Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 199
Filtrar
1.
J Clin Immunol ; 44(4): 84, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38578320

RESUMO

PURPOSE: Patients with STAT1 gain-of-function (GOF) mutations often exhibit autoimmune features. The JAK1/2 inhibitor ruxolitinib can be administered to alleviate autoimmune symptoms; however, it is unclear how immune cells are molecularly changed by ruxolitinib treatment. Then, we aimed to investigate the trnscriptional and epigenetic status of immune cells before and after ruxolitinib treatment in a patient with STAT1 GOF. METHODS: A patient with a heterozygous STAT1 GOF variant (p.Ala267Val), exhibiting autoimmune features, was treated with ruxolitinib, and peripheral blood mononuclear cells (PBMCs) were longitudinally collected. PBMCs were transcriptionally analyzed by single-cell cellular indexing of the transcriptomes and epitopes by sequencing (CITE-seq), and epigenetically analyzed by assay of transposase-accessible chromatin sequencing (ATAC-seq). RESULTS: CITE-seq analysis revealed that before treatment, the patient's PBMCs exhibited aberrantly activated inflammatory features, especially IFN-related features. In particular, monocytes showed high expression levels of a subset of IFN-stimulated genes (ISGs). Ruxolitinib treatment substantially downregulated aberrantly overexpressed ISGs, and improved autoimmune features. However, epigenetic analysis demonstrated that genetic regions of ISGs-e.g., STAT1, IRF1, MX1, and OAS1-were highly accessible even after ruxolitinib treatment. When ruxolitinib was temporarily discontinued, the patient's autoimmune features were aggravated, which is in line with sustained epigenetic abnormality. CONCLUSIONS: In a patient with STAT1 GOF, ruxolitinib treatment improved autoimmune features and downregulated aberrantly overexpressed ISGs, but did not correct epigenetic abnormality of ISGs.


Assuntos
Mutação com Ganho de Função , Pirazóis , Fator de Transcrição STAT1 , Humanos , Mutação com Ganho de Função/genética , Leucócitos Mononucleares/metabolismo , Nitrilas/farmacologia , Pirazóis/farmacologia , Pirimidinas/farmacologia , Fator de Transcrição STAT1/genética
2.
J Exp Med ; 221(5)2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38530241

RESUMO

NLRP3-associated autoinflammatory disease is a heterogenous group of monogenic conditions caused by NLRP3 gain-of-function mutations. The poor functional characterization of most NLRP3 variants hinders diagnosis despite efficient anti-IL-1 treatments. Additionally, while NLRP3 is controlled by priming and activation signals, gain-of-functions have only been investigated in response to priming. Here, we characterize 34 NLRP3 variants in vitro, evaluating their activity upon induction, priming, and/or activation signals, and their sensitivity to four inhibitors. We highlight the functional diversity of the gain-of-function mutants and describe four groups based on the signals governing their activation, correlating partly with the symptom severity. We identify a new group of NLRP3 mutants responding to the activation signal without priming, associated with frequent misdiagnoses. Our results identify key NLRP3 residues controlling inflammasome activity and sensitivity to inhibitors, and antagonistic mechanisms with broader efficacy for therapeutic strategies. They provide new insights into NLRP3 activation, an explanatory mechanism for NLRP3-AID heterogeneity, and original tools for NLRP3-AID diagnosis and drug development.


Assuntos
Mutação com Ganho de Função , Proteína 3 que Contém Domínio de Pirina da Família NLR , Humanos , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Mutação com Ganho de Função/genética , Inflamassomos/genética , Desenvolvimento de Medicamentos , Síndrome
3.
Function (Oxf) ; 4(3): zqad017, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37214333

RESUMO

Cantú Syndrome (CS) is an autosomal dominant disorder caused by gain-of-function (GoF) mutations in the Kir6.1 and SUR2 subunits of KATP channels. KATP overactivity results in a chronic reduction in arterial tone and hypotension, leading to other systemic cardiovascular complications. However, the underlying mechanism of lymphedema, developed by >50% of CS patients, is unknown. We investigated whether lymphatic contractile dysfunction occurs in mice expressing CS mutations in Kir6.1 (Kir6.1[V65M]) or SUR2 (SUR2[A478V], SUR2[R1154Q]). Pressure myograph tests of contractile function of popliteal lymphatic vessels over the physiological pressure range revealed significantly impaired contractile strength and reduced frequency of spontaneous contractions at all pressures in heterozygous Kir6.1[V65M] vessels, compared to control littermates. Contractile dysfunction of intact popliteal lymphatics in vivo was confirmed using near-infrared fluorescence microscopy. Homozygous SUR2[A478V] vessels exhibited profound contractile dysfunction ex vivo, but heterozygous SUR2[A478V] vessels showed essentially normal contractile function. However, further investigation of vessels from all three GoF mouse strains revealed significant disruption in contraction wave entrainment, decreased conduction speed and distance, multiple pacemaker sites, and reversing wave direction. Tests of 2-valve lymphatic vessels forced to pump against an adverse pressure gradient revealed that all CS-associated genotypes were essentially incapable of pumping under an imposed outflow load. Our results show that varying degrees of lymphatic contractile dysfunction occur in proportion to the degree of molecular GoF in Kir6.1 or SUR2. This is the first example of lymphatic contractile dysfunction caused by a smooth muscle ion channel mutation and potentially explains the susceptibility of CS patients to lymphedema.


Assuntos
Mutação com Ganho de Função , Canais KATP , Camundongos , Animais , Canais KATP/genética , Mutação com Ganho de Função/genética , Mutação , Trifosfato de Adenosina
4.
Exp Neurol ; 364: 114393, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37003485

RESUMO

Gain-of-function mutations in Scn9a, which encodes the peripheral sensory neuron-enriched voltage-gated sodium channel Nav1.7, cause paroxysmal extreme pain disorder (PEPD), inherited erythromelalgia (IEM), and small fiber neuropathy (SFN). Conversely, loss-of-function mutations in the gene are linked to congenital insensitivity to pain (CIP). These mutations are evidence for a link between altered sodium conductance and neuronal excitability leading to somatosensory aberrations, pain, or its loss. Our previous work in young adult mice with the Nav1.7 gain-of-function mutation, I228M, showed the expected DRG neuron hyperexcitability, but unexpectedly the mice had normal mechanical and thermal behavioral sensitivity. We now show that with aging both male and female mice with this mutation unexpectedly develop a profound insensitivity to noxious heat and cold, as well skin lesions that span the body. Electrophysiology demonstrates that, in contrast to young mice, aged I228M mouse DRGs have a profound loss of sodium conductance and changes in activation and slow inactivation dynamics, representing a loss-of-function. Through RNA sequencing we explored how these age-related changes may produce the phenotypic changes and found a striking and specific decrease in C-low threshold mechanoreceptor- (cLTMR) associated gene expression, suggesting a potential contribution of this DRG neuron subtype to Nav1.7 dysfunction phenotypes. A GOF mutation in a voltage-gated channel can therefore produce over a prolonged time, highly complex and unexpected alterations in the nervous system beyond excitability changes.


Assuntos
Mutação com Ganho de Função , Canal de Sódio Disparado por Voltagem NAV1.7 , Masculino , Feminino , Camundongos , Animais , Mutação com Ganho de Função/genética , Canal de Sódio Disparado por Voltagem NAV1.7/genética , Nociceptividade , Mutação/genética , Sódio , Gânglios Espinais/patologia
5.
Nat Cancer ; 4(4): 564-581, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36973430

RESUMO

Although the gain of function (GOF) of p53 mutants is well recognized, it remains unclear whether different p53 mutants share the same cofactors to induce GOFs. In a proteomic screen, we identified BACH1 as a cellular factor that recognizes the p53 DNA-binding domain depending on its mutation status. BACH1 strongly interacts with p53R175H but fails to effectively bind wild-type p53 or other hotspot mutants in vivo for functional regulation. Notably, p53R175H acts as a repressor for ferroptosis by abrogating BACH1-mediated downregulation of SLC7A11 to enhance tumor growth; conversely, p53R175H promotes BACH1-dependent tumor metastasis by upregulating expression of pro-metastatic targets. Mechanistically, p53R175H-mediated bidirectional regulation of BACH1 function is dependent on its ability to recruit the histone demethylase LSD2 to target promoters and differentially modulate transcription. These data demonstrate that BACH1 acts as a unique partner for p53R175H in executing its specific GOFs and suggest that different p53 mutants induce their GOFs through distinct mechanisms.


Assuntos
Mutação com Ganho de Função , Proteína Supressora de Tumor p53 , Regulação para Baixo , Mutação com Ganho de Função/genética , Mutação , Proteômica , Proteína Supressora de Tumor p53/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo
6.
Epilepsia ; 64(5): 1318-1330, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36287100

RESUMO

OBJECTIVE: Loss-of-function variants in SCN1A cause Dravet syndrome, the most common genetic developmental and epileptic encephalopathy (DEE). However, emerging evidence suggests separate entities of SCN1A-related disorders due to gain-of-function variants. Here, we aim to refine the clinical, genetic, and functional electrophysiological features of a recurrent p.R1636Q gain-of-function variant, identified in four individuals at a single center. METHODS: Individuals carrying the recurrent SCN1A p.R1636Q variant were identified through diagnostic testing. Whole cell voltage-clamp electrophysiological recording in HEK-293 T cells was performed to compare the properties of sodium channels containing wild-type Nav 1.1 or Nav 1.1-R1636Q along with both Nav ß1 and Nav ß2 subunits, including response to oxcarbazepine. To delineate differences from other SCN1A-related epilepsies, we analyzed electronic medical records. RESULTS: All four individuals had an early onset DEE characterized by focal tonic seizures and additional seizure types starting in the first few weeks of life. Electrophysiological analysis showed a mixed gain-of-function effect with normal current density, a leftward (hyperpolarized) shift of steady-state inactivation, and slower inactivation kinetics leading to a prominent late sodium current. The observed functional changes closely paralleled effects of pathogenic variants in SCN3A and SCN8A at corresponding positions. Both wild type and variant exhibited sensitivity to block by oxcarbazepine, partially correcting electrophysiological abnormalities of the SCN1A p.R1636Q variant. Clinically, a single individual responded to treatment with oxcarbazepine. Across 51 individuals with SCN1A-related epilepsies, those with the recurrent p.R1636Q variants had the earliest ages at onset. SIGNIFICANCE: The recurrent SCN1A p.R1636Q variant causes a clinical entity with a wider clinical spectrum than previously reported, characterized by neonatal onset epilepsy and absence of prominent movement disorder. Functional consequences of this variant lead to mixed loss and gain of function that is partially corrected by oxcarbazepine. The recurrent p.R1636Q variant represents one of the most common causes of early onset SCN1A-related epilepsies with separate treatment and prognosis implications.


Assuntos
Epilepsias Mioclônicas , Epilepsia , Canal de Sódio Disparado por Voltagem NAV1.1 , Humanos , Recém-Nascido , Epilepsias Mioclônicas/genética , Epilepsia/genética , Mutação com Ganho de Função/genética , Células HEK293 , Mutação/genética , Canal de Sódio Disparado por Voltagem NAV1.1/genética , Oxcarbazepina
7.
Sci Adv ; 8(49): eade7823, 2022 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-36490341

RESUMO

PIK3CA-related overgrowth syndrome (PROS) is a genetic disorder caused by somatic mosaic gain-of-function mutations of PIK3CA. Clinical presentation of patients is diverse and associated with endocrine disruption. Adipose tissue is frequently involved, but its role in disease development and progression has not been elucidated. Here, we created a mouse model of PIK3CA-related adipose tissue overgrowth that recapitulates patient phenotype. We demonstrate that PIK3CA mutation leads to GLUT4 membrane accumulation with a negative feedback loop on insulin secretion, a burst of liver IGFBP1 synthesis with IGF-1 sequestration, and low circulating levels. Mouse phenotype was mainly driven through AKT2. We also observed that PIK3CA mutation induces metabolic reprogramming with Warburg-like effect and protein and lipid synthesis, hallmarks of cancer cells, in vitro, in vivo, and in patients. We lastly show that alpelisib is efficient at preventing and improving PIK3CA-adipose tissue overgrowth and reversing metabolomic anomalies in both animal models and patients.


Assuntos
Tecido Adiposo , Classe I de Fosfatidilinositol 3-Quinases , Mutação com Ganho de Função , Animais , Camundongos , Tecido Adiposo/metabolismo , Classe I de Fosfatidilinositol 3-Quinases/genética , Classe I de Fosfatidilinositol 3-Quinases/metabolismo , Mutação com Ganho de Função/genética , Mutação , Fenótipo
8.
Immunohorizons ; 6(7): 447-464, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35840326

RESUMO

Patients with STAT1 gain-of-function (GOF) pathogenic variants have enhanced or prolonged STAT1 phosphorylation following cytokine stimulation and exhibit increased yet heterogeneous susceptibility to infections, autoimmunity, and cancer. Although disease phenotypes are diverse and other genetic factors contribute, how STAT1 GOF affects cytokine sensitivity and cell biology remains poorly defined. In this study, we analyzed the immune and immunometabolic profiles of two patients with known pathogenic heterozygous STAT1 GOF mutation variants. A systems immunology approach of peripheral blood cells from these patients revealed major changes in multiple immune cell compartments relative to healthy adult and pediatric donors. Although many phenotypes of STAT1 GOF donors were shared, including increased Th1 cells but decreased class-switched B cells and plasmacytoid dendritic cell populations, others were heterogeneous. Mechanistically, hypersensitivity for cytokine-induced STAT1 phosphorylation in memory T cell populations was particularly evident in response to IL-6 in one STAT1 GOF patient. Immune cell metabolism directly influences cell function, and the STAT1 GOF patients shared an immunometabolic phenotype of heightened glucose transporter 1 (GLUT1) and carnitine palmitoyl transferase 1A (CPT1a) expression across multiple immune cell lineages. Interestingly, the metabolic phenotypes of the pediatric STAT1 GOF donors more closely resembled or exceeded those of healthy adult than healthy age-similar pediatric donors, which had low expression of these metabolic markers. These results define new features of STAT1 GOF patients, including a differential hypersensitivity for IL-6 and a shared increase in markers of metabolism in many immune cell types that suggests a role for STAT1 in metabolic regulation of immunity.


Assuntos
Imunidade , Fator de Transcrição STAT1 , Citocinas/metabolismo , Mutação com Ganho de Função/genética , Humanos , Imunidade/genética , Imunidade/fisiologia , Interleucina-6 , Fenótipo , Fosforilação , Fator de Transcrição STAT1/genética , Fator de Transcrição STAT1/imunologia , Fator de Transcrição STAT1/metabolismo
9.
Int J Mol Sci ; 23(3)2022 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-35163481

RESUMO

Several key functions of the androgen receptor (AR) such as hormone recognition and co-regulator recruitment converge in the ligand binding domain (LBD). Loss- or gain-of-function of the AR contributes to pathologies such as the androgen insensitivity syndrome and prostate cancer. Here, we describe a gain-of-function mutation of the surface-exposed threonine at position 850, located at the amino-terminus of Helix 10 (H10) in the AR LBD. Since T850 phosphorylation was reported to affect AR function, we created the phosphomimetic mutation T850D. The AR T850D variant has a 1.5- to 2-fold increased transcriptional activity with no effect on ligand affinity. In the androgen responsive LNCaP cell line grown in medium with low androgen levels, we observed a growth advantage for cells in which the endogenous AR was replaced by AR T850D. Despite the distance to the AF2 site, the AR T850D LBD displayed an increased affinity for coactivator peptides as well as the 23FQNLF27 motif of AR itself. Molecular Dynamics simulations confirm allosteric transmission of the T850D mutation towards the AF2 site via extended hydrogen bond formation between coactivator peptide and AF2 site. This mechanistic study thus confirms the gain-of-function character of T850D and T850 phosphorylation for AR activity and reveals details of the allosteric communications within the LBD.


Assuntos
Mutação/genética , Receptores Androgênicos/química , Receptores Androgênicos/genética , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Mutação com Ganho de Função/genética , Humanos , Cinética , Ligantes , Lisina/metabolismo , Masculino , Modelos Moleculares , Fosforilação , Ligação Proteica , Multimerização Proteica , Estrutura Terciária de Proteína , Transporte Proteico , Ubiquitinação
10.
Gut ; 71(3): 497-508, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-33579790

RESUMO

OBJECTIVE: Enteropathy-associated T-cell lymphoma (EATL) is a rare but severe complication of coeliac disease (CeD), often preceded by low-grade clonal intraepithelial lymphoproliferation, referred to as type II refractory CeD (RCDII). Knowledge on underlying oncogenic mechanisms remains scarce. Here, we analysed and compared the mutational landscape of RCDII and EATL in order to identify genetic drivers of CeD-associated lymphomagenesis. DESIGN: Pure populations of RCDII-cells derived from intestinal biopsies (n=9) or sorted from blood (n=2) were analysed by whole exome sequencing, comparative genomic hybridisation and RNA sequencing. Biopsies from RCDII (n=50), EATL (n=19), type I refractory CeD (n=7) and uncomplicated CeD (n=18) were analysed by targeted next-generation sequencing. Moreover, functional in vitro studies and drug testing were performed in RCDII-derived cell lines. RESULTS: 80% of RCDII and 90% of EATL displayed somatic gain-of-functions mutations in the JAK1-STAT3 pathway, including a remarkable p.G1097 hotspot mutation in the JAK1 kinase domain in approximately 50% of cases. Other recurrent somatic events were deleterious mutations in nuclear factor kappa-light-chain-enhancer of activated B-cells (NF-κB) regulators TNFAIP3 and TNIP3 and potentially oncogenic mutations in TET2, KMT2D and DDX3X. JAK1 inhibitors, and the proteasome inhibitor bortezomib could block survival and proliferation of malignant RCDII-cell lines. CONCLUSION: Mutations activating the JAK1-STAT3 pathway appear to be the main drivers of CeD-associated lymphomagenesis. In concert with mutations in negative regulators of NF-κB, they may favour the clonal emergence of malignant lymphocytes in the cytokine-rich coeliac intestine. The identified mutations are attractive therapeutic targets to treat RCDII and block progression towards EATL.


Assuntos
Doença Celíaca/complicações , Doença Celíaca/genética , Linfoma de Células T Associado a Enteropatia/etiologia , Mutação com Ganho de Função/genética , Linfócitos/fisiologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Doença Celíaca/patologia , Estudos de Coortes , Linfoma de Células T Associado a Enteropatia/patologia , Feminino , França , Humanos , Janus Quinase 1/genética , Masculino , Pessoa de Meia-Idade , Fator de Transcrição STAT3/genética , Adulto Jovem
11.
Thromb Haemost ; 122(2): 226-239, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-33385180

RESUMO

The multimeric plasma glycoprotein (GP) von Willebrand factor (VWF) is best known for recruiting platelets to sites of injury during primary hemostasis. Generally, mutations in the VWF gene lead to loss of hemostatic activity and thus the bleeding disorder von Willebrand disease. By employing cone and platelet aggregometry and microfluidic assays, we uncovered a platelet GPIIb/IIIa-dependent prothrombotic gain of function (GOF) for variant p.Pro2555Arg, located in the C4 domain, leading to an increase in platelet aggregate size. We performed complementary biophysical and structural investigations using circular dichroism spectra, small-angle X-ray scattering, nuclear magnetic resonance spectroscopy, molecular dynamics simulations on the single C4 domain, and dimeric wild-type and p.Pro2555Arg constructs. C4-p.Pro2555Arg retained the overall structural conformation with minor populations of alternative conformations exhibiting increased hinge flexibility and slow conformational exchange. The dimeric protein becomes disordered and more flexible. Our data suggest that the GOF does not affect the binding affinity of the C4 domain for GPIIb/IIIa. Instead, the increased VWF dimer flexibility enhances temporal accessibility of platelet-binding sites. Using an interdisciplinary approach, we revealed that p.Pro2555Arg is the first VWF variant, which increases platelet aggregate size and shows a shear-dependent function of the VWF stem region, which can become hyperactive through mutations. Prothrombotic GOF variants of VWF are a novel concept of a VWF-associated pathomechanism of thromboembolic events, which is of general interest to vascular health but not yet considered in diagnostics. Thus, awareness should be raised for the risk they pose. Furthermore, our data implicate the C4 domain as a novel antithrombotic drug target.


Assuntos
Mutação com Ganho de Função , Variação Genética , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/metabolismo , Fator de von Willebrand/genética , Mutação com Ganho de Função/genética , Hemostasia , Humanos , Agregação Plaquetária , Domínios Proteicos/genética , Doenças de von Willebrand/sangue , Fator de von Willebrand/metabolismo
12.
Cytokine ; 149: 155717, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34627079

RESUMO

BACKGROUND: Sickle cell disease (SCD), one of the most common single-gene disorders, is caused by mutations in the hemoglobin ß-chain gene. Clinical presentation is heterogeneous, and inflammation is a common condition. Thereby, we hypothesized that inflammasome and related cytokine IL-1ß could represent significant SCD pathogenesis contributors. MATERIAL AND METHODS: 161 SCD (SS/Sß) patients were enrolled for the study. Seven single nucleotide polymorphisms (SNPs) in 5 inflammasome genes (NLRP1, NLRP3, NLRC4, CARD8, IL1B) were selected based on minor allele frequency. Total peripheral blood mononuclear cells (PBMC) and monocytes were isolated from 10 out of 161 SCD patients (HbSS) and 10 healthy donors (control group, Ctrl) for inflammasome analysis. RESULTS: SCD patients presented a functional impairment of inflammasome, with monocytes and peripheral blood mononuclear cells (PBMC) exhibiting a different NLRP3 inflammasome activation rate. Gain-of-function variants in NLRP1 and IL1B genes resulted associated with a mild SCD clinical presentation. DISCUSSION: Our results can contribute to the understanding of SCD inflammation. SCD patients showed possible exhaustion of monocytes due to chronic inflammation, moreover others cells in PBMC can contribute to the NLRP3 inflammasome activation. NLRP1 gain-of-function was associated with mild clinical presentation, suggesting that other inflammasome receptors can be involved in SCD. This is the first study reporting a significant contribution of inflammasome SNPs in SCD.


Assuntos
Anemia Falciforme/genética , Predisposição Genética para Doença/genética , Inflamassomos/genética , Adulto , Anemia Falciforme/patologia , Proteínas Reguladoras de Apoptose/genética , Feminino , Mutação com Ganho de Função/genética , Frequência do Gene/genética , Humanos , Inflamação/genética , Interleucina-1beta/genética , Leucócitos Mononucleares/patologia , Masculino , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteínas NLR/genética , Polimorfismo de Nucleotídeo Único/genética
13.
PLoS Biol ; 19(12): e3001480, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34914695

RESUMO

Mutations in leucine-rich repeat kinase 2 (LRRK2) cause autosomal dominant Parkinson disease (PD), while polymorphic LRRK2 variants are associated with sporadic PD. PD-linked mutations increase LRRK2 kinase activity and induce neurotoxicity in vitro and in vivo. The small GTPase Rab8a is a LRRK2 kinase substrate and is involved in receptor-mediated recycling and endocytic trafficking of transferrin, but the effect of PD-linked LRRK2 mutations on the function of Rab8a is poorly understood. Here, we show that gain-of-function mutations in LRRK2 induce sequestration of endogenous Rab8a to lysosomes in overexpression cell models, while pharmacological inhibition of LRRK2 kinase activity reverses this phenotype. Furthermore, we show that LRRK2 mutations drive association of endocytosed transferrin with Rab8a-positive lysosomes. LRRK2 has been nominated as an integral part of cellular responses downstream of proinflammatory signals and is activated in microglia in postmortem PD tissue. Here, we show that iPSC-derived microglia from patients carrying the most common LRRK2 mutation, G2019S, mistraffic transferrin to lysosomes proximal to the nucleus in proinflammatory conditions. Furthermore, G2019S knock-in mice show a significant increase in iron deposition in microglia following intrastriatal LPS injection compared to wild-type mice, accompanied by striatal accumulation of ferritin. Our data support a role of LRRK2 in modulating iron uptake and storage in response to proinflammatory stimuli in microglia.


Assuntos
Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Proteínas rab de Ligação ao GTP/metabolismo , Idoso , Animais , Transporte Biológico , Corpo Estriado , Mutação com Ganho de Função/genética , Células HEK293 , Humanos , Ferro/metabolismo , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Lisossomos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microglia , Pessoa de Meia-Idade , Mutação , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Proteínas Serina-Treonina Quinases , Transferrina/metabolismo , Transferrinas/genética , Transferrinas/metabolismo , Proteínas rab de Ligação ao GTP/genética
14.
PLoS Genet ; 17(11): e1009940, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34843479

RESUMO

The UNC-104/KIF1A motor is crucial for axonal transport of synaptic vesicles, but how the UNC-104/KIF1A motor is activated in vivo is not fully understood. Here, we identified point mutations located in the motor domain or the inhibitory CC1 domain, which resulted in gain-of-function alleles of unc-104 that exhibit hyperactive axonal transport and abnormal accumulation of synaptic vesicles. In contrast to the cell body localization of wild type motor, the mutant motors accumulate on neuronal processes. Once on the neuronal process, the mutant motors display dynamic movement similarly to wild type motors. The gain-of-function mutation on the motor domain leads to an active dimeric conformation, releasing the inhibitory CC1 region from the motor domain. Genetically engineered mutations in the motor domain or CC1 of UNC-104, which disrupt the autoinhibitory interface, also led to the gain of function and hyperactivation of axonal transport. Thus, the CC1/motor domain-mediated autoinhibition is crucial for UNC-104/KIF1A-mediated axonal transport in vivo.


Assuntos
Transporte Axonal/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas do Tecido Nervoso/genética , Neurônios/metabolismo , Vesículas Sinápticas/genética , Animais , Caenorhabditis elegans/genética , Mutação com Ganho de Função/genética , Engenharia Genética , Cinesinas/genética , Domínios Proteicos
15.
Genes (Basel) ; 12(10)2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34680961

RESUMO

Familial Hyperinsulinemic Hypoglycemia (FHH) is a very rare disease with heterogeneous clinical manifestations. There are only a few reports of heterozygous activating mutations of glucokinase (GCK) attributable to FHH, with no reports describing effects in the course in pregnancy with affected mother/affected child. A large kindred with FHH and GCK:c.295T>C (p.Trp99Arg) pathogenic variant was identified in which four family members from three generations were affected. The clinical follow up in one clinical center lasted up to 30 years, with different times of diagnosis ranging from neonate period to adulthood. The severity of hypoglycemia was mild/severe and fasting was the trigger for hypoglycemia. Response to diazoxide varied from good, in the neonate, to moderate/poor, in childhood/adulthood; however, this was biased by poor compliance. Treatment with somatostatin analogues was discontinued due to side effects. Over time, patients developed clinical adaptation to very low glucose levels. During pregnancy, episodes of severe hypoglycemia in the first trimester were observed, which responded very well to steroids. The clinical course of the GCK:c.295T>C (p.Trp99Arg) mutation varied in the same family, with the development of clinical adaptation to very low glucose levels over time. Treatment with steroids might prevent hypoglycemia during pregnancy in an affected mother.


Assuntos
Hiperinsulinismo Congênito/genética , Mutação com Ganho de Função/genética , Predisposição Genética para Doença , Glucoquinase/genética , Adulto , Pré-Escolar , Hiperinsulinismo Congênito/tratamento farmacológico , Hiperinsulinismo Congênito/patologia , Feminino , Glucose/metabolismo , Heterozigoto , Humanos , Recém-Nascido , Masculino , Linhagem , Esteroides/uso terapêutico , Adulto Jovem
16.
Neurotherapeutics ; 18(3): 1500-1514, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34648141

RESUMO

This review summarizes the pathogenic mechanisms that underpin the monogenic epilepsies and discusses the potential of novel precision therapeutics to treat these disorders. Pathogenic mechanisms of epilepsy include recessive (null alleles), haploinsufficiency, imprinting, gain-of-function, and dominant negative effects. Understanding which pathogenic mechanism(s) that underlie each genetic epilepsy is pivotal to design precision therapies that are most likely to be beneficial for the patient. Novel therapeutics discussed include gene therapy, gene editing, antisense oligonucleotides, and protein replacement. Discussions are illustrated and reinforced with examples from the literature.


Assuntos
Epilepsia/genética , Mutação com Ganho de Função/genética , Edição de Genes/métodos , Terapia Genética/métodos , Haploinsuficiência/genética , Medicina de Precisão/métodos , Epilepsia/terapia , Mutação com Ganho de Função/efeitos dos fármacos , Haploinsuficiência/efeitos dos fármacos , Humanos , Oligonucleotídeos Antissenso/uso terapêutico
17.
Mol Plant ; 14(12): 2126-2133, 2021 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-34509638

RESUMO

Paraquat is one of the most widely used nonselective herbicides and has elicited the emergence of paraquat-resistant weeds. However, the molecular mechanisms of paraquat resistance are not completely understood. Here we report the Arabidopsis gain-of-function mutant pqt15-D with significantly enhanced resistance to paraquat and the corresponding gene PQT15, which encodes the Multidrug and Toxic Extrusion (MATE) transporter DTX6. A point mutation at +932 bp in DTX6 causes a G311E amino acid substitution, enhancing the paraquat resistance of pqt15-D, and overexpression of DTX6/PQT15 in the wild-type plants also results in strong paraquat resistance. Moreover, heterologous expression of DTX6 and DTX6-D in Escherichia coli significantly enhances bacterial resistance to paraquat. Importantly, overexpression of DTX6-D enables Arabidopsis plants to tolerate 4 mM paraquat, a near-commercial application level. DTX6/PQT15 is localized in the plasma membrane and endomembrane, and functions as a paraquat efflux transporter as demonstrated by paraquat efflux assays with isolated protoplasts and bacterial cells. Taken together, our results demonstrate that DTX6/PQT15 is an efflux transporter that confers paraquat resistance by exporting paraquat out of the cytosol. These findings reveal a molecular mechanism of paraquat resistance in higher plants and provide a promising candidate gene for engineering paraquat-resistant crops.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Mutação com Ganho de Função/genética , Resistência a Herbicidas , Paraquat/metabolismo , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Transporte Biológico , Membrana Celular/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Fenótipo , Plantas Geneticamente Modificadas
18.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1866(12): 159030, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34419589

RESUMO

In the liver, contact sites between the endoplasmic reticulum (ER) and mitochondria (named MAMs) may be crucial hubs for the regulation of lipid metabolism, thus contributing to the exacerbation or prevention of fatty liver. We hypothesized that tether proteins located at MAMs could play a key role in preventing triglyceride accumulation in hepatocytes and nonalcoholic fatty liver disease (NAFLD) occurrence. To test this, we explored the role of two key partners in building MAM integrity and functionality, the glucose-regulated protein 75 (Grp75) and mitofusin 2 (Mfn2), which liver contents are altered in obesity and NAFLD. Grp75 or Mfn2 expression was either silenced using siRNA or overexpressed with adenoviruses in Huh7 cells. Silencing of Grp75 and Mfn2 resulted in decreased ER-mitochondria interactions, mitochondrial network fusion state and mitochondrial oxidative capacity, while overexpression of the two proteins induced mirror impacts on these parameters. Furthermore, Grp75 or Mfn2 silencing decreased cellular cholesterol content and enhanced triglyceride secretion in ApoB100 lipoproteins, while their overexpression led to reverse effects. Cellular phosphatidylcholine/phosphatidylethanolamine ratio was decreased only upon overexpression of the proteins, potentially contributing to altered ApoB100 assembly and secretion. Despite the opposite differences, both silencing and overexpression of Grp75 or Mfn2 induced triglyceride storage, although a fatty acid challenge was required to express the alteration upon protein silencing. Among the mechanisms potentially involved in this phenotype, ER stress was closely associated with altered triglyceride metabolism after Grp75 or Mfn2 overexpression, while blunted mitochondrial FA oxidation capacity may be the main defect causing triglyceride accumulation upon Grp75 or Mfn2 silencing. Further studies are required to decipher the link between modulation of Grp75 or Mfn2 expression, change in MAM integrity and alteration of cholesterol content of the cell. In conclusion, Grp75 or Mfn2 silencing and overexpression in Huh7 cells contribute to altering MAM integrity and cholesterol storage in opposite directions, but all promote triglyceride accumulation through distinct cellular pathways. This study also highlights that besides Mfn2, Grp75 could play a central role in hepatic lipid and cholesterol metabolism in obesity and NAFLD.


Assuntos
Apolipoproteína B-100/genética , Colesterol/metabolismo , GTP Fosfo-Hidrolases/genética , Proteínas de Choque Térmico HSP70/genética , Proteínas Mitocondriais/genética , Hepatopatia Gordurosa não Alcoólica/genética , Linhagem Celular , Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismo , GTP Fosfo-Hidrolases/antagonistas & inibidores , Mutação com Ganho de Função/genética , Regulação da Expressão Gênica/genética , Inativação Gênica , Proteínas de Choque Térmico HSP70/antagonistas & inibidores , Hepatócitos/metabolismo , Humanos , Fígado/metabolismo , Mutação com Perda de Função/genética , Mitocôndrias/genética , Mitocôndrias/metabolismo , Proteínas Mitocondriais/antagonistas & inibidores , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Triglicerídeos/metabolismo
19.
Cells ; 10(7)2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34359961

RESUMO

(1) Background: Cantu syndrome (CS) arises from gain-of-function (GOF) mutations in the ABCC9 and KCNJ8 genes, which encode ATP-sensitive K+ (KATP) channel subunits SUR2 and Kir6.1, respectively. Most CS patients have mutations in SUR2, the major component of skeletal muscle KATP, but the consequences of SUR2 GOF in skeletal muscle are unknown. (2) Methods: We performed in vivo and ex vivo characterization of skeletal muscle in heterozygous SUR2[A478V] (SUR2wt/AV) and homozygous SUR2[A478V] (SUR2AV/AV) CS mice. (3) Results: In SUR2wt/AV and SUR2AV/AV mice, forelimb strength and diaphragm amplitude movement were reduced; muscle echodensity was enhanced. KATP channel currents recorded in Flexor digitorum brevis fibers showed reduced MgATP-sensitivity in SUR2wt/AV, dramatically so in SUR2AV/AV mice; IC50 for MgATP inhibition of KATP currents were 1.9 ± 0.5 × 10-5 M in SUR2wt/AV and 8.6 ± 0.4 × 10-6 M in WT mice and was not measurable in SUR2AV/AV. A slight rightward shift of sensitivity to inhibition by glibenclamide was detected in SUR2AV/AV mice. Histopathological and qPCR analysis revealed atrophy of soleus and tibialis anterior muscles and up-regulation of atrogin-1 and MuRF1 mRNA in CS mice. (4) Conclusions: SUR2[A478V] "knock-in" mutation in mice impairs KATP channel modulation by MgATP, markedly so in SUR2AV/AV, with atrophy and non-inflammatory edema in different skeletal muscle phenotypes.


Assuntos
Cardiomegalia/genética , Cardiomegalia/metabolismo , Hipertricose/genética , Hipertricose/metabolismo , Complexo Mediador/metabolismo , Músculo Esquelético/metabolismo , Mutação/genética , Osteocondrodisplasias/genética , Osteocondrodisplasias/metabolismo , Animais , Atrofia/patologia , Modelos Animais de Doenças , Mutação com Ganho de Função/genética , Humanos , Camundongos , Fenótipo
20.
Cell Death Dis ; 12(9): 810, 2021 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-34446703

RESUMO

The long noncoding RNA called MIR22 host gene (MIR22HG) was previously identified as a tumor suppressor in several cancers. However, the biological function of MIR22HG in breast cancer remains unknown. In this study, we aimed to determine the function and molecular mechanism of MIR22HG in breast cancer progression using transcriptomics and biotechnological techniques. Our results showed that MIR22HG expression was lower in the cancerous tissues than in the paired adjacent normal breast tissues. Additionally, MIR22HG was found to be mainly located in the cytoplasm and acted as a miR-629-5p sponge. Notably, MIR22HG stabilized the expression of large tumor suppressor 2 (LATS2), which promoted the LATS2-dependent phosphorylation of YAP1 and suppressed the expression of its downstream target oncogenes, thereby inhibiting the proliferation and migration of breast cancer cells. Therefore, our findings reveal the MIR22HG-dependent inhibition of breast cancer cell proliferation and migration via the miR-629-5p/LATS2 pathway, providing new insights and identifying novel therapeutic targets for breast cancer treatment.


Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Progressão da Doença , MicroRNAs/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Sequência de Bases , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Regulação para Baixo/genética , Feminino , Mutação com Ganho de Função/genética , Regulação Neoplásica da Expressão Gênica , Humanos , MicroRNAs/genética , Modelos Biológicos , Mutação/genética , Proteínas Serina-Treonina Quinases/genética , Estabilidade Proteica , Proteínas Supressoras de Tumor/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA