Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Tuberculosis (Edinb) ; 147: 102516, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38735123

RESUMO

Although studies on non-tuberculous mycobacteria have increased in recent years because they cause a considerable proportion of infections, their cellulolytic system is still poorly studied. This study presents a characterization of the cellulolytic activities of environmental mycobacterial isolates derived from soil and water samples from the central region of Argentina, aimed to evaluate the conservation of the mechanism for the degradation of cellulose in this group of bacteria. The molecular and genomic identification revealed identity with Mycolicibacterium septicum. The endoglucanase and total cellulase activities were assessed both qualitatively and quantitatively and the optimal enzymatic conditions were characterized. A specific protein of around 56 kDa with cellulolytic activity was detected in a zymogram. Protein sequences possibly arising from a cellulase were identified by mass spectrometry-based shotgun proteomics. Results showed that M. septicum encodes for cellulose- and hemicellulose-related degrading enzymes, including at least an active ß-1,4 endoglucanase enzyme that could be useful to improve its survival in the environment. Given the important health issues related to mycobacteria, the results of the present study may contribute to the knowledge of their cellulolytic system, which could be important for their ability to survive in many different types of environments.


Assuntos
Proteínas de Bactérias , Celulase , Celulose , Microbiologia do Solo , Celulose/metabolismo , Celulase/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Argentina , Microbiologia da Água , Proteômica/métodos , Mycobacteriaceae/genética , Mycobacteriaceae/enzimologia
2.
J Biol Chem ; 300(2): 105621, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38176649

RESUMO

Phenazine-1-carboxylic acid decarboxylase (PhdA) is a prenylated-FMN-dependent (prFMN) enzyme belonging to the UbiD family of decarboxylases. Many UbiD-like enzymes catalyze (de)carboxylation reactions on aromatic rings and conjugated double bonds and are potentially valuable industrial catalysts. We have investigated the mechanism of PhdA using a slow turnover substrate, 2,3-dimethylquinoxaline-5-carboxylic acid (DQCA). Detailed analysis of the pH dependence and solvent deuterium isotope effects associated with the reaction uncovered unusual kinetic behavior. At low substrate concentrations, a substantial inverse solvent isotope effect (SIE) is observed on Vmax/KM of ∼ 0.5 when reaction rates of DQCA in H2O and D2O are compared. Under the same conditions, a normal SIE of 4.15 is measured by internal competition for proton transfer to the product. These apparently contradictory results indicate that the SIE values report on different steps in the mechanism. A proton inventory analysis of the reaction under Vmax/KM and Vmax conditions points to a "medium effect" as the source of the inverse SIE. Molecular dynamics simulations of the effect of D2O on PhdA structure support that D2O reduces the conformational lability of the enzyme and results in a more compact structure, akin to the active, "closed" conformer observed in crystal structures of some UbiD-like enzymes. Consistent with the simulations, PhdA was found to be more stable in D2O and to bind DQCA more tightly, leading to the observed rate enhancement under Vmax/KM conditions.


Assuntos
Carboxiliases , Carboxiliases/química , Isótopos , Cinética , Fenazinas , Prótons , Solventes , Mycobacteriaceae/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA