RESUMO
BACKGROUND/AIMS: The Amyloid Precursor Protein (APP) is involved in the regulation of multiple cellular functions via protein-protein interactions and has been most studied with respect to Alzheimer's disease (AD). Abnormal processing of the single transmembrane-spanning C99 fragment of APP contributes to the formation of amyloid plaques, which are causally related to AD. Pathological C99 accumulation is thought to associate with early cognitive defects in AD. Here, unexpectedly, sequence analysis revealed that C99 exhibits 24% sequence identity with the KCNE1 voltage-gated potassium (Kv) channel ß subunit, comparable to the identity between KCNE1 and KCNE2-5 (21-30%). This suggested the possibility of C99 regulating Kv channels. METHODS: We quantified the effects of C99 on Kv channel function, using electrophysiological analysis of subunits expressed in Xenopus laevis oocytes, biochemical and immunofluorescence techniques. RESULTS: C99 isoform-selectively inhibited (by 30-80%) activity of a range of Kv channels. Among the KCNQ (Kv7) family, C99 isoform-selectively inhibited, shifted the voltage dependence and/or slowed activation of KCNQ2, KCNQ3, KCNQ2/3 and KCNQ5, with no effects on KCNQ1, KCNQ1-KCNE1 or KCNQ4. C99/APP co-localized with KCNQ2 and KCNQ3 in adult rat sciatic nerve nodes of Ranvier. Both C99 and full-length APP co-immunoprecipitated with KCNQ2 in vitro, yet unlike C99, APP only weakly affected KCNQ2/3 activity. Finally, C99 altered the effects on KCNQ2/3 function of inhibitors tetraethylammounium and XE991, but not openers retigabine and ICA27243. CONCLUSION: Our findings raise the possibility of C99 accumulation early in AD altering cellular excitability by modulating Kv channel activity.
Assuntos
Precursor de Proteína beta-Amiloide/farmacologia , Canais de Potássio KCNQ/genética , Canal de Potássio KCNQ2/genética , Canal de Potássio KCNQ3/genética , Fragmentos de Peptídeos/farmacologia , Sequência de Aminoácidos , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Antracenos/farmacologia , Expressão Gênica , Humanos , Canais de Potássio KCNQ/metabolismo , Canal de Potássio KCNQ2/metabolismo , Canal de Potássio KCNQ3/metabolismo , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Oócitos/citologia , Oócitos/efeitos dos fármacos , Oócitos/metabolismo , Técnicas de Patch-Clamp , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Nós Neurofibrosos/efeitos dos fármacos , Nós Neurofibrosos/metabolismo , Ratos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Nervo Isquiático/efeitos dos fármacos , Nervo Isquiático/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Tetraetilamônio/farmacologia , Xenopus laevisRESUMO
Schwann cells (SC) are characterized by a remarkable plasticity that enables them to promptly respond to nerve injury promoting axonal regeneration. In peripheral nerves after damage SC convert to a repair-promoting phenotype activating a sequence of supportive functions that drive myelin clearance, prevent neuronal death, and help axon growth and guidance. Regeneration of peripheral nerves after damage correlates inversely with thrombin levels. Thrombin is not only the key regulator of the coagulation cascade but also a protease with hormone-like activities that affects various cells of the central and peripheral nervous system mainly through the protease-activated receptor 1 (PAR1). Aim of the present study was to investigate if and how thrombin could affect the axon supportive functions of SC. In particular, our results show that the activation of PAR1 in rat SC cultures with low levels of thrombin or PAR1 agonist peptides induces the release of molecules, which favor neuronal survival and neurite elongation. Conversely, the stimulation of SC with high levels of thrombin or PAR1 agonist peptides drives an opposite effect inducing SC to release factors that inhibit the extension of neurites. Moreover, high levels of thrombin administered to sciatic nerve ex vivo explants induce a dramatic change in SC morphology causing disappearance of the Cajal bands, enlargement of the Schmidt-Lanterman incisures and calcium-mediated demyelination of the paranodes. Our results indicate thrombin as a novel modulator of SC plasticity potentially able to favor or inhibit SC pro-regenerative properties according to its level at the site of lesion.
Assuntos
Neurogênese/efeitos dos fármacos , Nós Neurofibrosos/efeitos dos fármacos , Células de Schwann/efeitos dos fármacos , Trombina/farmacologia , Animais , Cálcio/metabolismo , Feminino , Masculino , Neuritos/efeitos dos fármacos , Células PC12 , Pirróis/farmacologia , Quinazolinas/farmacologia , Ratos , Ratos Wistar , Receptor PAR-1/metabolismo , Nervo Isquiático/efeitos dos fármacos , Tapsigargina/farmacologiaRESUMO
BACKGROUND: Autoantibodies against the paranodal protein contactin-1 have recently been described in patients with severe acute-onset autoimmune neuropathies and mainly belong to the IgG4 subclass that does not activate complement. IgG3 anti-contactin-1 autoantibodies are rare, but have been detected during the acute onset of disease in some cases. There is evidence that anti-contactin-1 prevents adhesive interaction, and chronic exposure to anti-contactin-1 IgG4 leads to structural changes at the nodes accompanied by neuropathic symptoms. However, the pathomechanism of acute onset of disease and the pathogenic role of IgG3 anti-contactin-1 is largely unknown. METHODS: In the present study, we aimed to model acute autoantibody exposure by intraneural injection of IgG of patients with anti-contacin-1 autoantibodies to Lewis rats. Patient IgG obtained during acute onset of disease (IgG3 predominant) and IgG from the chronic phase of disease (IgG4 predominant) were studied in comparison. RESULTS: Conduction blocks were measured in rats injected with the "acute" IgG more often than after injection of "chronic" IgG (83.3% versus 35%) and proved to be reversible within a week after injection. Impaired nerve conduction was accompanied by motor deficits in rats after injection of the "acute" IgG but only minor structural changes of the nodes. Paranodal complement deposition was detected after injection of the "acute IgG". We did not detect any inflammatory infiltrates, arguing against an inflammatory cascade as cause of damage to the nerve. We also did not observe dispersion of paranodal proteins or sodium channels to the juxtaparanodes as seen in patients after chronic exposure to anti-contactin-1. CONCLUSIONS: Our data suggest that anti-contactin-1 IgG3 induces an acute conduction block that is most probably mediated by autoantibody binding and subsequent complement deposition and may account for acute onset of disease in these patients. This supports the notion of anti-contactin-1-associated neuropathy as a paranodopathy with the nodes of Ranvier as the site of pathogenesis.
Assuntos
Contactina 1/imunologia , Síndrome de Guillain-Barré/complicações , Imunização Passiva/métodos , Imunoglobulina G/farmacologia , Transtornos Motores/fisiopatologia , Transtornos Motores/cirurgia , Animais , Moléculas de Adesão Celular Neuronais/metabolismo , Complemento C1q/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Feminino , Síndrome de Guillain-Barré/etiologia , Humanos , Transtornos Motores/induzido quimicamente , Condução Nervosa/efeitos dos fármacos , Neurite Óptica/sangue , Neurite Óptica/imunologia , Nós Neurofibrosos/efeitos dos fármacos , Nós Neurofibrosos/metabolismo , Ratos , Ratos Endogâmicos Lew , Tempo de Reação/efeitos dos fármacos , Recuperação de Função Fisiológica/efeitos dos fármacos , Teste de Desempenho do Rota-Rod , Estatísticas não ParamétricasRESUMO
Nodes of Ranvier and associated paranodal and juxtaparanodal domains along myelinated axons are essential for normal function of the peripheral and central nervous systems. Disruption of these domains as well as increases in the reactive carbonyl species methylglyoxal are implicated as a pathophysiology common to a wide variety of neurological diseases. Here, using an ex vivo nerve exposure model, we show that increasing methylglyoxal produces paranodal disruption, evidenced by disorganized immunostaining of axoglial cell-adhesion proteins, in both sciatic and optic nerves from wild-type mice. Consistent with previous studies showing that increase of methylglyoxal can alter intracellular calcium homeostasis, we found upregulated activity of the calcium-activated protease calpain in sciatic nerves after methylglyoxal exposure. Methylglyoxal exposure altered clusters of proteins that are known as calpain substrates: ezrin in Schwann cell microvilli at the perinodal area and zonula occludens 1 in Schwann cell autotypic junctions at paranodes. Finally, treatment with the calpain inhibitor calpeptin ameliorated methylglyoxal-evoked ezrin loss and paranodal disruption in both sciatic and optic nerves. Our findings strongly suggest that elevated methylglyoxal levels and subsequent calpain activation contribute to the disruption of specialized axoglial domains along myelinated nerve fibers in neurological diseases.
Assuntos
Axônios/efeitos dos fármacos , Calpaína/metabolismo , Junção Neuroefetora/efeitos dos fármacos , Neuroglia/efeitos dos fármacos , Aldeído Pirúvico/farmacologia , Nós Neurofibrosos/efeitos dos fármacos , Animais , Axônios/metabolismo , Proteínas do Citoesqueleto/metabolismo , Dipeptídeos/farmacologia , Relação Dose-Resposta a Droga , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Técnicas In Vitro , Masculino , Proteínas de Membrana/metabolismo , Proteínas de Membrana/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Musculares/metabolismo , Neuroglia/metabolismo , Nervo Óptico/citologia , Pan paniscus/metabolismo , Proteínas de Transporte de Fosfato/metabolismo , Nervo Isquiático/citologia , Proteína da Zônula de Oclusão-1/metabolismoRESUMO
BACKGROUND: Following partial injury to the central nervous system, cells beyond the initial injury site undergo secondary degeneration, exacerbating loss of neurons, compact myelin and function. Changes in Ca2+ flux are associated with metabolic and structural changes, but it is not yet clear how flux through specific ion channels contributes to the various pathologies. Here, partial optic nerve transection in adult female rats was used to model secondary degeneration. Treatment with combinations of three ion channel inhibitors was used as a tool to investigate which elements of oxidative and structural damage related to long term functional outcomes. The inhibitors employed were the voltage gated Ca2+ channel inhibitor Lomerizine (Lom), the Ca2+ permeable AMPA receptor inhibitor YM872 and the P2X7 receptor inhibitor oxATP. RESULTS: Following partial optic nerve transection, hyper-phosphorylation of Tau and acetylated tubulin immunoreactivity were increased, and Nogo-A immunoreactivity was decreased, indicating that axonal changes occurred acutely. All combinations of ion channel inhibitors reduced hyper-phosphorylation of Tau and increased Nogo-A immunoreactivity at day 3 after injury. However, only Lom/oxATP or all three inhibitors in combination significantly reduced acetylated tubulin immunoreactivity. Most combinations of ion channel inhibitors were effective in restoring the lengths of the paranode and the paranodal gap, indicative of the length of the node of Ranvier, following injury. However, only all three inhibitors in combination restored to normal Ankyrin G length at the node of Ranvier. Similarly, HNE immunoreactivity and loss of oligodendrocyte precursor cells were only limited by treatment with all three ion channel inhibitors in combination. CONCLUSIONS: Data indicate that inhibiting any of a range of ion channels preserves certain elements of axon and node structure and limits some oxidative damage following injury, whereas ionic flux through all three channels must be inhibited to prevent lipid peroxidation and preserve Ankyrin G distribution and OPCs.
Assuntos
Canais de Cálcio/metabolismo , Degeneração Neural/metabolismo , Traumatismos do Nervo Óptico/metabolismo , Receptores de AMPA/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Animais , Bloqueadores dos Canais de Cálcio/farmacologia , Modelos Animais de Doenças , Feminino , Imidazóis/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/patologia , Microglia/efeitos dos fármacos , Microglia/metabolismo , Microglia/patologia , Degeneração Neural/tratamento farmacológico , Degeneração Neural/etiologia , Degeneração Neural/patologia , Nistagmo Optocinético/efeitos dos fármacos , Nistagmo Optocinético/fisiologia , Traumatismos do Nervo Óptico/complicações , Traumatismos do Nervo Óptico/tratamento farmacológico , Traumatismos do Nervo Óptico/patologia , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Piperazinas/farmacologia , Antagonistas do Receptor Purinérgico P2X/farmacologia , Quinoxalinas/farmacologia , Distribuição Aleatória , Nós Neurofibrosos/efeitos dos fármacos , Nós Neurofibrosos/metabolismo , Nós Neurofibrosos/patologia , Ratos , Receptores de AMPA/antagonistas & inibidoresRESUMO
BACKGROUND AND PURPOSE: Chronic cerebral hypoperfusion can lead to ischemic white matter injury resulting in vascular dementia. To characterize white matter injury in vascular dementia, we investigated disintegration of diverse white matter components using a rat model of chronic cerebral hypoperfusion. METHODS: Chronic cerebral hypoperfusion was modeled in Wistar rats by permanent occlusion of the bilateral common carotid arteries. We performed cognitive behavioral tests, including the water maze task, odor discrimination task, and novel object test; histological investigation of neuroinflammation, oligodendrocytes, myelin basic protein, and nodal or paranodal proteins at the nodes of Ranvier; and serial diffusion tensor imaging. Cilostazol was administered to protect against white matter injury. RESULTS: Diverse cognitive impairments were induced by chronic cerebral hypoperfusion. Disintegration of white matter was characterized by neuroinflammation, loss of oligodendrocytes, attenuation of myelin density, structural derangement at the nodes of Ranvier, and disintegration of white matter tracts. Cilostazol protected against cognitive impairments and white matter disintegration. CONCLUSIONS: White matter injury induced by chronic cerebral hypoperfusion can be characterized by disintegration of diverse white matter components. Cilostazol might be a therapeutic strategy against white matter disintegration in patients with vascular dementia.
Assuntos
Isquemia Encefálica/patologia , Estenose das Carótidas/patologia , Demência Vascular/patologia , Hipocampo/patologia , Leucoencefalopatias/patologia , Substância Branca/patologia , Animais , Comportamento Animal/efeitos dos fármacos , Isquemia Encefálica/etiologia , Isquemia Encefálica/metabolismo , Estenose das Carótidas/complicações , Estenose das Carótidas/metabolismo , Doença Crônica , Cilostazol , Cognição/efeitos dos fármacos , Demência Vascular/etiologia , Demência Vascular/metabolismo , Imagem de Tensor de Difusão , Modelos Animais de Doenças , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Inflamação , Leucoencefalopatias/etiologia , Leucoencefalopatias/metabolismo , Proteína Básica da Mielina/efeitos dos fármacos , Proteína Básica da Mielina/metabolismo , Fármacos Neuroprotetores/farmacologia , Testes Neuropsicológicos , Oligodendroglia/efeitos dos fármacos , Oligodendroglia/metabolismo , Oligodendroglia/patologia , Nós Neurofibrosos/efeitos dos fármacos , Nós Neurofibrosos/metabolismo , Nós Neurofibrosos/patologia , Ratos , Ratos Wistar , Tetrazóis/farmacologia , Substância Branca/efeitos dos fármacos , Substância Branca/metabolismoRESUMO
Ciguatoxins, mainly produced by benthic dinoflagellate Gambierdiscus species, are responsible for a complex human poisoning known as ciguatera. Previous pharmacological studies revealed that these toxins activate voltage-gated Na+ channels. In frog nodes of Ranvier, ciguatoxins induce spontaneous and repetitive action potentials (APs) and increase axonal volume that may explain alterations of nerve functioning in intoxicated humans. The present study aimed determining the ionic mechanisms involved in Pacific ciguatoxin-1B (P-CTX-1B)-induced membrane hyperexcitability and subsequent volume increase in frog nodes of Ranvier, using electrophysiology and confocal microscopy. The results reveal that P-CTX-1B action is not dependent on external Cl- ions since it was not affected by substituting Cl- by methylsulfate ions. In contrast, substitution of external Na+ by Li+ ions suppressed spontaneous APs and prevented nodal swelling. This suggests that P-CTX-1B-modified Na+ channels are not selective to Li+ ions and/or are blocked by these ions, and that Na+ influx through Na+ channels opened during spontaneous APs is required for axonal swelling. The fact that the K+ channel blocker tetraethylammonium modified, but did not suppress, spontaneous APs and greatly reduced nodal swelling induced by P-CTX-1B indicates that K+ efflux might also be involved. This is supported by the fact that P-CTX-1B, when tested in the presence of both tetraethylammonium and the K+ ionophore valinomycin, produced the characteristic nodal swelling. It is concluded that, during the action of P-CTX-1B, water movements responsible for axonal swelling depend on both Na+ influx and K+ efflux. These results pave the way for further studies regarding ciguatera treatment.
Assuntos
Axônios/efeitos dos fármacos , Ciguatoxinas/toxicidade , Fibras Nervosas Mielinizadas/efeitos dos fármacos , Potássio/metabolismo , Sódio/metabolismo , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Animais , Axônios/patologia , Axônios/fisiologia , Linhagem Celular Tumoral , Cloretos/metabolismo , Ciguatoxinas/química , Íons/metabolismo , Lítio/metabolismo , Masculino , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Camundongos , Fibras Nervosas Mielinizadas/patologia , Fibras Nervosas Mielinizadas/fisiologia , Canais de Potássio/metabolismo , Rana esculenta , Nós Neurofibrosos/efeitos dos fármacos , Nós Neurofibrosos/patologia , Nós Neurofibrosos/fisiologia , Ratos , Canais de Sódio/metabolismoRESUMO
Multifocal motor neuropathy affects myelinated motor axons in limb nerves at multifocal sites. It is characterized by weakness and muscle atrophy, motor conduction block, and antibodies against ganglioside GM1 which is expressed on the axolemma of nodes of Ranvier and perinodal Schwann cells. Treatment by regular IVIg courses results in temporary improvement but cannot prevent slowly progressing weakness due to axonal degeneration. This review discusses possible mechanisms of conduction block and the reasons why motor axons are selectively affected in this disorder.
Assuntos
Axônios/imunologia , Gangliosídeo G(M1)/imunologia , Imunoglobulinas Intravenosas/uso terapêutico , Imunoterapia/métodos , Neurônios Motores/imunologia , Polineuropatias/fisiopatologia , Nós Neurofibrosos/imunologia , Animais , Autoanticorpos/metabolismo , Axônios/efeitos dos fármacos , Humanos , Neurônios Motores/efeitos dos fármacos , Condução Nervosa/efeitos dos fármacos , Polineuropatias/imunologia , Polineuropatias/terapia , Nós Neurofibrosos/efeitos dos fármacos , Resultado do TratamentoRESUMO
Mitochondrial defects can have significant consequences on many aspects of neuronal physiology. In particular, deficiencies in the first enzyme complex of the mitochondrial respiratory chain (complex I) are considered to be involved in a number of human neurodegenerative diseases. The current work highlights a tight correlation between the inhibition of complex I and the state of axonal myelination of the optic nerve. Exposing the visual pathway of rats to rotenone, a complex I inhibitor, resulted in disorganization of the node of Ranvier. The structure and function of the node depend on specific cell adhesion molecules, among others, CASPR (contactin associated protein) and contactin. CASPR and contactin are both on the axonal surfaces and need to be associated to be able to anchor their myelin counterpart. Here we show that inhibition of mitochondrial complex I by rotenone in rats induces reactive oxygen species, disrupts the interaction of CASPR and contactin couple, and thus damages the organization and function of the node of Ranvier. Demyelination of the optic nerve occurs as a consequence which is accompanied by a loss of vision. The physiological impairment could be reversed by introducing an alternative NADH dehydrogenase to the mitochondria of the visual system. The restoration of the nodal structure was specifically correlated with visual recovery in the treated animal.
Assuntos
Doenças Desmielinizantes/patologia , Complexo I de Transporte de Elétrons/metabolismo , Nervo Óptico/patologia , Nós Neurofibrosos/patologia , Animais , Moléculas de Adesão Celular , Moléculas de Adesão Celular Neuronais/genética , Moléculas de Adesão Celular Neuronais/metabolismo , Contagem de Células , Contactinas/genética , Contactinas/metabolismo , Doenças Desmielinizantes/induzido quimicamente , Modelos Animais de Doenças , Inseticidas/farmacologia , Masculino , Proteínas da Mielina/genética , Proteínas da Mielina/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Nervo Óptico/efeitos dos fármacos , Nós Neurofibrosos/efeitos dos fármacos , Nós Neurofibrosos/ultraestrutura , Ratos , Ratos Long-Evans , Espécies Reativas de Oxigênio/metabolismo , Rotenona/farmacologia , Fatores de Tempo , Vias Visuais/efeitos dos fármacos , Vias Visuais/metabolismo , Vias Visuais/ultraestruturaRESUMO
NG2 belongs to the family of chondroitin sulfate proteoglycans that are upregulated after spinal cord injury (SCI) and are major inhibitory factors restricting the growth of fibers after SCI. Neutralization of NG2's inhibitory effect on axon growth by anti-NG2 monoclonal antibodies (NG2-Ab) has been reported. In addition, recent studies show that exogenous NG2 induces a block of axonal conduction. In this study, we demonstrate that acute intraspinal injections of NG2-Ab prevented an acute block of conduction by NG2. Chronic intrathecal infusion of NG2-Ab improved the following deficits induced by chronic midthoracic lateral hemisection (HX) injury: (1) synaptic transmission to lumbar motoneurons, (2) retrograde transport of fluororuby anatomical tracer from L5 to L1, and (3) locomotor function assessed by automated CatWalk gait analysis. We collected data in an attempt to understand the cellular and molecular mechanisms underlying the NG2-Ab-induced improvement of synaptic transmission in HX-injured spinal cord. These data showed the following: (1) that chronic NG2-Ab infusion improved conduction and axonal excitability in chronically HX-injured rats, (2) that antibody treatment increased the density of serotonergic axons with ventral regions of spinal segments L1-L5, (3) and that NG2-positive processes contact nodes of Ranvier within the nodal gap at the location of nodal Na(+) channels, which are known to be critical for propagation of action potentials along axons. Together, these results demonstrate that treatment with NG2-Ab partially improves both synaptic and anatomical plasticity in damaged spinal cord and promotes functional recovery after HX SCI. Neutralizing antibodies against NG2 may be an excellent way to promote axonal conduction after SCI.
Assuntos
Anticorpos Monoclonais/uso terapêutico , Antígenos/imunologia , Atividade Motora/efeitos dos fármacos , Proteoglicanas/imunologia , Traumatismos da Medula Espinal/tratamento farmacológico , Transmissão Sináptica/efeitos dos fármacos , Análise de Variância , Animais , Anticorpos Monoclonais/farmacologia , Antígenos/farmacologia , Transporte Biológico/efeitos dos fármacos , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/fisiopatologia , Moléculas de Adesão Celular Neuronais/metabolismo , Dextranos/metabolismo , Estimulação Elétrica , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Comportamento Exploratório/efeitos dos fármacos , Feminino , Lateralidade Funcional , Marcha/efeitos dos fármacos , Plasticidade Neuronal/efeitos dos fármacos , Técnicas de Patch-Clamp , Proteoglicanas/farmacologia , Nós Neurofibrosos/efeitos dos fármacos , Nós Neurofibrosos/metabolismo , Ratos , Ratos Sprague-Dawley , Rodaminas/metabolismo , Serotonina/metabolismo , Canais de Sódio/metabolismo , Traumatismos da Medula Espinal/patologia , Traumatismos da Medula Espinal/fisiopatologiaRESUMO
Autoantibodies against gangliosides GM1 or GD1a are associated with acute motor axonal neuropathy (AMAN) and acute motor-sensory axonal neuropathy (AMSAN), whereas antibodies to GD1b ganglioside are detected in acute sensory ataxic neuropathy (ASAN). These neuropathies have been proposed to be closely related and comprise a continuous spectrum, although the underlying mechanisms, especially for sensory nerve involvement, are still unclear. Antibodies to GM1 and GD1a have been proposed to disrupt the nodes of Ranvier in motor nerves via complement pathway. We hypothesized that the disruption of nodes of Ranvier is a common mechanism whereby various anti-ganglioside antibodies found in these neuropathies lead to nervous system dysfunction. Here, we show that the IgG monoclonal anti-GD1a/GT1b antibody injected into rat sciatic nerves caused deposition of IgG and complement products on the nodal axolemma and disrupted clusters of nodal and paranodal molecules predominantly in motor nerves, and induced early reversible motor nerve conduction block. Injection of IgG monoclonal anti-GD1b antibody induced nodal disruption predominantly in sensory nerves. In an ASAN rabbit model associated with IgG anti-GD1b antibodies, complement-mediated nodal disruption was observed predominantly in sensory nerves. In an AMAN rabbit model associated with IgG anti-GM1 antibodies, complement attack of nodes was found primarily in motor nerves, but occasionally in sensory nerves as well. Periaxonal macrophages and axonal degeneration were observed in dorsal roots from ASAN rabbits and AMAN rabbits. Thus, nodal disruption may be a common mechanism in immune-mediated neuropathies associated with autoantibodies to gangliosides GM1, GD1a, or GD1b, providing an explanation for the continuous spectrum of AMAN, AMSAN, and ASAN.
Assuntos
Anticorpos/efeitos adversos , Gangliosídeos/imunologia , Polineuropatias/induzido quimicamente , Nós Neurofibrosos/efeitos dos fármacos , Doença Aguda , Animais , Colina O-Acetiltransferase/metabolismo , Complemento C3/metabolismo , Modelos Animais de Doenças , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/metabolismo , Gânglios Espinais/ultraestrutura , Gangliosidose GM1/imunologia , Injeções Subcutâneas , Microscopia Eletrônica de Transmissão , Condução Nervosa/efeitos dos fármacos , Condução Nervosa/fisiologia , Polineuropatias/fisiopatologia , Coelhos , Nós Neurofibrosos/metabolismo , Nós Neurofibrosos/ultraestrutura , Ratos , Ratos Sprague-Dawley , Nervo Isquiático/citologia , Nervo Isquiático/efeitos dos fármacos , Espectrina/metabolismo , Medula Espinal/patologia , Estatísticas não Paramétricas , Fatores de TempoRESUMO
Myelin damage can lead to the loss of axonal conduction and paralysis in multiple sclerosis and spinal cord injury. Here, we show that acrolein, a lipid peroxidation product, can cause significant myelin damage in isolated guinea pig spinal cord segments. Acrolein-mediated myelin damage is particularly conspicuous in the paranodal region in both a calcium dependent (nodal lengthening) and a calcium-independent manner (paranodal myelin splitting). In addition, paranodal protein complexes can dissociate with acrolein incubation. Degraded myelin basic protein is also detected at the paranodal region. Acrolein-induced exposure and redistribution of paranodal potassium channels and the resulting axonal conduction failure can be partially reversed by 4-AP, a potassium channel blocker. From this data, it is clear that acrolein is capable of inflicting myelin damage as well as axonal degeneration, and may represent an important factor in the pathogenesis in multiple sclerosis and spinal cord injury.
Assuntos
Acroleína/toxicidade , Bainha de Mielina/efeitos dos fármacos , Bainha de Mielina/metabolismo , Medula Espinal/efeitos dos fármacos , 4-Aminopiridina/farmacologia , Potenciais de Ação/efeitos dos fármacos , Análise de Variância , Animais , Cálcio/metabolismo , Moléculas de Adesão Celular/metabolismo , Relação Dose-Resposta a Droga , Feminino , Cobaias , Técnicas In Vitro , Proteína Básica da Mielina/metabolismo , Bainha de Mielina/patologia , Proteínas do Tecido Nervoso/metabolismo , Condução Nervosa/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Bloqueadores dos Canais de Potássio/farmacologia , Canais de Potássio/metabolismo , Nós Neurofibrosos/efeitos dos fármacos , Análise Espectral Raman , Medula Espinal/citologiaRESUMO
The complex manifestations of chronic multiple sclerosis (MS)are due in part to widespread axonal abnormalities that affect lesional and nonlesional areas in the central nervous system. We describe an association between microglial activation and axon/oligodendrocyte pathology at nodal and paranodal domains in normal-appearing white matter (NAWM) of MS cases and in experimental autoimmune encephalomyelitis (EAE). The extent of paranodal axoglial (neurofascin-155(+)/Caspr1(+)) disruption correlated with local microglial inflammation and axonal injury (expression of nonphosphorylated neurofilaments) in MS NAWM. These changes were independent of demyelinating lesions and did not correlate with the density of infiltrating lymphocytes. Similar axoglial alterations were seen in the subcortical white matter of Parkinson disease cases and in preclinical EAE, at a time point when there is microglial activation before the infiltration of immune cells. Disruption of the axoglial unit in adjuvant-immunized animals was reversible and coincided with the resolution of microglial inflammation; paranodal damage and microglial inflammation persisted in chronic EAE. Axoglial integrity could be preserved by the administration of minocycline, which inhibited microglial activation, in actively immunized animals. These data indicate that, in MS NAWM, permanent disruption to axoglial domains in an environment of microglial inflammation is an early indicator of axonal injury that likely affects nerve conduction and may contribute to physiologic dysfunction.
Assuntos
Axônios/patologia , Encéfalo/patologia , Microglia/patologia , Microglia/fisiologia , Esclerose Múltipla/patologia , Adulto , Idoso , Análise de Variância , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Encéfalo/metabolismo , Complexo CD3/metabolismo , Proteínas de Ligação ao Cálcio , Caspase 1/metabolismo , Proteínas de Ligação a DNA/metabolismo , Encefalomielite Autoimune Experimental/induzido quimicamente , Encefalomielite Autoimune Experimental/tratamento farmacológico , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/patologia , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/imunologia , Glicoproteínas , Antígenos HLA-DR/metabolismo , Humanos , Indóis , Canal de Potássio Kv1.2/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas dos Microfilamentos , Microglia/imunologia , Microscopia Confocal , Pessoa de Meia-Idade , Minociclina/farmacologia , Minociclina/uso terapêutico , Glicoproteína Mielina-Oligodendrócito , Canal de Sódio Disparado por Voltagem NAV1.6 , Proteínas do Tecido Nervoso/metabolismo , Proteínas de Neurofilamentos/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Fragmentos de Peptídeos , Mudanças Depois da Morte , Nós Neurofibrosos/efeitos dos fármacos , Nós Neurofibrosos/metabolismo , Nós Neurofibrosos/patologia , Canais de Sódio/metabolismo , Receptor 4 Toll-Like/metabolismoRESUMO
Crush to the mammalian spinal cord leads to primary mechanical damage followed by a series of secondary biomolecular events. The chronic outcomes of spinal cord injuries have been well detailed in multiple previous studies. However, the initial mechanism by which constant displacement injury induces conduction block is still unclear. We therefore investigated the anatomical factors that may directly contribute to electrophysiological deficiencies in crushed cord. Ventral white matter strips from adult guinea pig spinal cord were compressed 80%, either briefly or continuously for 30 min. Immunofluorescence imaging and coherent anti-Stokes Raman spectroscopy (CARS) were used to visualize key pathological changes to ion channels and myelin. Compression caused electrophysiological deficits, including compound action potential (CAP) decline that was injury-duration-dependent. Compression further induced myelin retraction at the nodes of Ranvier. This demyelination phenomenon exposed a subclass of voltage-gated potassium channels (K(v)1.2). Application of a potassium channel blocker, 4-aminopyridine (4-AP), restored the CAP to near pre-injury levels. To further investigate the myelin detachment phenomenon, we constructed a three-dimensional finite element model (FEM) of the axon and surrounding myelin. We found that the von Mises stress was highly concentrated at the paranodal junction. Thus, the mechanism of myelin retraction may be associated with stress concentrations that cause debonding at the axoglial interface. In conclusion, our findings implicate myelin disruption and potassium channel pathophysiology as the culprits causing compression-mediated conduction block. This result highlights a potential therapeutic target for compressive spinal cord injuries.
Assuntos
Doenças Desmielinizantes/patologia , Bainha de Mielina/patologia , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Compressão da Medula Espinal/patologia , Compressão da Medula Espinal/fisiopatologia , 4-Aminopiridina/farmacologia , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Análise de Variância , Animais , Doenças Desmielinizantes/metabolismo , Doenças Desmielinizantes/fisiopatologia , Eletrofisiologia , Análise de Elementos Finitos , Imunofluorescência , Cobaias , Bainha de Mielina/efeitos dos fármacos , Bainha de Mielina/metabolismo , Bainha de Mielina/fisiologia , Condução Nervosa/efeitos dos fármacos , Condução Nervosa/fisiologia , Nós Neurofibrosos/efeitos dos fármacos , Nós Neurofibrosos/metabolismo , Nós Neurofibrosos/patologia , Nós Neurofibrosos/fisiologia , Análise Espectral , Compressão da Medula Espinal/metabolismoRESUMO
The node of Ranvier is a tiny segment of a myelinated fiber with various types of specializations adapted for generation of high-speed nerve impulses. It is ionically specialized with respect to ion channel segregation and ionic fluxes, and metabolically specialized in ionic pump expression and mitochondrial density augmentation. This report examines the interplay of three important parameters (calcium fluxes, Na pumps, mitochondrial motility) at nodes of Ranvier in frog during normal nerve activity. First, we used calcium dyes to resolve a highly localized elevation in axonal calcium at a node of Ranvier during action potentials, and showed that this calcium elevation retards mitochondrial motility during nerve impulses. Second, we found, surprisingly, that physiologic activation of the Na pumps retards mitochondrial motility. Blocking Na pumps alone greatly prevents action potentials from retarding mitochondrial motility, which reveals that mitochondrial motility is coupled to Na/K-ATPase. In conclusion, we suggest that during normal nerve activity, Ca elevation and activation of Na/K-ATPase act, possibly in a synergistic manner, to recruit mitochondria to a node of Ranvier to match metabolic needs.
Assuntos
Potenciais de Ação/fisiologia , Cálcio/fisiologia , Mitocôndrias/enzimologia , Fibras Nervosas Mielinizadas/enzimologia , Nós Neurofibrosos/enzimologia , ATPase Trocadora de Sódio-Potássio/fisiologia , Potenciais de Ação/efeitos dos fármacos , Animais , Bloqueadores dos Canais de Cálcio/farmacologia , Masculino , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Fibras Nervosas Mielinizadas/efeitos dos fármacos , Fibras Nervosas Mielinizadas/metabolismo , Nós Neurofibrosos/efeitos dos fármacos , Nós Neurofibrosos/metabolismo , Xenopus laevisRESUMO
Axonal dysfunction as a result of persistent demyelination has been increasingly appreciated as a cause of functional deficit in demyelinating diseases such as multiple sclerosis. Therefore, it is crucial to understand the ultimate causes of ongoing axonal dysfunction and find effective measures to prevent axon loss. Our findings related to functional deficit and functional recovery of axons from a demyelinating insult are important preliminary steps towards understanding this issue. Cuprizone diet for 3-6 wks triggered extensive corpus callosum (CC) demyelination, reduced axon conduction, and resulted in loss of axon structural integrity including nodes of Ranvier. Replacing cuprizone diet with normal diet led to regeneration of myelin, but did not fully reverse the conduction and structural deficits. A shorter 1.5 wk cuprizone diet also caused demyelination of the CC, with minimal loss of axon structure and nodal organization. Switching to normal diet led to remyelination and restored callosal axon conduction to normal levels. Our findings suggest the existence of a critical window of time for remyelination, beyond which demyelinated axons become damaged beyond the point of repair and permanent functional loss follows. Moreover, initiating remyelination early within the critical period, before prolonged demyelination-induced axon damage ensues, will improve functional axon recovery and inhibit disease progression.
Assuntos
Axônios/fisiologia , Corpo Caloso/fisiologia , Bainha de Mielina/fisiologia , Potenciais de Ação , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/fisiologia , Axônios/efeitos dos fármacos , Moléculas de Adesão Celular Neuronais/metabolismo , Linhagem da Célula , Cuprizona/administração & dosagem , Dieta , Feminino , Canal de Potássio Kv1.2/metabolismo , Camundongos , Camundongos Transgênicos , Microglia/efeitos dos fármacos , Microglia/fisiologia , Canal de Sódio Disparado por Voltagem NAV1.6 , Proteínas do Tecido Nervoso/metabolismo , Oligodendroglia/efeitos dos fármacos , Oligodendroglia/fisiologia , Nós Neurofibrosos/efeitos dos fármacos , Nós Neurofibrosos/ultraestrutura , Regeneração , Canais de Sódio/metabolismoRESUMO
Dexamethasone causes extensive physiologic reactions including the reduction of inflammation and pain. Here, we asked whether it also affected dental or periodontal cells or dental innervation by altering voltage-gated sodium channel Na(v)1.6 immunoreactivity (IR) or neural synaptophysin. Daily dexamethasone (0.2 mg/kg) given for 1 week to rats caused 12-fold increased intensity of Na(v)1.6-IR in dendritic pulpal cells of normal molars and incisors compared with vehicle treatment. These cells also co-localized monocyte (ED-1) or dendritic cell (CD11b/Ox42) markers, and their location in molars expanded during dexamethasone treatment to include deeper pulp. Furthermore, dexamethasone caused a 10-fold decrease in the number of Na(v)1.6-immunoreactive multinucleate osteoclasts along the alveolar bone of molar root sockets. No changes occurred for neural Na(v)1.6 at axonal nodes of Ranvier, even though IR for calcitonin gene-related peptide was greatly decreased, as expected, and neural synaptophysin-IR was decreased 59% by dexamethasone. At 4 days after tooth injury, pulpal vasodilation and increased Na(v)1.6-immunoreactive pulp cells were similar for all groups. Thus, dexamethasone changes dental pulp cell and alveolar osteoclast Na(v)1.6-IR in normal teeth, but different mechanisms occur after tooth injury when tissue reactions were similar for dexamethasone- and vehicle-treated rats. Steroid-induced alterations of dental pain and inflammation coincide with altered exocytic capability in dental nerve fibers as shown by synaptophysin-IR and with altered pulp cell Na(v)1.6-IR and osteoclast number, but not with any changes in Na(v)1.6-IR for nodes of Ranvier in myelinated dental axons.
Assuntos
Polpa Dentária/efeitos dos fármacos , Dexametasona/farmacologia , Osteoclastos/efeitos dos fármacos , Nós Neurofibrosos/efeitos dos fármacos , Canais de Sódio/metabolismo , Sinaptofisina/metabolismo , Animais , Axônios/efeitos dos fármacos , Axônios/metabolismo , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Contagem de Células , Células Dendríticas/citologia , Células Dendríticas/efeitos dos fármacos , Polpa Dentária/citologia , Polpa Dentária/inervação , Polpa Dentária/metabolismo , Masculino , Monócitos/citologia , Monócitos/efeitos dos fármacos , Canal de Sódio Disparado por Voltagem NAV1.6 , Osteoclastos/citologia , Nós Neurofibrosos/metabolismo , Ratos , Traumatismos Dentários/tratamento farmacológico , Traumatismos Dentários/patologia , Alvéolo Dental/citologia , Alvéolo Dental/efeitos dos fármacos , Vasodilatadores/metabolismoRESUMO
In neurons, generation and propagation of action potentials requires the precise accumulation of sodium channels at the axonal initial segment (AIS) and in the nodes of Ranvier through ankyrin G scaffolding. We found that the ankyrin-binding motif of Na(v)1.2 that determines channel concentration at the AIS depends on a glutamate residue (E1111), but also on several serine residues (S1112, S1124, and S1126). We showed that phosphorylation of these residues by protein kinase CK2 (CK2) regulates Na(v) channel interaction with ankyrins. Furthermore, we observed that CK2 is highly enriched at the AIS and the nodes of Ranvier in vivo. An ion channel chimera containing the Na(v)1.2 ankyrin-binding motif perturbed endogenous sodium channel accumulation at the AIS, whereas phosphorylation-deficient chimeras did not. Finally, inhibition of CK2 activity reduced sodium channel accumulation at the AIS of neurons. In conclusion, CK2 contributes to sodium channel organization by regulating their interaction with ankyrin G.
Assuntos
Anquirinas/metabolismo , Axônios/metabolismo , Caseína Quinase II/metabolismo , Membrana Celular/metabolismo , Canais de Sódio/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Axônios/efeitos dos fármacos , Axônios/enzimologia , Caseína Quinase II/antagonistas & inibidores , Membrana Celular/efeitos dos fármacos , Células Cultivadas , Análise por Conglomerados , Ácido Glutâmico/metabolismo , Hipocampo/citologia , Ativação do Canal Iônico/efeitos dos fármacos , Dados de Sequência Molecular , Fosforilação/efeitos dos fármacos , Mutação Puntual/genética , Ligação Proteica/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Nós Neurofibrosos/efeitos dos fármacos , Nós Neurofibrosos/enzimologia , Ratos , Serina/metabolismo , Canais de Sódio/químicaRESUMO
Neurons have high densities of voltage-gated Na(+) channels that are restricted to axon initial segments and nodes of Ranvier, where they are responsible for initiating and propagating action potentials. New findings (Bréchet, A., M.-P. Fache, A. Brachet, G. Ferracci, A. Baude, M. Irondelle, S. Pereira, C. Leterrier, and B. Dargent. 2008. J. Cell Biol. 183:1101-1114) reveal that phosphorylation of several key serine residues by the protein kinase CK2 regulates Na(+) channel interactions with ankyrin G. The presence of CK2 at the axon initial segment and nodes of Ranvier provides a mechanism to regulate the specific accumulation and retention of Na(+) channels within these important domains.