Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Plant Physiol Biochem ; 144: 118-126, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31563092

RESUMO

As nitrogen deposition increases, acid rain is gradually shifting from sulfuric acid rain (SAR) to nitric acid rain (NAR). Acid rain can severely affect plant growth, damage ecosystems, and reduce biodiversity. Thus, a shift in acid rain type presents another challenge to the conservation of endangered plant species. We investigated the effect of three acid rain types (SAR, mixed acid rain [MAR], and NAR) and pH on the growth of an endangered Chinese endemic tree, Horsfieldia hainanensis Merr., using simulated rain in a greenhouse environment. Over nine months, growth indices, chlorophyll content, antioxidant enzyme activity, malondialdehyde content, and chlorophyll fluorescence parameters were investigated for treated and control saplings. The results indicated that at a pH of 5.6, H. hainanensis could adapt to SAR and MAR, but NAR inhibited below-ground growth. At a pH of 2.5 and 4.0, SAR inhibited stem and leaf biomass accumulation, whereas NAR inhibited root biomass accumulation and altered root morphology. MAR had intermediary effects between those of SAR and NAR. Adverse effects on leaf physiology were reduced as the rain type shifted from SAR to NAR; however, roots were increasingly adversely affected. Our results suggest that conservation efforts for H. hainanensis should shift from an above-ground to a below-ground focus as acid rain transitions toward NAR.


Assuntos
Chuva Ácida/toxicidade , Myristicaceae/fisiologia , Ácido Nítrico/toxicidade , Ácidos Sulfúricos/toxicidade , Árvores/fisiologia , China , Ecossistema , Concentração de Íons de Hidrogênio , Myristicaceae/efeitos dos fármacos , Árvores/efeitos dos fármacos
2.
Ecology ; 98(2): 456-466, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27859035

RESUMO

The "liana dominance hypothesis" posits that lianas are increasing in abundance in tropical forests, thereby potentially reducing tree biomass due to competitive interactions between trees and lianas. This scenario has implications not only for forest ecosystem function and species composition, but also climate change given the mass of carbon stored in tropical trees. In 2003 and 2013, all Myristicaceae trees in the 50-ha Yasuní Forest Dynamics Plot, Ecuador, were surveyed for liana presence and load in their crowns. We tested the hypothesis that the proportion of trees with lianas increased between 2003 and 2013 in line with the liana dominance hypothesis. Contrary to expectations, the total proportion of trees with lianas decreased from 35% to 32%, and when only trees ≥10 cm diameter at breast height were considered liana incidence increased 44-48%. Liana load was dynamic with a large proportion of trees losing or gaining lianas over the 10-yr period; large trees with intermediate liana loads increased in proportion at the expense of those with low and high loads. Lianas also impacted performance: trees with 26-75% crown cover by lianas in 2003 had reduced growth rates of 80% compared to of liana-free trees, and trees with >75% crown cover had 33% the growth rate and a log odds of mortality eight times that of liana-free trees. We suggest that the lack of strong support found for the liana dominance hypothesis is likely due to the aseasonal climate of Yasuní, which limits the competitive advantage lianas maintain over trees during dry seasons due to their efficient capture and use of water. We propose further research of long-term liana dynamics from aseasonal forests is required to determine the generality of the increasing liana dominance hypothesis in Neotropical forests.


Assuntos
Myristicaceae/fisiologia , Floresta Úmida , Ecossistema , Equador , Chuva , Árvores , Clima Tropical
3.
Am J Bot ; 103(11): 1990-1999, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27864261

RESUMO

PREMISE OF THE STUDY: Factors related to pollen and resource limitation were evaluated to predict female fruit production in a tropical dioecious tree. Pollen limitation via variation in the male density at local scales is expected to limit female reproduction success in dioecious plants. METHODOLOGY: We modeled the roles of local male density, female crown size, crown illumination, and female flower production on female fruit initiation and mature fruit production in a continuous population (62 ha plot) of a tropical dioecious tree (Virola surinamensis). In addition, we used microsatellites to describe the scale of effective pollen flow, the male effective population size, and the spatial genetic structure within/between progenies and males. KEY RESULTS: The local male density was not related to female fruit initiation or mature fruit production. Female floral production had a positive effect on fruit initiation. The female crown size was positively related to fruit maturation. Seeds from the same female and seeds from different but spatially proximal females were generally half-siblings; however, proximal females showed greater variation. Proximal male-female adult pairs were not significantly more genetically related than distant pairs. The probability of paternity was negatively affected by the distance between seeds and males; most effective pollen dispersal events (∼85%) occurred from males located less than 150 m from females. The number of males siring progenies was greater than the number of males found at local scales. CONCLUSIONS: Female fecundity in this continuous population of Virola surinamensis is not limited by the availability of pollen from proximal males. Rather, resource allocation to floral production may ultimately determine female reproductive success.


Assuntos
Flores/fisiologia , Myristicaceae/fisiologia , Demografia , Flores/genética , Flores/crescimento & desenvolvimento , Frutas/genética , Frutas/crescimento & desenvolvimento , Frutas/fisiologia , Geografia , Myristicaceae/genética , Myristicaceae/crescimento & desenvolvimento , Pólen/genética , Pólen/crescimento & desenvolvimento , Pólen/fisiologia , Polinização , Densidade Demográfica , Reprodução , Sementes/genética , Sementes/crescimento & desenvolvimento , Sementes/fisiologia
4.
PLoS One ; 8(11): e82066, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24312402

RESUMO

Ecological niche models (ENM) have become a popular tool to define and predict the "ecological niche" of a species. An implicit assumption of the ENMs is that the predicted ecological niche of a species actually reflects the adaptive landscape of the species. Thus in sites predicted to be highly suitable, species would have maximum fitness compared to in sites predicted to be poorly suitable. As yet there are very few attempts to address this assumption. Here we evaluate this assumption. We used Bioclim (DIVA GIS version 7.3) and Maxent (version 3.3.2) to predict the habitat suitability of Myristica malabarica Lam., an economically important tree occurring in the Western Ghats, India. We located populations of the trees naturally occurring in different habitat suitability regimes (from highly suitable to poorly suitable) and evaluated them for their regeneration ability and genetic diversity. We also evaluated them for two plant functional traits, fluctuating asymmetry--an index of genetic homeostasis, and specific leaf weight--an index of primary productivity, often assumed to be good surrogates of fitness. We show a significant positive correlation between the predicted habitat quality and plant functional traits, regeneration index and genetic diversity of populations. Populations at sites predicted to be highly suitable had a higher regeneration and gene diversity compared to populations in sites predicted to be poor or unsuitable. Further, individuals in the highly suitable sites exhibited significantly less fluctuating asymmetry and significantly higher specific leaf weight compared to individuals in the poorly suitable habitats. These results for the first time provide an explicit test of the ENM with respect to the plant functional traits, regeneration ability and genetic diversity of populations along a habitat suitability gradient. We discuss the implication of these results for designing viable species conservation and restoration programs.


Assuntos
Adaptação Fisiológica , Ecologia , Myristicaceae/fisiologia , Calibragem , Genes de Plantas , Variação Genética , Índia , Myristicaceae/genética , Folhas de Planta
5.
Ecology ; 90(6): 1449-55, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19569358

RESUMO

To understand how different frugivores impact dispersal, we studied the assemblage that feed on Virola flexuosa over a two-year period at two sites differing in hunting pressure in Ecuador. We focus on disperser effectiveness and test the hypothesis that seed removal, influenced by differential visits of large-bodied frugivores, will differ between hunted and non-hunted sites. All visiting frugivores were identified, and fruit handling behavior and seed removal rates quantified. Seed traps were placed under fruiting trees to estimate crop size and fruit removal. Seventeen bird and three primate species were recorded foraging in V. flexuosa trees. Toucans and primates were the most important dispersers comprising nearly 85% of visits with six toucan species recorded in 74% of visits. A proportionately larger number of seeds were removed from fruiting trees at a non-hunted site (89.4%) than a hunted site (66.8%). In addition, there were significantly more frugivore visits at the non-hunted than the hunted site. The differences in the frugivore assemblage and the number of seeds dispersed from individual trees between two structurally similar forest sites suggest dispersal limitation resulting from a decline in frugivores.


Assuntos
Aves/fisiologia , Myristicaceae/fisiologia , Primatas/fisiologia , Animais , Ecossistema , Equador , Comportamento Alimentar , Atividades Humanas , Humanos , Dinâmica Populacional , Sementes , Árvores
6.
Ecology ; 88(9): 2248-58, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17918403

RESUMO

Factors affecting survival and recruitment of 3531 individually mapped seedlings of Myristicaceae were examined over three years in a highly diverse neotropical rain forest, at spatial scales of 1-9 m and 25 ha. We found convincing evidence of a community compensatory trend (CCT) in seedling survival (i.e., more abundant species had higher seedling mortality at the 25-ha scale), which suggests that density-dependent mortality may contribute to the spatial dynamics of seedling recruitment. Unlike previous studies, we demonstrate that the CCT was not caused by differences in microhabitat preferences or life history strategy among the study species. In local neighborhood analyses, the spatial autocorrelation of seedling survival was important at small spatial scales (1-5 m) but decayed rapidly with increasing distance. Relative seedling height had the greatest effect on seedling survival. Conspecific seedling density had a more negative effect on survival than heterospecific seedling density and was stronger and extended farther in rare species than in common species. Taken together, the CCT and neighborhood analyses suggest that seedling mortality is coupled more strongly to the landscape-scale abundance of conspecific large trees in common species and the local density of conspecific seedlings in rare species. We conclude that negative density dependence could promote species coexistence in this rain forest community but that the scale dependence of interactions differs between rare and common species.


Assuntos
Biodiversidade , Ecossistema , Myristicaceae/fisiologia , Plântula/crescimento & desenvolvimento , Clima Tropical , Equador , Meio Ambiente , Geografia , Myristicaceae/crescimento & desenvolvimento , Densidade Demográfica , Dinâmica Populacional , Árvores
7.
Ecology ; 88(2): 478-89, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17479765

RESUMO

We investigated the relationship between habitat association and physiological performance in four congeneric species pairs exhibiting contrasting distributions between seasonally flooded and terra firme habitats in lowland tropical rain forests of French Guiana, including Virola and Iryanthera (Myristicaceae), Symphonia (Clusiaceae), and Eperua (Caesalpiniaceae). We analyzed 10-year data sets of mapped and measured saplings (stems >150 cm in height and <10 cm diameter at breast height [dbh]) and trees (stems > or =10 cm dbh) across 37.5 ha of permanent plots covering a 300-ha zone, within which seasonally flooded areas (where the water table never descends below 1 m) have been mapped. Additionally, we tested the response of growth, survival, and leaf functional traits of these species to drought and flood stress in a controlled experiment. We tested for habitat preference using a modification of the torus translation method. Strong contrasting associations of the species pairs of Iryanthera, Virola, and Symphonia were observed at the sapling stage, and these associations strengthened for the tree stage. Neither species of Eperua was significantly associated with flooded habitats at the sapling stage, but E. falcata was significantly and positively associated with flooded forests at the tree stage, and trees of E. grandiflora were found almost exclusively in nonflooded habitats. Differential performance provided limited explanatory support for the observed habitat associations, with only congeners of Iryanthera exhibiting divergent sapling survival and tree growth. Seedlings of species associated with flooded forest tended to have higher photosynthetic capacity than their congeners at field capacity. In addition, they tended to have the largest reductions in leaf gas exchange and growth rate in response to experimental drought stress and the least reductions in response to experimental inundation. The corroboration of habitat association with differences in functional traits and, to a lesser extent, measures of performance provides an explanation for the regional coexistence of these species pairs. We suggest that specialization to seasonally flooded habitats may explain patterns of adaptive radiation in many tropical tree genera and thereby provide a substantial contribution to regional tree diversity.


Assuntos
Adaptação Fisiológica , Ecossistema , Árvores/fisiologia , Clima Tropical , Água/fisiologia , Clusiaceae/fisiologia , Guiana Francesa , Myristicaceae/fisiologia , Estações do Ano
8.
Tree Physiol ; 24(2): 155-67, 2004 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-14676032

RESUMO

Studies of tree seedling physiology and growth under field conditions provide information on the mechanisms underlying inter- and intraspecific differences in growth and survival at a critical period during forest regeneration. I compared photosynthetic physiology, growth and biomass allocation in seedlings of three shade-tolerant tree species, Virola koschynii Warb., Dipteryx panamensis (Pittier) Record & Mell and Brosimum alicastrum Swartz., growing across a light gradient created by a forest-pasture edge (0.5 to 67% diffuse transmittance (%T)). Most growth and physiological traits showed nonlinear responses to light availability, with the greatest changes occurring between 0.5 and 20 %T. Specific leaf area (SLA) and nitrogen per unit leaf mass (N mass) decreased, maximum assimilation per unit leaf area (A area) and area-based leaf N concentration (N area) increased, and maximum assimilation per unit leaf mass (A mass) did not change with increasing irradiance. Plastic responses in SLA were important determinants of leaf N and A area across the gradient. Species differed in magnitude and plasticity of growth; B. alicastrum had the lowest relative growth rates (RGR) and low plasticity. Its final biomass varied only 10-fold across the light gradient. In contrast, the final biomass of D. panamensis and V. koschynii varied by 100- and 50-fold, respectively, and both had higher RGR than B. alicastrum. As light availability increased, all species decreased biomass allocation to leaf tissue (mass and area) and showed a trade-off between allocation to leaf area at a given plant mass (LAR) and net gain in mass per unit leaf area (net assimilation rate, NAR). This trade-off largely reflected declines in SLA with increasing light. Finally, A area was correlated with NAR and both were major determinants of intraspecific variation in RGR. These data indicate the importance of plasticity in photosynthetic physiology and allocation for variation in tree seedling growth among habitats that vary in light availability.


Assuntos
Fotossíntese/fisiologia , Plântula/crescimento & desenvolvimento , Árvores/crescimento & desenvolvimento , Biomassa , Costa Rica , Dipteryx/crescimento & desenvolvimento , Dipteryx/fisiologia , Luz , Moraceae/crescimento & desenvolvimento , Moraceae/fisiologia , Myristicaceae/crescimento & desenvolvimento , Myristicaceae/fisiologia , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/fisiologia , Plântula/fisiologia , Árvores/fisiologia , Clima Tropical
9.
Oecologia ; 136(1): 80-7, 2003 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12684855

RESUMO

Variation in traits affecting seed dispersal in plants has been attributed to selection exerted by dispersal agents. The potential for such selection was investigated in Virola calophylla (Myristicaceae) in Manú National Park, Peru, through identification of seed dispersal agents and of tree and fruit traits significantly affecting the quantity of seeds dispersed. Seventeen bird and one primate species (the spider monkey, Ateles paniscus) dispersed its seeds. Spider monkeys dispersed the majority of seeds (a minimum of 83% of all dispersed seeds). Visitation by dispersal agents depended only on the quantity of ripe fruit available during a tree observation. In contrast, seed removal increased with both greater quantity of ripe fruit and aril: seed ratio. When analyzed separately, seed removal by birds increased only with greater aril: seed ratio, whereas seed removal by spider monkeys was affected by the quantity of ripe fruit and phenological stage. The finding that dispersal agents responded differently to some tree and fruit traits indicates not only that dispersal agents can exert selection on traits affecting seed dispersal, but also that the resulting selection pressures are likely to be inconsistent. This conclusion is supported by the result that the proportion of the seed crop that was dispersed from individual trees, which accounted for cumulative dispersal by all agents, was not influenced by any tree or fruit trait evaluated. Comparing these results with those from studies of V. sebifera and V. nobilis in Panama revealed that the disperser assemblages of these three Virola species were congruent in their similar taxonomic representation. In Panama the proportion of V. nobilis seed crop dispersed was related positively to aril: seed ratio and negatively to seed mass, a result not found for V. calophylla in Peru. The greater importance of dispersal by primates versus birds in V. calophylla, relative to V. nobilis, may explain this difference. Thus, variation in disperser assemblages at regional scales can be another factor contributing to inconsistency in disperser-mediated selection on plant traits.


Assuntos
Aves/fisiologia , Cebidae/fisiologia , Ecologia , Comportamento Alimentar/fisiologia , Myristicaceae/fisiologia , Sementes/fisiologia , Seleção Genética , Animais , Frutas/anatomia & histologia , Geografia , Myristicaceae/anatomia & histologia , Peru , Árvores/anatomia & histologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA