HBECs with LPS upregulated the expression of GAS5 and FOXO3, resulting in the inactivation of the Nrf2/HO-1 signaling pathway. On the other hand, inhibition of both GAS5 and FOXO3 promoted cell viability, reduced LDH release, pyroptosis, and inflammatory response in LPS-induced HBECs. Furthermore, FOXO3 could interact with GAS5, while FOXO3 overexpression reversed the inhibitory effect of GAS5 knockdown on cell pyroptosis. Thus, mechanistically, inhibition of FOXO3 activates the Nrf2/HO-1 pathway to suppress LPS-induced pyroptosis in HBECs. This study revealed that GAS5 knockdown attenuates FOXO3 expression thereby activating the Nrf2/HO-1 pathway to inhibit LPS-induced pyroptosis in HBECs. These findings may contribute to identifying novel targets that inhibit pyroptosis in HBECs.


Assuntos
Brônquios/citologia , Células Epiteliais , Proteína Forkhead Box O3/fisiologia , Piroptose , RNA Longo não Codificante/fisiologia , RNA Nucleolar Pequeno/genética , Mucosa Respiratória/citologia , Células Cultivadas , Células Epiteliais/efeitos dos fármacos , Humanos , Lipopolissacarídeos/farmacologia , Piroptose/efeitos dos fármacos
12.
J Immunol ; 208(2): 407-419, 2022 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-34965963

RESUMO

Tuberculosis consistently causes more deaths worldwide annually than any other single pathogen, making new effective vaccines an urgent priority for global public health. Among potential adjuvants, STING-activating cyclic dinucleotides (CDNs) uniquely stimulate a cytosolic sensing pathway activated only by pathogens. Recently, we demonstrated that a CDN-adjuvanted protein subunit vaccine robustly protects against tuberculosis infection in mice. In this study, we delineate the mechanistic basis underlying the efficacy of CDN vaccines for tuberculosis. CDN vaccines elicit CD4 T cells that home to lung parenchyma and penetrate into macrophage lesions in the lung. Although CDNs, like other mucosal vaccines, generate B cell-containing lymphoid structures in the lungs, protection is independent of B cells. Mucosal vaccination with a CDN vaccine induces Th1, Th17, and Th1-Th17 cells, and protection is dependent upon both IL-17 and IFN-γ. Single-cell RNA sequencing experiments reveal that vaccination enhances a metabolic state in Th17 cells reflective of activated effector function and implicate expression of Tnfsf8 (CD153) in vaccine-induced protection. Finally, we demonstrate that simply eliciting Th17 cells via mucosal vaccination with any adjuvant is not sufficient for protection. A vaccine adjuvanted with deacylated monophosphoryl lipid A (MPLA) failed to protect against tuberculosis infection when delivered mucosally, despite eliciting Th17 cells, highlighting the unique promise of CDNs as adjuvants for tuberculosis vaccines.


Assuntos
Adjuvantes Imunológicos/farmacologia , Interleucina-17/imunologia , Mycobacterium tuberculosis/imunologia , Células Th17/imunologia , Vacinas contra a Tuberculose/imunologia , Tuberculose Pulmonar/prevenção & controle , Animais , Ligante CD30/metabolismo , Interferon gama/imunologia , Pulmão/citologia , Pulmão/imunologia , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mucosa Respiratória/citologia , Mucosa Respiratória/imunologia , Tuberculose Pulmonar/imunologia , Vacinação
13.
Nat Cell Biol ; 24(1): 10-23, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34969962

RESUMO

Loss of alveolar type 2 cells (AEC2s) and the ectopic appearance of basal cells in the alveoli characterize severe lung injuries such as idiopathic pulmonary fibrosis (IPF). Here we demonstrate that human alveolar type 2 cells (hAEC2s), unlike murine AEC2s, transdifferentiate into basal cells in response to fibrotic signalling in the lung mesenchyme, in vitro and in vivo. Single-cell analysis of normal hAEC2s and mesenchymal cells in organoid co-cultures revealed the emergence of pathologic fibroblasts and basaloid cells previously described in IPF. Transforming growth factor-ß1 and anti-bone morphogenic protein signalling in the organoids promoted transdifferentiation. Trajectory and histologic analyses of both hAEC2-derived organoids and IPF epithelium indicated that hAEC2s transdifferentiate into basal cells through alveolar-basal intermediates that accumulate in proximity to pathologic CTHRC1hi/TGFB1hi fibroblasts. Our study indicates that hAEC2 loss and expansion of alveolar metaplastic basal cells in severe human lung injuries are causally connected through an hAEC2-basal cell lineage trajectory driven by aberrant mesenchyme.


Assuntos
Transdiferenciação Celular/fisiologia , Células Epiteliais/citologia , Fibrose Pulmonar Idiopática/patologia , Queratina-5/metabolismo , Alvéolos Pulmonares/citologia , Mucosa Respiratória/citologia , Células Epiteliais Alveolares/metabolismo , Animais , Proteínas Morfogenéticas Ósseas/metabolismo , Diferenciação Celular , Células Cultivadas , Células Epidérmicas/citologia , Fibroblastos/citologia , Humanos , Mesoderma/citologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos SCID , Camundongos Transgênicos , Transdução de Sinais/fisiologia , Análise de Célula Única , Fator de Crescimento Transformador beta1/metabolismo
14.
Nat Immunol ; 23(1): 23-32, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34937933

RESUMO

Systemic immune cell dynamics during coronavirus disease 2019 (COVID-19) are extensively documented, but these are less well studied in the (upper) respiratory tract, where severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) replicates1-6. Here, we characterized nasal and systemic immune cells in individuals with COVID-19 who were hospitalized or convalescent and compared the immune cells to those seen in healthy donors. We observed increased nasal granulocytes, monocytes, CD11c+ natural killer (NK) cells and CD4+ T effector cells during acute COVID-19. The mucosal proinflammatory populations positively associated with peripheral blood human leukocyte antigen (HLA)-DRlow monocytes, CD38+PD1+CD4+ T effector (Teff) cells and plasmablasts. However, there was no general lymphopenia in nasal mucosa, unlike in peripheral blood. Moreover, nasal neutrophils negatively associated with oxygen saturation levels in blood. Following convalescence, nasal immune cells mostly normalized, except for CD127+ granulocytes and CD38+CD8+ tissue-resident memory T cells (TRM). SARS-CoV-2-specific CD8+ T cells persisted at least 2 months after viral clearance in the nasal mucosa, indicating that COVID-19 has both transient and long-term effects on upper respiratory tract immune responses.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Nasofaringe/imunologia , Nariz/citologia , Mucosa Respiratória/imunologia , SARS-CoV-2/imunologia , Anticorpos Antivirais/sangue , COVID-19/imunologia , COVID-19/patologia , Granulócitos/imunologia , Antígenos HLA-DR/metabolismo , Humanos , Células Matadoras Naturais/imunologia , Células T de Memória/imunologia , Monócitos/imunologia , Nasofaringe/citologia , Nasofaringe/virologia , Neutrófilos/imunologia , Nariz/imunologia , Nariz/virologia , Estudos Prospectivos , Mucosa Respiratória/citologia , Mucosa Respiratória/virologia
15.
STAR Protoc ; 2(4): 100892, 2021 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-34746861

RESUMO

Neutrophils are difficult to study, particularly in tissues, due to their short half-life and propensity for activation. We describe an organotypic airway model that uses patient airway fluid to enable the transmigration of blood neutrophils to acquire an airway-like phenotype in order to better understand their contribution to airway diseases. In particular, we showcase how conditioned neutrophils modulate their bacteria-killing abilities. For complete details on the use and execution of this protocol, please refer to Margaroli et al. (2021).


Assuntos
Técnicas de Cultura de Células/métodos , Neutrófilos , Mucosa Respiratória , Bactérias/imunologia , Movimento Celular/fisiologia , Transdiferenciação Celular , Células Cultivadas , Humanos , Viabilidade Microbiana/imunologia , Modelos Biológicos , Neutrófilos/citologia , Neutrófilos/imunologia , Neutrófilos/fisiologia , Mucosa Respiratória/citologia , Mucosa Respiratória/imunologia , Mucosa Respiratória/fisiologia
16.
Am J Physiol Lung Cell Mol Physiol ; 321(6): L1072-L1088, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34612064

RESUMO

Human organ-on-a-chip models are powerful tools for preclinical research that can be used to study the mechanisms of disease and evaluate new targets for therapeutic intervention. Lung-on-a-chip models have been one of the most well-characterized designs in this field and can be altered to evaluate various types of respiratory disease and to assess treatment candidates prior to clinical testing. These systems are capable of overcoming the flaws of conventional two-dimensional (2-D) cell culture and in vivo animal testing due to their ability to accurately recapitulate the in vivo microenvironment of human tissue with tunable material properties, microfluidic integration, delivery of precise mechanical and biochemical cues, and designs with organ-specific architecture. In this review, we first describe an overview of currently available lung-on-a-chip designs. We then present how recent innovations in human stem cell biology, tissue engineering, and microfabrication can be used to create more predictive human lung-on-a-chip models for studying respiratory disease. Finally, we discuss the current challenges and future directions of lung-on-a-chip designs for in vitro disease modeling with a particular focus on immune and multiorgan interactions.


Assuntos
Células Epiteliais Alveolares/fisiologia , Modelos Biológicos , Mucosa Respiratória/fisiologia , Doenças Respiratórias/fisiopatologia , Células Epiteliais Alveolares/citologia , Animais , Avaliação Pré-Clínica de Medicamentos , Humanos , Dispositivos Lab-On-A-Chip , Mucosa Respiratória/citologia , Engenharia Tecidual
17.
J Cyst Fibros ; 20(6): e129-e139, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34657818

RESUMO

BACKGROUND: In cystic fibrosis, the respiratory epithelium is the target tissue of both the genetic abnormality of the disease and of external aggressions, notably by pathogens (Pseudomonas aeruginosa). A detailed characterisation of the cystic fibrosis bronchial epithelium is however lacking, as most previous studies focused on the nasal epithelium or on cell lines. This study aimed to characterise the abnormal phenotype and epithelial-to-mesenchymal transition in cystic fibrosis bronchial epithelium and to evaluate in cell cultures whether abnormalities persist ex vivo. METHODS: Explant lung tissues (n = 44) were assessed for bronchial epithelial cell phenotyping by immunostaining. Human bronchial epithelial cells were derived from basal cells isolated from cystic fibrosis patients or control donors and cultured in air-liquid interface for 2, 4 or 6 weeks. RESULTS: Enhanced mucin 5AC and decreased ß-tubulin expression were observed in cystic fibrosis airways reflecting a decreased ciliated/goblet cell ratio, associated with increased number of vimentin-positive cells, indicating epithelial-to-mesenchymal transition process. These features were recapitulated in vitro, in cystic fibrosis-derived reconstituted epithelium. However, they were not induced by CFTR inhibition or Pseudomonas infection, and most abnormalities tended to disappear in long-term culture (6 weeks) except for increased fibronectin release, an epithelial-to-mesenchymal transition marker. CONCLUSIONS: This study provides new insights into airway epithelial changes in cystic fibrosis, which are imprinted through an acquired mechanism that we could not relate to CFTR function.


Assuntos
Brônquios/citologia , Fibrose Cística/metabolismo , Mucosa Respiratória/citologia , Adulto , Biomarcadores/metabolismo , Diferenciação Celular , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Mucina-5AC/metabolismo , Tubulina (Proteína)/metabolismo
18.
Microbiol Spectr ; 9(2): e0126021, 2021 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-34612698

RESUMO

Severe COVID-19 pneumonia has been associated with the development of intense inflammatory responses during the course of infections with SARS-CoV-2. Given that human endogenous retroviruses (HERVs) are known to be activated during and participate in inflammatory processes, we examined whether HERV dysregulation signatures are present in COVID-19 patients. By comparing transcriptomes of bronchoalveolar lavage fluid (BALF) of COVID-19 patients and healthy controls, and peripheral blood monocytes (PBMCs) from patients and controls, we have shown that HERVs are intensely dysregulated in BALF of COVID-19 patients compared to those in BALF of healthy control patients but not in PBMCs. In particular, upregulation in the expression of specific HERV families was detected in BALF samples of COVID-19 patients, with HERV-FRD being the most highly upregulated family among the families analyzed. In addition, we compared the expression of HERVs in human bronchial epithelial cells (HBECs) without and after senescence induction in an oncogene-induced senescence model in order to quantitatively measure changes in the expression of HERVs in bronchial cells during the process of cellular senescence. This apparent difference of HERV dysregulation between PBMCs and BALF warrants further studies in the involvement of HERVs in inflammatory pathogenetic mechanisms as well as exploration of HERVs as potential biomarkers for disease progression. Furthermore, the increase in the expression of HERVs in senescent HBECs in comparison to that in noninduced HBECs provides a potential link for increased COVID-19 severity and mortality in aged populations. IMPORTANCE SARS-CoV-2 emerged in late 2019 in China, causing a global pandemic. Severe COVID-19 is characterized by intensive inflammatory responses, and older age is an important risk factor for unfavorable outcomes. HERVs are remnants of ancient infections whose expression is upregulated in multiple conditions, including cancer and inflammation, and their expression is increased with increasing age. The significance of this work is that we were able to recognize dysregulated expression of endogenous retroviral elements in BALF samples but not in PBMCs of COVID-19 patients. At the same time, we were able to identify upregulated expression of multiple HERV families in senescence-induced HBECs in comparison to that in noninduced HBECs, a fact that could possibly explain the differences in disease severity among age groups. These results indicate that HERV expression might play a pathophysiological role in local inflammatory pathways in lungs afflicted by SARS-CoV-2 and their expression could be a potential therapeutic target.


Assuntos
Bronquíolos/virologia , Líquido da Lavagem Broncoalveolar/virologia , COVID-19/patologia , Retrovirus Endógenos/crescimento & desenvolvimento , Mucosa Respiratória/virologia , Bronquíolos/citologia , Retrovirus Endógenos/isolamento & purificação , Células Epiteliais/virologia , Humanos , Inflamação/virologia , Leucócitos Mononucleares/virologia , Mucosa Respiratória/citologia , SARS-CoV-2 , Transcriptoma/genética , Regulação para Cima
19.
Bioengineered ; 12(1): 7694-7703, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34608825

RESUMO

The aim of this study was to explore the effects and action mechanism of Zhike Pingchuan Granule in human bronchial epithelial cells induced by IL-6 or the supernatant of M2. Upon IL-6 stimulation at different doses, Cell Counting Kit-8 (CCK8) assay and flow cytometry were, respectively, utilized to detect the cell viability and apoptosis levels of 16-HBE cells. ELISA and Western blot were, respectively, used to analyze the inflammatory markers and JAK2/STAT3 signals. Immunofluorescence assay was performed to identify M0 and M2 cells. As shown in results, ZKPC perturbed the expression of IL-6 inducible genes important for apoptosis, oxidative and inflammatory response, which was enhanced by JAK2 inhibitor. Besides the inhibitory effects on the phosphorylation levels of JAK2/STAT3, ZKPC markedly increased cell viability and reduced apoptosis in human bronchial epithelial cells (16-HBE) cultured in the supernatant of M2 cells. Collectively, ZKPC could inhibit the IL-6-induced JAK/STAT3 signaling cascade, increase cell viability and decrease apoptosis induced by the supernatant of M2. A more comprehensive understanding of the action mechanism of ZKPC on JAK2/STAT3 signaling pathway in human bronchial epithelial cells induced by IL-6 or M2 supernatant will enable ZKPC development in the control of asthma.


Assuntos
Apoptose/efeitos dos fármacos , Medicamentos de Ervas Chinesas/farmacologia , Células Epiteliais/efeitos dos fármacos , Interleucina-6/metabolismo , Macrófagos/efeitos dos fármacos , Brônquios/citologia , Sobrevivência Celular , Células Cultivadas , Humanos , Pirrolidinas , Mucosa Respiratória/citologia , Sulfonamidas
20.
Toxicol Lett ; 353: 100-106, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34653535

RESUMO

A major challenge in nanoparticle (NP) research is to elucidate how NPs activate initial targets in cells, leading to cytotoxicity and inflammation. We have previously shown that silica (Si)NPs induce pro-inflammatory responses in bronchial epithelial cells (BEAS-2B) via mechanisms involving transforming growth factor (TGF)-α release, and activation of MAP-kinase p38 and JNK besides NF-κB (p65). In the present study, the roles of scavenger receptors (SRs) in SiNP-induced cytokine responses in BEAS-2B cells were examined by siRNA silencing. Cells exposed to Si10 and Si50 (nominal sizes 10 and 50 nm) showed marked interleukin (IL)-6, CXCL8, IL-1α, IL-1ß responses. Transient knockdown of SR-B1, LOX-1 and CXCL16 reduced the Si10- and Si50-induced cytokine responses, to a different magnitude dependent on the particle size, SR and cytokine. Si10-induced TGF-α responses were also markedly reduced by knockdown of SR-B1 and CXCL16. Furthermore, the role of SR-B1 in Si10-induced phosphorylations of p65 and MAP-kinases p38 and JNK were examined, and no significant reductions were observed upon knockdown of SR-B1. In conclusion, LOX-1 and CXCL16 and especially SR-B1 seem to have important roles in mediating cytokine responses and TGF-α release due to SiNP exposure in BEAS-2B cells, without a down-stream role of MAP-kinase and NF-κB.


Assuntos
Brônquios/citologia , Citocinas/metabolismo , Células Epiteliais/efeitos dos fármacos , Nanopartículas/toxicidade , Dióxido de Silício/metabolismo , Brônquios/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Citocinas/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Mucosa Respiratória/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA