Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Viruses ; 12(9)2020 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-32872150

RESUMO

The M112-113 gene is the first early gene of the murine cytomegalovirus (MCMV), and its expression is activated by the immediate-early 3 (IE3) protein during MCMV infection in permissive cells. At its 5' terminus, a 10-bp motif, upstream of the TATA box of the M112-113 gene, was identified to bind to IE3, and it is necessary for IE3 to activate M112-113 gene expression (Perez KJ et al. 2013 JVI). At the 3' terminus of the M112-113 gene, three poly(A) signals (PASs) are arranged closely, forming a PAS cluster. We asked whether it is necessary to have the PAS cluster for the M112-113 gene and wondered which PAS is required or important for M112-113 gene expression. In this study, we mutated one, two, or all three PASs in expressing plasmids. Then, we applied bacterial artificial chromosome (BAC) techniques to mutate PASs in viruses. Gene expression and viral replication were analyzed. We found that not all three PASs are needed for M112-113 gene expression. Moreover, we revealed that just one of the three poly(A)s is enough for MCMV replication. However, the deletion of all three PASs did not kill MCMV, although it significantly attenuated viral replication. Finally, an mRNA stability assay was performed and demonstrated that PASs are important to stabilize M112-113 mRNA. Therefore, we conclude that just one of the PASs of the M112-113 gene is sufficient and important for MCMV replication through the stabilization of M112-113 mRNA.


Assuntos
Infecções por Herpesviridae/veterinária , Muromegalovirus/genética , Poli A/genética , RNA Mensageiro/química , RNA Mensageiro/genética , Doenças dos Roedores/virologia , Proteínas Virais/genética , Animais , Regulação Viral da Expressão Gênica , Infecções por Herpesviridae/virologia , Camundongos , Muromegalovirus/química , Muromegalovirus/fisiologia , Estabilidade de RNA , RNA Mensageiro/metabolismo , Proteínas Virais/química , Proteínas Virais/metabolismo , Replicação Viral
2.
J Gen Virol ; 99(1): 119-134, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29205134

RESUMO

The cleavage and packaging of the human cytomegalovirus (HCMV) genome is accomplished by the viral terminase, comprising pUL56 and pUL89, and the recently identified pUL51 subunit. Since knowledge about pUL51 is scarce, we aimed at identifying pUL51 domains that are important for terminase assembly. In silico analysis suggested that the N-terminal half of pUL51 is intrinsically disordered, and that α-helices are present in the C-terminal part. Linker-scanning mutagenesis of pUL51 in the context of the viral genome revealed that amino acid insertions into the predicted α-helices are not compatible with viral growth, whereas upon mutagenesis of the putatively disordered parts interaction with pUL56 and pUL89 was retained and viral progeny was produced. Replacement of pUL51 with the closely related M51 protein of mouse cytomegalovirus did not lead to viable virus, indicating that M51 cannot substitute for pUL51, and swapping the M51 and UL51 N- and C-termini demonstrated the critical role of the pUL51 C-terminal part in building the terminase complex. Notably, the pUL51 C-terminus alone turned out to be sufficient to enable terminase assembly, its nuclear localization and plaque formation. Using HCMV mutants expressing differently tagged pUL51 versions, we did not detect oligomerization of pUL51, as has been proposed for the pUL51 orthologues of other herpesviruses. These data provide an insight into the interaction of pUL51 with the other two terminase components, and provide the basis for unravelling the mode of action of novel antiviral drugs targeting the HCMV terminase.


Assuntos
Citomegalovirus/química , Endodesoxirribonucleases/química , Proteínas Intrinsicamente Desordenadas/química , Subunidades Proteicas/química , Proteínas Virais/química , Sequência de Aminoácidos , Linhagem Celular , Citomegalovirus/genética , Endodesoxirribonucleases/genética , Endodesoxirribonucleases/metabolismo , Células Epiteliais , Fibroblastos , Expressão Gênica , Células HeLa , Humanos , Proteínas Intrinsicamente Desordenadas/genética , Proteínas Intrinsicamente Desordenadas/metabolismo , Muromegalovirus/química , Muromegalovirus/genética , Mutação , Plasmídeos/química , Plasmídeos/metabolismo , Conformação Proteica em alfa-Hélice , Domínios e Motivos de Interação entre Proteínas , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Transfecção , Proteínas Virais/genética , Proteínas Virais/metabolismo
3.
J Virol ; 91(20)2017 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-28794018

RESUMO

Classically, natural killer (NK) cells have been defined by nonspecific innate killing of virus-infected and tumor cells. However, burgeoning evidence suggests that the functional repertoire of NK cells is far more diverse than has been previously appreciated, thus raising the possibility that there may be unexpected functional specialization and even adaptive capabilities among NK cell subpopulations. Some of the first evidence that NK cells respond in an antigen-specific fashion came from experiments revealing that subpopulations of murine NK cells were able to respond to a specific murine cytomegalovirus (MCMV) protein and that in the absence of T and B cells, murine NK cells also mediated adaptive immune responses to a secondary challenge with specific haptens. These data have been followed by demonstrations of NK cell memory of viruses and viral antigens in mice and primates. Herein, we discuss different forms of NK cell antigen specificity and how these responses may be tuned to specific viral pathogens, and we provide assessment of the current literature that may explain molecular mechanisms of the novel phenomenon of NK cell memory.


Assuntos
Imunidade Inata , Memória Imunológica , Células Matadoras Naturais/imunologia , Imunidade Adaptativa , Animais , Antígenos Virais/imunologia , Epitopos , Haptenos , Humanos , Camundongos , Muromegalovirus/química , Muromegalovirus/imunologia , Primatas
4.
J Biol Chem ; 292(23): 9613-9626, 2017 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-28432120

RESUMO

Chemokines are essential for antimicrobial host defenses and tissue repair. Herpesviruses and poxviruses also encode chemokines, copied from their hosts and repurposed for multiple functions, including immune evasion. The CC chemokine MCK-2 encoded by mouse CMV (MCMV) has an atypical structure consisting of a classic chemokine domain N-terminal to a second unique domain, resulting from the splicing of MCMV ORFs m131 and m129 MCK-2 is essential for full MCMV infectivity in macrophages and for persistent infection in the salivary gland. However, information about its mechanism of action and specific biochemical roles for the two domains has been lacking. Here, using genetic, chemical, and enzymatic analyses of multiple mouse cell lines as well as primary mouse fibroblasts from salivary gland and lung, we demonstrate that MCK-2 binds glycosaminoglycans (GAGs) with affinities in the following order: heparin > heparan sulfate > chondroitin sulfate = dermatan sulfate. Both MCK-2 domains bound these GAGs independently, and computational analysis together with site-directed mutagenesis identified five basic residues distributed across the N terminus and the 30s and 50s loops of the chemokine domain that are important GAG binding determinants. Both domains were required for GAG-dependent oligomerization of full-length MCK-2. Thus, MCK-2 is an atypical viral chemokine consisting of a CC chemokine domain and a unique non-chemokine domain, both of which bind GAGs and are critical for GAG-dependent oligomerization of the full-length protein.


Assuntos
Quimiocinas CC/química , Quimiocinas CC/metabolismo , Muromegalovirus/química , Muromegalovirus/metabolismo , Multimerização Proteica/fisiologia , Proteínas Virais/química , Proteínas Virais/metabolismo , Animais , Quimiocinas CC/genética , Glicosaminoglicanos/química , Glicosaminoglicanos/genética , Glicosaminoglicanos/metabolismo , Células HEK293 , Humanos , Camundongos , Muromegalovirus/genética , Células NIH 3T3 , Fases de Leitura Aberta/fisiologia , Domínios Proteicos , Estrutura Secundária de Proteína , Proteínas Virais/genética
5.
J Biol Chem ; 290(48): 28857-68, 2015 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-26463211

RESUMO

As part of its strategy to evade detection by the host immune system, murine cytomegalovirus (MCMV) encodes three proteins that modulate cell surface expression of major histocompatibility complex class I (MHC-I) molecules: the MHC-I homolog m152/gp40 as well as the m02-m16 family members m04/gp34 and m06/gp48. Previous studies of the m04 protein revealed a divergent Ig-like fold that is unique to immunoevasins of the m02-m16 family. Here, we engineer and characterize recombinant m06 and investigate its interactions with full-length and truncated forms of the MHC-I molecule H2-L(d) by several techniques. Furthermore, we employ solution NMR to map the interaction footprint of the m06 protein on MHC-I, taking advantage of a truncated H2-L(d), "mini-H2-L(d)," consisting of only the α1α2 platform domain. Mini-H2-L(d) refolded in vitro with a high affinity peptide yields a molecule that shows outstanding NMR spectral features, permitting complete backbone assignments. These NMR-based studies reveal that m06 binds tightly to a discrete site located under the peptide-binding platform that partially overlaps with the ß2-microglobulin interface on the MHC-I heavy chain, consistent with in vitro binding experiments showing significantly reduced complex formation between m06 and ß2-microglobulin-associated MHC-I. Moreover, we carry out NMR relaxation experiments to characterize the picosecond-nanosecond dynamics of the free mini-H2-L(d) MHC-I molecule, revealing that the site of interaction is highly ordered. This study provides insight into the mechanism of the interaction of m06 with MHC-I, suggesting a structural manipulation of the target MHC-I molecule at an early stage of the peptide-loading pathway.


Assuntos
Antígenos de Histocompatibilidade Classe I/química , Muromegalovirus/química , Proteínas do Envelope Viral/química , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/metabolismo , Muromegalovirus/genética , Muromegalovirus/metabolismo , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/metabolismo
6.
Structure ; 22(9): 1263-1273, 2014 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-25126960

RESUMO

Immunoevasins are key proteins used by viruses to subvert host immune responses. Determining their high-resolution structures is key to understanding virus-host interactions toward the design of vaccines and other antiviral therapies. Mouse cytomegalovirus encodes a unique set of immunoevasins, the m02-m06 family, that modulates major histocompatibility complex class I (MHC-I) antigen presentation to CD8+ T cells and natural killer cells. Notwithstanding the large number of genetic and functional studies, the structural biology of immunoevasins remains incompletely understood, largely because of crystallization bottlenecks. Here we implement a technology using sparse nuclear magnetic resonance data and integrative Rosetta modeling to determine the structure of the m04/gp34 immunoevasin extracellular domain. The structure reveals a ß fold that is representative of the m02-m06 family of viral proteins, several of which are known to bind MHC-I molecules and interfere with antigen presentation, suggesting its role as a diversified immune regulation module.


Assuntos
Proteínas de Transporte/química , Glicoproteínas/química , Proteínas Virais/química , Sequência de Aminoácidos , Sequência Conservada , Antígenos de Histocompatibilidade Classe I/química , Modelos Moleculares , Dados de Sequência Molecular , Muromegalovirus/química , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína
7.
J Virol ; 88(19): 11630-3, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25056884

RESUMO

Cytomegalovirus is a ubiquitous herpesvirus that persistently replicates in glandular epithelial tissue. Murine cytomegalovirus expresses a 7.2-kb-long noncoding RNA (RNA7.2) that is a determinant of viral persistence in the salivary gland. RNA7.2 is an extremely long-lived intron, yet the basis of its stability is unknown. We present data that localize key sequence determinants of RNA stability to the 3' end of RNA7.2 and suggest that stability is a result of sustained lariat conformation.


Assuntos
Muromegalovirus/genética , Estabilidade de RNA , RNA Longo não Codificante/química , RNA Viral/química , Animais , Sequência de Bases , Infecções por Herpesviridae/virologia , Íntrons , Camundongos , Dados de Sequência Molecular , Muromegalovirus/química , Conformação de Ácido Nucleico , RNA Longo não Codificante/genética , RNA Viral/genética , Glândulas Salivares/virologia , Replicação Viral
8.
Histochem Cell Biol ; 142(1): 61-7, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24504601

RESUMO

Novel approaches of localization microscopy have opened new insights into the molecular nano-cosmos of cells. We applied a special embodiment called spectral position determination microscopy (SPDM) that has the advantage to run with standard fluorescent dyes or proteins under standard preparation conditions. Pointillist images with a resolution in the order of 10 nm can be obtained by SPDM. Therefore, vector pEYFP-m164, encoding the murine cytomegalovirus glycoprotein gp36.5/m164 fused to enhanced yellow fluorescent protein, was transiently transfected into COS-7 cells. This protein shows exceptional intracellular trafficking dynamics, moving within the endoplasmic reticulum (ER) and outer nuclear membrane. The molecular positions of gp36.5/m164 were visualized and determined by SPDM imaging. From the position point patterns of the protein molecules, their arrangements were quantified by next neighbour distance analyses. Three different structural arrangements were discriminated: (a) a linear distribution along the membrane, (b) a highly structured distribution in the ER, and (c) a homogenous distribution in the cellular cytoplasm. The results indicate that the analysis of next neighbour distances on the nano-scale allows the identification and discrimination of different structural arrangements of molecules within their natural cellular environment.


Assuntos
Glicoproteínas/análise , Muromegalovirus/química , Proteínas do Envelope Viral/análise , Animais , Proteínas de Bactérias/química , Células COS , Células Cultivadas , Chlorocebus aethiops , Glicoproteínas/genética , Proteínas Luminescentes/química , Camundongos , Microscopia de Fluorescência , Proteínas do Envelope Viral/genética
9.
Protein Cell ; 4(11): 833-45, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24006185

RESUMO

Cytomegalovirus (CMV) is distinct among members of the Herpesviridae family for having the largest dsDNA genome (230 kb). Packaging of large dsDNA genome is known to give rise to a highly pressurized viral capsid, but molecular interactions conducive to the formation of CMV capsid resistant to pressurization have not been described. Here, we report a cryo electron microscopy (cryoEM) structure of the murine cytomegalovirus (MCMV) capsid at a 9.1 Å resolution and describe the molecular interactions among the ∼3000 protein molecules in the MCMV capsid at the secondary structure level. Secondary structural elements are resolved to provide landmarks for correlating with results from sequence-based prediction and for structure-based homology modeling. The major capsid protein (MCP) upper domain (MCPud) contains α-helices and ß-sheets conserved with those in MCPud of herpes simplex virus type 1 (HSV-1), with the largest differences identified as a "saddle loop" region, located at the tip of MCPud and involved in interaction with the smallest capsid protein (SCP). Interactions among the bacteriophage HK97-like floor domain of MCP, the middle domain of MCP, the hook and clamp domains of the triplex proteins (hoop and clamp domains of TRI-1 and clamp domain of TRI-2) contribute to the formation of a mature capsid. These results offer a framework for understanding how cytomegalovirus uses various secondary structural elements of its capsid proteins to build a robust capsid for packaging its large dsDNA genome inside and for attaching unique functional tegument proteins outside.


Assuntos
Proteínas do Capsídeo/metabolismo , Proteínas do Capsídeo/ultraestrutura , Microscopia Crioeletrônica , Muromegalovirus/ultraestrutura , Sequência de Aminoácidos , Proteínas do Capsídeo/química , Modelos Moleculares , Dados de Sequência Molecular , Muromegalovirus/química , Ligação Proteica , Multimerização Proteica , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína
10.
J Gen Virol ; 91(Pt 6): 1524-34, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20147515

RESUMO

Gene m164 of murine cytomegalovirus belongs to the large group of 'private' genes that show no homology to those of other cytomegalovirus species and are thought to represent 'host adaptation' genes involved in virus-host interaction. Previous interest in the m164 gene product was based on the presence of an immunodominant CD8 T-cell epitope presented at the surface of infected cells, despite interference by viral immune-evasion proteins. Here, we provide data to reveal that the m164 gene product shows unusual features in its cell biology. A novel strategy of mass-spectrometric analysis was employed to map the N terminus of the mature protein, 107 aa downstream of the start site of the predicted open reading frame. The resulting 36.5 kDa m164 gene product is identified here as an integral type-I membrane glycoprotein with exceptional intracellular trafficking dynamics, moving within the endoplasmic reticulum (ER) and outer nuclear membrane with an outstandingly high lateral membrane motility, actually 100 times higher than those published for cellular ER-resident proteins. Notably, gp36.5/m164 does not contain any typical ER-retention/retrieval signals, such as the C-terminal motifs KKXX or KXKXX, and does not pass the Golgi apparatus. Instead, it belongs to the rare group of viral glycoproteins in which the transmembrane domain (TMD) itself mediates direct ER retention. This is the first report relating TMD usage of an ER-resident transmembrane protein to its lateral membrane motility as a paradigm in cell biology. We propose that TMD usage for ER retention facilitates free and fast floating in ER-related membranes and between ER subdomains.


Assuntos
Retículo Endoplasmático/química , Glicoproteínas/metabolismo , Proteínas de Membrana/metabolismo , Muromegalovirus/fisiologia , Sinais Direcionadores de Proteínas , Proteínas Virais/metabolismo , Animais , Células COS , Chlorocebus aethiops , Glicoproteínas/química , Glicoproteínas/genética , Espectrometria de Massas , Proteínas de Membrana/química , Proteínas de Membrana/genética , Peso Molecular , Muromegalovirus/química , Muromegalovirus/genética , Fases de Leitura Aberta , Transporte Proteico , Proteínas Virais/química , Proteínas Virais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA