Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 172
Filtrar
1.
Aquat Toxicol ; 274: 107047, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39153253

RESUMO

Accidental oil spills into the ocean can lead to downward transport and settling of oil onto the seafloor as part of marine snow, as seen during the Deepwater Horizon incident in 2010 in the Gulf of Mexico. The arctic and subarctic regions may favor conditions leading to this benthic oil deposition, prompting questions about the potential impacts on benthic communities. This study investigated the effects of oil-contaminated marine snow uptake on the blue mussel (Mytilus sp.). We exposed mussels for four days to 1) oil-contaminated marine snow (MOS treatment), or to 2) chemically-enhanced water-accommodated fraction (CEWAF) of oil plus unaggregated food particles (CEWAF treatment). Both oil treatments received the same nominal concentration of oil and food. Two controls were included: 1) Clean seawater plus unaggregated food (agg-free control) and 2) clean seawater plus marine snow (marine snow control). After the exposure, mussels were allowed to recover for ten days under clean, running seawater. Samples were taken right before and after the exposure period, and after the recovery phase for the following endpoints: distribution (partitioning) of oil compounds between seawater and MOS, and between seawater and mussel tissue; DNA damage (assessed via the comet assay); clearance rate; and condition index [tissue dry weight (g) divided by shell length (mm)]. Some discernable patterns were found in the partitioning of oil compounds between seawater and MOS. However, these patterns did not translate to any significant differences in the partitioning of oil compounds into mussel tissue between the two oil treatments. DNA damage did not exceed background levels (10% tail DNA or less; to be expected in healthy, viable cells) at any sampling time point, but significantly higher DNA damage was observed in CEWAF-T compared to MOS-T mussels after the recovery phase. After the exposure, a significant difference emerged in the clearance rate between the CEWAF treatment and the agg-free control, but not between the MOS treatment and the marine snow control. All mussels except those from the CEWAF treatment exhibited an increased condition index after the exposure time. Together, these results suggest that aggregates could moderate the effects of oil exposure on blue mussels, possibly by providing better, more concentrated nutrition than unaggregated food particles.


Assuntos
Poluição por Petróleo , Poluentes Químicos da Água , Animais , Poluentes Químicos da Água/toxicidade , Água do Mar/química , Mytilus edulis/metabolismo , Mytilus edulis/efeitos dos fármacos , Petróleo/toxicidade , Mytilus/efeitos dos fármacos
2.
Sci Total Environ ; 946: 174186, 2024 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-38909801

RESUMO

Biological effects of aqueous fractions of a crude oil, alone or in combination with dispersant, were investigated in mussels, Mytilus edulis, exposed at three temperatures (5, 10 and 15 °C). Polycyclic aromatic hydrocarbons (PAHs) tissue concentrations were determined, together with genotoxicity, oxidative stress and general stress biomarkers and the Integrated Biological Response (IBR) index. The bioaccumulation of individual PAHs varied depending on the exposure temperature, with relevant bioaccumulation of phenantrene and fluoranthene at 5 °C and heavier (e.g. 5-rings) PAHs at 15 °C. The values and response profiles of each particular biomarker varied with exposure time, concentration of the oil aqueous fraction and dispersant addition, as well as with exposure temperature. Indeed, PAH bioaccumulation and biomarker responsiveness exhibited specific recognizable patterns in mussels exposed at low temperatures. Thus, genotoxicity was recorded early and transient at 5 °C and delayed but unremitting at 10-15 °C. Catalase activity presented a temperature-dependent response profile similar to the genotoxicity biomarker; however, glutathione-S-transferase responsiveness was more intricate. Lysosomal membrane stability in digestive cells decreased more markedly at 5 °C than at higher temperatures and the histological appearance of the digestive gland tissue was temperature-specific, which was interpreted as the combined effects of PAH toxicity and cold stress. It can be concluded that the profile and level of the biological effects are definitely different at low temperatures naturally occurring in the Arctic/Subarctic region (e.g. 5 °C) than at higher temperatures closer to the thermal optimum of this species (10-15 °C).


Assuntos
Biomarcadores , Mytilus edulis , Petróleo , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Animais , Petróleo/toxicidade , Mytilus edulis/efeitos dos fármacos , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Poluentes Químicos da Água/toxicidade , Biomarcadores/metabolismo , Temperatura Baixa , Estresse Oxidativo , Noruega , Monitoramento Ambiental , Tensoativos/toxicidade
3.
Aquat Toxicol ; 273: 106999, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38875954

RESUMO

The coexistence of multiple emerging contaminants imposes a substantial burden on the ecophysiological functions in organisms. The combined toxicity and underlying mechanism requires in-depth understanding. Here, marine blue mussel (Mytilus galloprovincialis L.) was selected and exposed to 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) and perfluorooctanoic acid (PFOA) individually and in combination at environmental related concentrations to elucidate differences in stress responses and potential toxicological mechanisms. Characterization and comparison of accumulation, biomarkers, histopathology, transcriptomics and metabolomics were performed. Co-exposure resulted in differential accumulation patterns, exacerbated histopathological alterations, and different responses in oxidative stress and biomarkers for xenobiotic transportation. Moreover, the identified differentially expressed genes (DEGs) and differential metabolites (DEMs) in mussels were found to be annotated to different metabolic pathways. Correlation analyses further indicated that DEGs and DEMs were significantly correlated with the above biomarkers. BDE-47 and PFOA altered the genes and metabolites related to amino acid metabolism, energy and purine metabolism, ABC transporters, and glutathione metabolism to varying degrees, subsequently inducing accumulation differences and combined toxicity. Furthermore, the present work highlighted the pivotal role of Nrf2-keap1 detoxification pathway in the acclimation of M. galloprovincialis to reactive oxygen species (ROS) stress induced by BDE-47 and PFOA. This study enabled more comprehensive understanding of combined toxic mechanism of multi emerging contaminants pollution.


Assuntos
Biomarcadores , Caprilatos , Fluorocarbonos , Éteres Difenil Halogenados , Poluentes Químicos da Água , Animais , Éteres Difenil Halogenados/toxicidade , Poluentes Químicos da Água/toxicidade , Fluorocarbonos/toxicidade , Caprilatos/toxicidade , Biomarcadores/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos , Mytilus edulis/efeitos dos fármacos , Mytilus edulis/genética
4.
Aquat Toxicol ; 273: 106987, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38878330

RESUMO

In the natural ecosystem, aquatic organisms are exposed to a cocktail of chemicals that may result in toxicological responses differing from those of individual chemicals. In the present study, mussels were exposed using a semi-static and triplicated design to either control (no added metal), 50 µg l-1 (Hg alone), 50 µg l-1 (Cd alone), or 50 µg l-1 Hg plus 50 µg l-1 Cd (Hg + Cd) mixture for 14 days. Tissues were collected on days 0, 2, 4, 8, and 14 for metal analysis and sub-lethal responses using a suite of assays. Tissue metal concentrations were not significantly different in the single metal (Hg or Cd) compared to the Hg plus Cd mixture treatment for all tissues, apart from the gill of the Cd alone treatment. At the end of the experiment, the gill Cd concentration was significantly increased in the Hg plus Cd mixture compared to the Cd alone treatment, suggesting the influence of Hg on Cd uptake. The percentage increases of the Hg plus Cd mixture compared to the arithmetic sum of the individual metals were ( %): 20.2, 9.3, 25.1, 23.8, 10.7, and 12.4 for adductor muscle, digestive gland, gill, gonad, remaining soft tissue, and haemolymph, respectively. There were no observed treatment effects on total haemocyte count, haemolymph protein, or glucose concentration in the cell-free haemolymph. Neither was there any treatment effect on osmotic pressure, ions in the tissues, or in the cell-free haemolymph. At the end of the experiment, Hg-mediated oxidative damage, as an increase of thiobarbituric reactive substances (TBARS) and apparent depletion of total glutathione. This was observed in the gill and digestive gland of the Hg alone and Hg plus Cd mixture. Histopathology examination showed similar pathology in the Hg alone and the Hg plus Cd treatment. In conclusion, despite some oxidative stress and pathology during metal exposure, the accumulation of metals and effects on mussel health were similar between single exposures and a mixture of Hg plus Cd. In terms of risk assessment, regulations for the individual metals should suffice to protect against the mixture of Hg plus Cd, at least for adult M. edulis in full-strength seawater.


Assuntos
Bioacumulação , Cádmio , Brânquias , Mercúrio , Mytilus edulis , Poluentes Químicos da Água , Animais , Poluentes Químicos da Água/toxicidade , Cádmio/toxicidade , Mytilus edulis/efeitos dos fármacos , Mercúrio/toxicidade , Brânquias/efeitos dos fármacos , Brânquias/metabolismo
5.
Environ Pollut ; 351: 124112, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38705446

RESUMO

Aquatic environments face escalating challenges from multiple stressors like hypoxia and nanoparticle exposure, with impact of these combined stressors on mussel immunity being poorly understood. We investigated the individual and combined effects of short-term and long-term hypoxia and exposure to zinc oxide nanoparticles (nZnO) on immune system of the mussels (Mytilus edulis). Hemocyte functional traits (mortality, adhesion capacity, phagocytosis, lysosomal abundance, and oxidative burst), and transcript levels of immune-related genes involved in pathogen recognition (the Toll-like receptors, the complement system components, and the adaptor proteins MyD88) were assessed. Short-term hypoxia minimally affected hemocyte parameters, while prolonged exposure led to immunosuppression, impacting hemocyte abundance, viability, phagocytosis, and defensin gene expression. Under normoxia, nZnO stimulated immune responses of mussel hemocytes. However, combined nZnO and hypoxia induced more pronounced and rapid immunosuppression than hypoxia alone, indicating a synergistic interaction. nZnO exposure hindered immune parameter recovery during post-hypoxic reoxygenation, suggesting persistent impact. Opposing trends were observed in pathogen-sensing and pathogen-elimination mechanisms, with a positive correlation between pathogen-recognition system activation and hemocyte mortality. These findings underscore a complex relationship and potential conflict between pathogen-recognition ability, immune function, and cell survival in mussel hemocytes under hypoxia and nanopollutant stress, and emphasize the importance of considering multiple stressors in assessing the vulnerability and adaptability of mussel immune system under complex environmental conditions of anthropogenically modified coastal ecosystems.


Assuntos
Hemócitos , Óxido de Zinco , Animais , Óxido de Zinco/toxicidade , Hemócitos/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Mytilus edulis/efeitos dos fármacos , Mytilus edulis/imunologia , Sistema Imunitário/efeitos dos fármacos , Nanopartículas/toxicidade , Fagocitose/efeitos dos fármacos
6.
Mar Pollut Bull ; 203: 116427, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38735169

RESUMO

Perfluorooctanoic acid (PFOA), which widely presents in marine environment, may produce some adverse effects to aquatic organism. Mytilus edulis are popular due to their high protein and low fat content in China. However, few studies have investigated the effects of PFOA on the quality of aquatic products. Here, PFOA effects on basic nutritional indices in M. edulis were measured, and possible mechanisms were explored. PFOA caused clear variation in physiological and biochemical indices of M. edulis. The contents of some important proteins, nutrients, and amino acids etc. dropped. Integrating metabolomics data, we speculate PFOA exposure triggered inflammation and oxidative stress in mussels, interfered with the metabolic pathways related to the quality and the transport and absorption pathways of metal ions, and affected the levels of some important elements and metabolites, thus decreasing the nutritional quality of M. edulis. The study provides new insights into PFOA adverse effects to marine organism, and may offer some references for some researchers to assess food quality and ecological risk to pollutants.


Assuntos
Caprilatos , Fluorocarbonos , Mytilus edulis , Poluentes Químicos da Água , Caprilatos/toxicidade , Fluorocarbonos/toxicidade , Animais , Mytilus edulis/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Valor Nutritivo , China , Estresse Oxidativo/efeitos dos fármacos
7.
Aquat Toxicol ; 234: 105797, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33721721

RESUMO

In response to accidental oil spills at sea, chemical oil dispersants are utilized to limit negative impacts on nearby littoral zones. However, current evidence suggests that such dispersants may be toxic to aquatic organisms. Blue mussels (Mytilus edulis) and giant scallops (Placopecten magellanicus) were exposed to different environmentally relevant concentrations of oil dispersant and their behavioural responses were closely monitored using high frequency (10Hz) valvometry. Behavioural valve responses included rapid closures when oil dispersant was added to the experimental tanks. At higher concentrations, the mussels remained closed throughout the exposure period. The giant scallop displayed escape behaviours (clapping) prior to mortality, suggesting toxicity of the oil dispersant. Relationships between different behavioural indicators and oil dispersant concentrations were observed for both species, but with different trends. While scallops demonstrated positive correlations between gaping behaviours and dispersant concentration, mussels exhibited a concentration threshold beyond which the gaping behaviour was characteristic of longer closure periods. This study highlights behavioural response differences consistent with bivalve-specific biological traits: the continuous valve closure of an intertidal species, M. edulis, firmly attached to the substrate, and the escapement behaviours of a semi-mobile subtidal species, P. magellanicus. From these observations, it appears that valvometry could be used as a tool for environmental assessments.


Assuntos
Mytilus edulis/efeitos dos fármacos , Pectinidae/efeitos dos fármacos , Tensoativos/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Regiões Árticas , Comportamento Animal/efeitos dos fármacos , Mytilus edulis/fisiologia , Pectinidae/fisiologia , Poluição por Petróleo
8.
Arch Toxicol ; 94(12): 4043-4054, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33094350

RESUMO

Millions of tons of all kind of munitions, including mines, bombs and torpedoes have been dumped after World War II in the marine environment and do now pose a new threat to the seas worldwide. Beside the acute risk of unwanted detonation, there is a chronic risk of contamination, because the metal vessels corrode and the toxic and carcinogenic explosives (trinitrotoluene (TNT) and metabolites) leak into the environment. While the mechanism of toxicity and carcinogenicity of TNT and its derivatives occurs through its capability of inducing oxidative stress in the target biota, we had the idea if TNT can induce the gene expression of carbonyl reductase in blue mussels. Carbonyl reductases are members of the short-chain dehydrogenase/reductase (SDR) superfamily. They metabolize xenobiotics bearing carbonyl functions, but also endogenous signal molecules such as steroid hormones, prostaglandins, biogenic amines, as well as sugar and lipid peroxidation derived reactive carbonyls, the latter providing a defence mechanism against oxidative stress and reactive oxygen species (ROS). Here, we identified and cloned the gene coding for carbonyl reductase from the blue mussel Mytilus spp. by a bioinformatics approach. In both laboratory and field studies, we could show that TNT induces a strong and concentration-dependent induction of gene expression of carbonyl reductase in the blue mussel. Carbonyl reductase may thus serve as a biomarker for TNT exposure on a molecular level which is useful to detect TNT contaminations in the environment and to perform a risk assessment both for the ecosphere and the human seafood consumer.


Assuntos
Oxirredutases do Álcool/biossíntese , Bombas (Dispositivos Explosivos) , Monitoramento Ambiental , Substâncias Explosivas/toxicidade , Resíduos Perigosos , Mytilus edulis/efeitos dos fármacos , Trinitrotolueno/toxicidade , Poluentes Químicos da Água/toxicidade , Oxirredutases do Álcool/genética , Animais , Biologia Computacional , Relação Dose-Resposta a Droga , Biomarcadores Ambientais/genética , Indução Enzimática , Mytilus edulis/enzimologia , Mytilus edulis/genética , Oceanos e Mares , Medição de Risco , II Guerra Mundial
9.
Aquat Toxicol ; 220: 105397, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31954981

RESUMO

Within monitoring frameworks, biomarkers provide several benefits because they serve as intermediates between pollutant exposure and effects, and integrate the responses of contaminants that operate through the same mechanism of action. This study was designed to verify the use of transcriptomic biomarkers developed in our prior work (i.e., Coastal Biosensor of Endocrine Disruption; C-BED assay) on Mytilus edulis and identify additional biomarkers for legacy pollutants. M. edulis were collected from a reference site in Pemaquid, ME, USA and deployed by the Massachusetts Water Resources Authority (MWRA) at locations in and outside Boston Harbor, MA, USA: including (1) Boston Inner Harbor (IH), (2) the current outfall (OS), (3) 1 km away from the current outfall (LNB), and (4) Deer Island (DI), the site where untreated wastewater was formerly discharged into the bay. Differential gene expression was quantified with a high density microarray. Seven genes significantly correlated with whole tissue concentration of PAHs, and six genes significantly correlated with whole body concentrations of PCBs, two groups of legacy contaminants that were elevated at stations IH, OS, and DI. Enrichment analysis indicated that IH mussels had the highest induction of stress response genes, which correlated with the higher levels of contaminants measured at this site. Based on the C-BED assay gene analysis, stations IH and OS exhibited signs of endocrine disruption, which were further confirmed by incorporating the results for the C-BED assay within the Integrated Biomarker Response (IBR) approach. This study successfully demonstrated the potential use of transcriptomic biomarkers within a monitoring program to identify the presence and organismal responses to endocrine disrupting and legacy contaminant classes.


Assuntos
Disruptores Endócrinos/toxicidade , Biomarcadores Ambientais/genética , Monitoramento Ambiental/métodos , Mytilus edulis/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Animais , Disruptores Endócrinos/análise , Mytilus edulis/genética , New England , Bifenilos Policlorados/análise , Bifenilos Policlorados/toxicidade , Hidrocarbonetos Policíclicos Aromáticos/análise , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Água do Mar/química , Poluentes Químicos da Água/análise
10.
J Invertebr Pathol ; 170: 107308, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31857123

RESUMO

In 2014, a high and unusual mass mortality of mussels occurred in several important production areas along the French coasts of the Atlantic and English Channel. In the first quarter of 2016, mass mortalities hit farms on the west coast of the country once again. These heterogeneous mortality events elicited a multi-parametric study conducted during the 2017 mussel season in three sites in northern Brittany (Brest, Lannion and St. Brieuc). The objective was to assess the health status of these mussels, follow mortality and attempt to identify potential causes of the abnormal high mortality of farmed mussels in northern Brittany. Brest was the most affected site with 70% cumulative mortality, then Lannion with 40% and finally St. Brieuc with a normal value of 15%. We highlighted a temporal 'mortality window' that opened throughout the spring season, and concerned the sites affected by mortality of harmful parasites (including pathogenic bacteria), neoplasia, metal contamination, and tissue alterations. Likely, the combination of all these factors leads to a weakening of mussels that can cause death.


Assuntos
Interações Hospedeiro-Patógeno , Mytilus edulis , Poluentes Químicos da Água/toxicidade , Animais , França , Longevidade , Mytilus edulis/efeitos dos fármacos , Mytilus edulis/microbiologia , Mytilus edulis/parasitologia , Mytilus edulis/virologia
11.
Chemosphere ; 240: 124821, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31546185

RESUMO

Anthropogenic CO2 emissions lead to seawater acidification that reportedly exerts deleterious impacts on marine organisms, especially on calcifying organisms such as mussels. A 21-day experiment focusing on the impacts of seawater acidification on the blue mussel, Mytilus edulis, was performed in this study, within which two acidifying treatments, CO2 enrichment and HCl addition, were applied. Two acidifying pH values (7.7 and 7.1) and the alteration of the key physiological processes of ingestion and digestion were estimated. To thoroughly investigate the impact of acidification on mussels, a histopathological study approach was adopted. The results showed that: (1) Seawater acidification induced either by CO2 enrichment or HCl addition impaired the gill structure. Transmission electron microscope (TEM) results suggested that the most obvious impacts were inflammatory lesions and edema, while more distinct alterations, including endoplasmic reticulum edema, nuclear condensation and chromatin plate-like condensation, were placed in the CO2-treated groups compared to HCl-treated specimens. The ciliary activity of the CO2 group was significantly inhibited simultaneously, leading to an obstacle in food intake. (2) Seawater acidification prominently damaged the structure of digestive glands, and the enzymatic activities of amylase, protease and lipase significantly decreased, which might indicate that the digestion was suppressed. The negative impacts induced by the CO2 group were more severe than that by the HCl group. The present results suggest that acidification interferes with the processes of ingestion and digestion, which potentially inhibits the energy intake of mussels.


Assuntos
Ácidos/efeitos adversos , Dióxido de Carbono/efeitos adversos , Ácido Clorídrico/efeitos adversos , Mytilus edulis/efeitos dos fármacos , Água do Mar/química , Ácidos/química , Animais , Dióxido de Carbono/farmacologia , Homeostase/efeitos dos fármacos , Ácido Clorídrico/farmacologia
12.
J Toxicol Environ Health A ; 82(10): 616-625, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31232673

RESUMO

A growing interest in developing and commercialization of new eco-friendly plastic polymers is occurring attributed to the impact of marine plastics debris and microplastics that result from the degradation of oil-based polymers as these substances adversely affect ecosystem health. Recently, polyhydroxybutyrate (PHB) has become of interest due to its biodegradability and physicochemical properties. However, biological consequences resulting from bioplastics exposure remain to be determined. Further, few data are apparently available regarding the potential for bioplastics to act as a vector for exogenous chemicals in the environment. The aim of the study was to compare the effects of polyethylene (PE MPs) and polyhydroxybutyrate (PHB MPs) microplastics administered alone or in combination with fluoranthene (Flu) on detoxifying enzymes in digestive glands and gills of Mytilus edulis. Blue mussels were exposed for 96h to eight experimental groups: control, Flu-only, PE MPs-only, PHB MPs-only, PE MPs-Flu co-exposure, PHB MPs-Flu co-exposure, Flu-incubated PE MPs, and Flu-incubated PHB MPs. Activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidases (GPx), glutathione S-transferase (GST), and glutathione reductase (GR) were found to be significantly susceptible to Flu and plastics in both tissues. Interestingly, a single exposure to PHB MPs led to decreased activity levels of CAT and GST in gills, SOD in digestive glands and SeGPx in both tissues. In co-exposure and incubation treatments, biochemical responses were generally comparable with those exerted by PE MPs or PHB MPs only, suggesting an apparent absence of combined effects of microplastics with the pollutant. Data demonstrated the ecotoxicological impact of bioplastics materials on digestive glands and gills of Mytilus edulis.


Assuntos
Fluorenos/toxicidade , Microplásticos/toxicidade , Mytilus edulis/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Poliésteres/toxicidade , Polietileno/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Biomarcadores , Dinamarca , Sistema Digestório/efeitos dos fármacos , Exposição Ambiental/efeitos adversos , Brânquias/efeitos dos fármacos , Oceanos e Mares
13.
PLoS One ; 14(4): e0214236, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30964867

RESUMO

Chlorothalonil is a thiol-reactive antifoulant that disperses widely and has been found in the marine environment. However, there is limited information on the deleterious effects of chlorothalonil in marine mollusks. In this study, we evaluated the effects of chlorothalonil on the gill tissues of the Pacific oyster, Crassostrea gigas and the blue mussel, Mytilus edulis after exposure to different concentrations of chlorothalonil (0.1, 1, and 10 µg L-1) for 96 h. Following exposure to 1 and/or 10 µg L-1 of chlorothalonil, malondialdehyde (MDA) levels significantly increased in the gill tissues of C. gigas and M. edulis compared to that in the control group at 96 h. Similarly, glutathione (GSH) levels were significantly affected in both bivalves after chlorothalonil exposure. The chlorothalonil treatment caused a significant time- and concentration-dependent increase in the activity of enzymes, such as catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx), and glutathione reductase (GR), in the antioxidant defense system. Furthermore, 10 µg L-1 of chlorothalonil resulted in significant inhibitions in the enzymatic activity of Na+/K+-ATPase and acetylcholinesterase (AChE). These results suggest that chlorothalonil induces potential oxidative stress and changes in osmoregulation and the cholinergic system in bivalve gill tissues. This information will be a useful reference for the potential toxicity of chlorothalonil in marine bivalves.


Assuntos
Acetilcolinesterase/metabolismo , Organismos Aquáticos/enzimologia , Crassostrea/enzimologia , Brânquias/enzimologia , Mytilus edulis/enzimologia , Nitrilas/toxicidade , Estresse Oxidativo/efeitos dos fármacos , ATPase Trocadora de Sódio-Potássio/metabolismo , Animais , Antioxidantes/metabolismo , Organismos Aquáticos/efeitos dos fármacos , Crassostrea/efeitos dos fármacos , Brânquias/efeitos dos fármacos , Glutationa/metabolismo , Malondialdeído/metabolismo , Mytilus edulis/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade
14.
J Fish Dis ; 42(6): 777-787, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30850999

RESUMO

The natural amorphous polymer poly-ß-hydroxybutyrate (PHB-A: lyophilized Ralstonia eutropha containing 75% PHB) was used as a biological agent to control bacterial pathogens of blue mussel (Mytilus edulis) larvae. The larvae were supplied with PHB-A at a concentration of 1 or 10 mg/L for 6 or 24 hr, followed by exposure to either the rifampicin-resistant pathogen Vibrio splendidus or Vibrio coralliilyticus at a concentration of 105 CFU/ml. Larvae pretreated 6 hr with PHB-A (1 mg/L) survived a Vibrio challenge better relative to 24 hr pretreatment. After 96 hr of pathogen exposure, the survival of PHB-A-treated mussel larvae was 1.41- and 1.76-fold higher than the non-treated larvae when challenged with V. splendidus and V. coralliilyticus, respectively. Growth inhibition of the two pathogens at four concentrations of the monomer ß-HB (1, 5, 25 and 125 mM) was tested in vitro in LB35 medium, buffered at two different pH values (pH 7 and pH 8). The highest concentration of 125 mM significantly inhibited the pathogen growth in comparison to the lower levels. The effect of ß-HB on the production of virulence factors in the tested pathogenic Vibrios revealed a variable pattern of responses.


Assuntos
Antibacterianos/farmacologia , Cupriavidus necator/química , Hidroxibutiratos/farmacologia , Mytilus edulis/efeitos dos fármacos , Poliésteres/farmacologia , Vibrioses/veterinária , Vibrio/efeitos dos fármacos , Animais , Agentes de Controle Biológico , Larva/efeitos dos fármacos , Larva/microbiologia , Mytilus edulis/microbiologia , Vibrio/patogenicidade , Vibrioses/prevenção & controle , Fatores de Virulência/metabolismo
15.
Mar Pollut Bull ; 140: 423-430, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30803663

RESUMO

It is well known that mussels are exposed to microplastics but ingestion and potential effects on mussel larvae are not well understood. We quantified ingestion and egestion of 100 nm and 2 µm polystyrene beads in blue mussel larvae after 4 h exposure and 16 h depuration using different plastic-to-microalgae ratios. Effects on growth and development of mussel larvae were investigated at 0.42, 28.2 and 282 µgL-1 within 15 days of exposure. We found that, on a mass basis, larvae ingested a higher amount of 2 µm than 100 nm beads, while egestion was independent of particle size and the plastics-to-algae ratio. Although particle egestion occurred readily, microplastics remained inside the larvae. Larval growth was not affected but abnormally developed larvae increased after exposure to polystyrene beads. Malformations were more pronounced for 100 nm beads, at higher concentration and after longer exposure time.


Assuntos
Larva/efeitos dos fármacos , Mytilus edulis/efeitos dos fármacos , Nanopartículas/metabolismo , Plásticos/metabolismo , Poluentes Químicos da Água/metabolismo , Animais , Relação Dose-Resposta a Droga , Ingestão de Alimentos , Larva/metabolismo , Modelos Teóricos , Mytilus edulis/metabolismo , Nanopartículas/análise , Tamanho da Partícula , Plásticos/análise , Alimentos Marinhos/análise , Poluentes Químicos da Água/análise
16.
Aquat Toxicol ; 208: 47-61, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30610964

RESUMO

Biologically active compounds from pharmaceuticals cause concern due to their common occurrence in water and sediments of urbanized coasts and potential threat to marine organisms. Atorvastatin (ATO), a globally prescribed drug, is environmentally stable and bioavailable to marine organisms; however, the physiological and toxic effects of this drug on ecologically important coastal species are yet to be elucidated. We studied the effect of ATO (˜1.2 µg L-1) on bioenergetics (including whole-organism and mitochondrial respiration, as well as tissue energy reserves and mRNA expression of genes involved in mitochondrial biogenesis and fatty acid metabolism in the gills and the digestive gland) of a keystone bivalve Mytulis edulis (the blue mussel) from the Baltic Sea. Xenobiotic detoxification systems including activity and mRNA expression of P-glycoprotein, and Phase I and II biotransformation enzymes (cytochrome P450 monooxygenase CYP1A and glutathione transferase, GST) were also assessed in the gill and digestive gland of the mussels. Exposure to ATO caused rapid uptake and biotransformation of the drug by the mussels. Standard metabolic rate of ATO-exposed mussels increased by 56% indicating higher maintenance costs, yet no changes were detected in the respiratory capacity of isolated mitochondria. ATO exposure led to ˜60% decrease in the lysosomal membrane stability of hemocytes and ˜3-fold decrease in the whole-organism P-glycoprotein-driven and diffusional efflux of xenobiotics indicating altered membrane properties. The digestive gland was a major target of ATO toxicity in the mussels. Exposure of mussels to ATO led to depletion of lipid, carbohydrate and protein pools, and suppressed transcription of key enzymes involved in mitochondrial biogenesis (peroxisome proliferator-activated receptor gamma coactivator 1-alpha PGC-1α) and fatty acid metabolism (acetyl-CoA carboxylase and CYP4Y1) in the digestive gland. No bioenergetic disturbances were observed in the gills of ATO-exposed mussels, and elevated GST activity indicated enhanced ATO detoxification in this tissue. These data demonstrate that ATO can act as a metabolic disruptor and chemosensitizer in keystone marine bivalves and warrant further investigations of statins as emerging pollutants of concern in coastal marine ecosystems.


Assuntos
Organismos Aquáticos/efeitos dos fármacos , Atorvastatina/toxicidade , Metabolismo Energético/efeitos dos fármacos , Mytilus edulis/efeitos dos fármacos , Mytilus edulis/metabolismo , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Animais , Atorvastatina/química , Biotransformação/efeitos dos fármacos , Respiração Celular/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Hemócitos/efeitos dos fármacos , Hemócitos/metabolismo , Inativação Metabólica/efeitos dos fármacos , Metaboloma/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mytilus edulis/genética , Consumo de Oxigênio/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Estresse Fisiológico/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade
17.
Aquat Toxicol ; 207: 19-28, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30508649

RESUMO

Manufactured nanomaterials are an ideal test case of the precautionary principle due to their novelty and potential environmental release. In the context of regulation, it is difficult to implement for manufactured nanomaterials as current testing paradigms identify risk late into the production process, slowing down innovation and increasing costs. One proposed concept, namely safe(r)-by-design, is to incorporate risk and hazard assessment into the design process of novel manufactured nanomaterials by identifying risks early. When investigating the manufacturing process for nanomaterials, differences between products will be very similar along key physicochemical properties and biological endpoints at the individual level may not be sensitive enough to detect differences whereas lower levels of biological organization may be able to detect these variations. In this sense, the present study used a transcriptomic approach on Mytilus edulis hemocytes following an in vitro and in vivo exposure to three carbon nanofibers created using different production methods. Integrative modeling was used to identify if gene expression could be in linked to physicochemical features. The results suggested that gene expression was more strongly associated with the carbon structure of the nanofibers than chemical purity. With respect to the in vitro/in vivo relationship, results suggested an inverse relationship in how the physicochemical impact gene expression.


Assuntos
Organismos Aquáticos/genética , Carbono/toxicidade , Hemócitos/metabolismo , Mytilus edulis/genética , Nanofibras/toxicidade , Transcriptoma/genética , Animais , Organismos Aquáticos/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/genética , Citoesqueleto/efeitos dos fármacos , Citoesqueleto/metabolismo , Análise Discriminante , Difusão Dinâmica da Luz , Regulação da Expressão Gênica/efeitos dos fármacos , Hemócitos/efeitos dos fármacos , Análise dos Mínimos Quadrados , Mytilus edulis/efeitos dos fármacos , Nanofibras/ultraestrutura , Estresse Oxidativo/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade
18.
Fish Shellfish Immunol ; 84: 414-422, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30316945

RESUMO

Multiple toxic and bioactive compounds produced by Alexandrium spp. cause adverse effects on bivalves, but these effects are frequently difficult to attribute to a single compound class. To disentangle the effect of neurotoxic vs lytic secondary metabolites, we exposed blue mussels to either a paralytic shellfish toxin (PST) producing Alexandrium spp. strain, or to an exclusively lytic compound (LC) producing strain, or a strain containing both compound classes, to evaluate the time dependent effects after 3 and 7 days of feeding. Tested parameters comprised signs of paralysis, feeding activity, and immune cell integrity (hemocyte numbers and viability; lysosomal membrane destabilization) and function (ROS production). Both compound classes caused paralysis and immune impairment. The only effect attributable exclusively to PST was increased phagocytic activity after 3 days and impaired feeding activity after 7 days, which curtailed toxin accumulation in digestive glands. Lysosomal membrane destabilization were more closely, but not exclusively, matched with LC exposure. Effects on circulating hemocyte integrity and immune related functions were mostly transient or remained stable within 7 days; except for increased lysosomal labialization and decreased extracellular ROS production when mussels were exposed to the toxin combination. M. edulis displays adaptive fitness traits to survive and maintain immune capacity upon prolonged exposure to environmentally relevant concentrations of PST and/or LC producing Alexandrium strains.


Assuntos
Dinoflagellida/fisiologia , Hemócitos/efeitos dos fármacos , Toxinas Marinhas/farmacologia , Mytilus edulis/efeitos dos fármacos , Animais , Aprendizagem da Esquiva/efeitos dos fármacos , Comportamento Alimentar/efeitos dos fármacos , Hemócitos/metabolismo , Mytilus edulis/fisiologia
19.
Mar Pollut Bull ; 137: 638-645, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30503478

RESUMO

Microplastic fibers (MPF) are a ubiquitous marine contaminant, making up to 90% of global microplastic concentrations. Imaging flow cytometry was used to measure uptake and ingestion rates of MPF by blue mussels (Mytilus edulis). Mussels were fed a diet of Rhodomonas salina and MPF concentrations up to 30 MPF mL-1, or 0.374% of available seston. Filtration rates were greatly reduced in mussels exposed to MPF. Uptake of MPF followed a Holling's Type II functional response with 95% of the maximum rate (5227 MPF h-1) occurring at 13 MPF mL-1. An average of 39 MPF (SE ±â€¯15, n = 4) was found in feces (maximum of 70 MPF). Most MPF (71%) were quickly rejected as pseudofeces, with approximately 9% ingested and <1% excreted in feces. Mussels may act as microplastic sinks in Gulf of Maine coastal waters, where MPF concentrations are near the order of magnitude as the experimental treatments herein.


Assuntos
Exposição Ambiental/análise , Conteúdo Gastrointestinal/química , Mytilus edulis/fisiologia , Plásticos/análise , Poluentes Químicos da Água/análise , Animais , Ingestão de Alimentos , Citometria de Fluxo/métodos , Maine , Mytilus edulis/efeitos dos fármacos , Plásticos/farmacocinética , Poluentes Químicos da Água/farmacocinética
20.
Mar Environ Res ; 142: 306-318, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30409383

RESUMO

To have an understanding of potential mechanistic effects, sublethal endpoints able to discriminate between nanomaterials with similar physical and chemical features need to be used. In this sense, quantitative PCR was used to measure a battery of genes linked to a wide array of different cellular processes. Gene expression was measured in Mytilus edulis hemocytes following an in vitro and in vivo exposure to pure silicon (40 nm) and carbon-coated silicon (40 and 75 nm) after 24 h. Partial least squares discriminant analysis and correlation analysis were used to develop an integrative model, describing the relationship between genes, to identify which genes were important in describing responses to engineered nanomaterial exposure. The results suggested that some discriminations could be made based on the presence of a carbon coating or the alteration of size which could inform industrial patterns on ways to reduce the ecotoxicological impact of their product. The results also indicate that HTS on Mytilus hemocytes may be integrated into a safer-by-design approach but additional characterization of nanomaterial behavior in media is required to determine if it is a suitable alternative to in vivo testing.


Assuntos
Mytilus edulis/efeitos dos fármacos , Nanoestruturas/toxicidade , Silício/toxicidade , Animais , Carbono/química , Regulação da Expressão Gênica/efeitos dos fármacos , Hemócitos/efeitos dos fármacos , Silício/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA