Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 832
Filtrar
1.
Mol Med ; 30(1): 87, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38877413

RESUMO

BACKGROUND: Intervertebral disc degeneration (IDD) is a common musculoskeletal degenerative disease, which often leads to low back pain and even disability, resulting in loss of labor ability and decreased quality of life. Although many progresses have been made in the current research, the underlying mechanism of IDD remains unclear. The apoptosis of nucleus pulposus (NP) cells (NPCs) is an important pathological mechanism in intervertebral disc degeneration (IDD). This study evaluated the relationship between S100A6 and NPCs and its underlying mechanism. METHODS: Mass spectrometry, bioinformatics, and quantitative real-time polymerase chain reaction (qRT-PCR) analyses were used to screen and verify hub genes for IDD in human IVD specimens with different degeneration degrees. Western blotting, immunohistochemistry (IHC), and/or immunofluorescence (IF) were used to detect the expression level of S100A6 in human NP tissues and NPCs. The apoptotic phenotype of NPCs and Wnt/ß-catenin signaling pathway were evaluated using flow cytometry, western blotting, and IF. S100A6 was overexpressed or knocked down in NPCs to determine its impact on apoptosis and Wnt/ß-catenin signaling pathway activity. Moreover, we used the XAV-939 to inhibit and SKL2001 to activate the Wnt/ß-catenin signaling pathway. The therapeutic effect of S100A6 inhibition on IDD was also evaluated. RESULTS: S100A6 expression increased in IDD. In vitro, increased S100A6 expression promoted apoptosis in interleukin (IL)-1ß-induced NPCs. In contrast, the inhibition of S100A6 expression partially alleviated the progression of annulus fibrosus (AF) puncture-induced IDD in rats. Mechanistic studies revealed that S100A6 regulates NPC apoptosis via Wnt/ß-catenin signaling pathway. CONCLUSIONS: This study showed that S100A6 expression increased during IDD and promoted NPCs apoptosis by regulating the Wnt/ß-catenin signaling pathway, suggesting that S100A6 is a promising new therapeutic target for IDD.


Assuntos
Apoptose , Degeneração do Disco Intervertebral , Núcleo Pulposo , Proteína A6 Ligante de Cálcio S100 , Via de Sinalização Wnt , Núcleo Pulposo/metabolismo , Núcleo Pulposo/patologia , Apoptose/genética , Humanos , Proteína A6 Ligante de Cálcio S100/metabolismo , Proteína A6 Ligante de Cálcio S100/genética , Degeneração do Disco Intervertebral/metabolismo , Degeneração do Disco Intervertebral/genética , Degeneração do Disco Intervertebral/patologia , Animais , Masculino , Feminino , Ratos , Adulto , Pessoa de Meia-Idade , beta Catenina/metabolismo , beta Catenina/genética , Ratos Sprague-Dawley , Modelos Animais de Doenças , Proteínas de Ciclo Celular
2.
J Cell Mol Med ; 28(12): e18492, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38890795

RESUMO

Intervertebral disc degeneration (IVDD) severely affects the work and the quality of life of people. We previously demonstrated that silencing activation transcription factor 3 (ATF3) blocked the IVDD pathological process by regulating nucleus pulposus cell (NPC) ferroptosis, apoptosis, inflammation, and extracellular matrix (ECM) metabolism. Nevertheless, whether miR-874-3p mediated the IVDD pathological process by targeting ATF3 remains unclear. We performed single-cell RNA sequencing (scRNA-seq) and bioinformatics analysis to identify ATF3 as a key ferroptosis gene in IVDD. Then, Western blotting, flow cytometry, ELISA, and animal experiments were performed to validate the roles and regulatory mechanisms of miR-874-3p/ATF3 signalling axis in IVDD. ATF3 was highly expressed in IVDD patients and multiple cell types of IVDD rat, as revealed by scRNA-seq and bioinformatics analysis. GO analysis unveiled the involvement of ATF3 in regulating cell apoptosis and ECM metabolism. Furthermore, we verified that miR-874-3p might protect against IVDD by inhibiting NPC ferroptosis, apoptosis, ECM degradation, and inflammatory response by targeting ATF3. In vivo experiments displayed the protective effect of miR-874-3p/ATF3 axis on IVDD. These findings propose the potential of miR-874-3p and ATF3 as biomarkers of IVDD and suggest that targeting the miR-874-3p/ATF3 axis may be a therapeutic target for IVDD.


Assuntos
Fator 3 Ativador da Transcrição , Ferroptose , Degeneração do Disco Intervertebral , MicroRNAs , Núcleo Pulposo , Fator 3 Ativador da Transcrição/metabolismo , Fator 3 Ativador da Transcrição/genética , Degeneração do Disco Intervertebral/genética , Degeneração do Disco Intervertebral/metabolismo , Degeneração do Disco Intervertebral/patologia , MicroRNAs/genética , MicroRNAs/metabolismo , Animais , Humanos , Ratos , Ferroptose/genética , Masculino , Núcleo Pulposo/metabolismo , Núcleo Pulposo/patologia , Análise de Célula Única/métodos , Apoptose/genética , Transdução de Sinais , Feminino , Pessoa de Meia-Idade , Ratos Sprague-Dawley , Análise de Sequência de RNA/métodos , Matriz Extracelular/metabolismo , Adulto , Regulação da Expressão Gênica , Modelos Animais de Doenças , Biologia Computacional/métodos
3.
Cell Mol Biol (Noisy-le-grand) ; 70(6): 192-198, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38836662

RESUMO

Intervertebral disc degeneration (IDD) is characterized by the decreased function and number of nucleus pulposus cells (NPCs) caused by excessive intervertebral disc (IVD) pressure. This research aims to provide novel insights into IDD prevention and treatment by clarifying the effect of andrographolide (ANDR) on IDD cell autophagy and oxidative stress under mechanical stress. Human primary NPCs were extracted from the nucleus pulposus tissue of non-IDD trauma patients. An IDD cell model was established by posing mechanical traction on NPCs. Through the construction of an IDD rat model, the influence of ANDR on IDD pathological changes was explored in vivo. The proliferation and autophagy of NPCs were decreased while the apoptosis rate and oxidative stress reaction were increased by mechanical traction. ANDR intervention obviously alleviated this situation. MiR-9 showed upregulated expression in IDD cell model, while FoxO3 and PINK1/Parkin were downregulated. Decreased proliferation and autophagy as well as enhanced apoptosis and oxidative stress response of NPCs were observed following miR-9 mimics and H89 intervention, while the opposite trend was observed after FoxO3 overexpression. FoxO3 is a direct target downstream miR-9. The in vivo experiments revealed that after ANDR intervention, the number of apoptotic cells in rat IVD tissue decreased and the autophagy increased. In conclusion, ANDR improves NPC proliferation, and autophagy, inhibits apoptosis and oxidative stress, and alleviates the pathological changes of IDD via the miR-9/FoxO3/PINK1/Parkin axis, which may be a new and effective treatment for IDD in the future.


Assuntos
Autofagia , Diterpenos , Proteína Forkhead Box O3 , Degeneração do Disco Intervertebral , MicroRNAs , Núcleo Pulposo , Estresse Oxidativo , Proteínas Quinases , Ratos Sprague-Dawley , Estresse Mecânico , Ubiquitina-Proteína Ligases , MicroRNAs/metabolismo , MicroRNAs/genética , Autofagia/efeitos dos fármacos , Proteína Forkhead Box O3/metabolismo , Proteína Forkhead Box O3/genética , Estresse Oxidativo/efeitos dos fármacos , Animais , Degeneração do Disco Intervertebral/metabolismo , Degeneração do Disco Intervertebral/patologia , Humanos , Diterpenos/farmacologia , Núcleo Pulposo/metabolismo , Núcleo Pulposo/efeitos dos fármacos , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Proteínas Quinases/metabolismo , Proteínas Quinases/genética , Ratos , Masculino , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Feminino , Adulto , Modelos Animais de Doenças
4.
Int Immunopharmacol ; 134: 112202, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38723371

RESUMO

Intervertebral disc (IVD) degeneration, induced by aging and irregular mechanical strain, is highly prevalent in the elderly population, serving as a leading cause of chronic low back pain and disability. Evolving evidence has revealed the involvement of nucleus pulposus (NP) pyroptosis in the pathogenesis of IVD degeneration, while the precise regulatory mechanisms of NP pyroptosis remain obscure. Misshapen/Nck-interacting kinase (NIK)-related kinase 1 (MINK1), a serine-threonine protein kinase, has the potential to modulate the activation of NLRP3 inflammasome, indicating its pivotal role in governing pyroptosis. In this study, to assess the significance of MINK1 in NP pyroptosis and IVD degeneration, NP tissues from patients with varying degrees of IVD degeneration, and IVD tissues from both aging-induced and lumbar spine instability (LSI) surgery-induced IVD degeneration mouse models, with or without MINK1 ablation, were meticulously evaluated. Our findings indicated a notable decline in MINK1 expression in NP tissues of patients with IVD degeneration and both mouse models as degeneration progresses, accompanied by heightened matrix degradation and increased NP pyroptosis. Moreover, MINK1 ablation led to substantial activation of NP pyroptosis in both mouse models, and accelerating ECM degradation and intensifying the degeneration phenotype in mechanically stress-induced mice. Mechanistically, MINK1 deficiency triggered NF-κB signaling in NP tissues. Overall, our data illustrate an inverse correlation between MINK1 expression and severity of IVD degeneration, and the absence of MINK1 stimulates NP pyroptosis, exacerbating IVD degeneration by activating NF-κB signaling, highlighting a potential innovative therapeutic target in treating IVD degeneration.


Assuntos
Degeneração do Disco Intervertebral , Núcleo Pulposo , Piroptose , Adulto , Idoso , Animais , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Modelos Animais de Doenças , Degeneração do Disco Intervertebral/patologia , Degeneração do Disco Intervertebral/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Núcleo Pulposo/patologia , Núcleo Pulposo/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética
5.
Acupunct Med ; 42(3): 146-154, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38702866

RESUMO

BACKGROUND: Cervical spondylosis (CS) is a prevalent disorder that can have a major negative impact on quality of life. Traditional conservative treatment has limited efficacy, and electroacupuncture (EA) is a novel treatment option. We investigated the application and molecular mechanism of EA treatment in a rat model of cervical intervertebral disk degeneration (CIDD). METHODS: The CIDD rat model was established, following which rats in the electroacupuncture (EA) group received EA. For overexpression of IL-22 or inhibition of JAK2-STAT3 signaling, the rats were injected intraperitoneally with recombinant IL-22 protein (p-IL-22) or the JAK2-STAT3 (Janus kinase 2-signal transducer and activator of transcription protein 3) inhibitor AG490 after model establishment. Rat nucleus pulposus (NP) cells were isolated and cultured. Cell counting kit-8 and flow cytometry were used to analyze the viability and apoptosis of the NP cells. Expression of IL-22, JAK2 and STAT3 was determined using RT-qPCR. Expression of IL-22/JAK2-STAT3 pathway and apoptosis related proteins was detected by Western blotting (WB). RESULTS: EA protected the NP tissues of CIDD rats by regulating the IL-22/JAK2-STAT3 pathway. Overexpression of IL-22 significantly promoted the expression of tumor necrosis factor (TNF)-α, IL-6, IL-1ß, matrix metalloproteinase (MMP)3 and MMP13 compared with the EA group. WB demonstrated that the expression of IL-22, p-JAK2, p-STAT3, caspase-3 and Bax in NP cells of the EA group was significantly reduced and Bcl-2 elevated compared with the model group. EA regulated cytokines and MMP through activation of IL-22/JAK2-STAT3 signaling in CIDD rat NP cells. CONCLUSION: We demonstrated that EA affected apoptosis by regulating the IL-22/JAK2-STAT3 pathway in NP cells and reducing inflammatory factors in the CIDD rat model. The results extend our knowledge of the mechanisms of action underlying the effects of EA as a potential treatment approach for CS in clinical practice.


Assuntos
Apoptose , Modelos Animais de Doenças , Eletroacupuntura , Interleucina 22 , Interleucinas , Degeneração do Disco Intervertebral , Janus Quinase 2 , Núcleo Pulposo , Ratos Sprague-Dawley , Fator de Transcrição STAT3 , Transdução de Sinais , Animais , Degeneração do Disco Intervertebral/terapia , Degeneração do Disco Intervertebral/metabolismo , Degeneração do Disco Intervertebral/genética , Núcleo Pulposo/metabolismo , Núcleo Pulposo/citologia , Janus Quinase 2/metabolismo , Janus Quinase 2/genética , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT3/genética , Ratos , Interleucinas/metabolismo , Interleucinas/genética , Masculino , Humanos , Vértebras Cervicais
6.
Free Radic Biol Med ; 221: 245-256, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-38806104

RESUMO

Low back pain (LBP) may profoundly impact the quality of life across the globe, and intervertebral disc degeneration (IVDD) is the major cause of LBP; however, targeted pharmaceutical interventions for IVDD are still lacking. Ferroptosis is a novel form of iron-dependent programmed cell death. Studies have showed that ferroptosis may closely associate with IVDD; thus, targeting ferroptosis may have great potential for IVDD therapy. Non-steroidal anti-inflammatory drugs (NSAIDs) are the first-line medications for LBP, while nuclear factor-erythroid 2-related factor-2 (Nrf2) is a key inhibitory protein for ferroptosis. In the current study, we conducted a molecular docking screening between NSAIDs library and Nrf2 protein. Tinoridine was shown to have a high binding affinity to Nrf2. The in vitro study in nucleus pulposus (NP) cells showed that Tinoridine may promote the expression and activity of Nrf2, it may also rescue RSL3-induced ferroptosis in NP cells. Knockdown of Nrf2 reverses the protective effect of Tinoridine on RSL3-induced ferroptosis in NP cells, suggesting that the inhibitory effect of Tinoridine on ferroptosis is through Nrf2. In vivo study demonstrated that Tinoridine may attenuate the progression of IVDD in rats. As NSAIDs are already clinically used for LBP therapy, the current study supports Tinoridine's application from the view of ferroptosis inhibition.


Assuntos
Anti-Inflamatórios não Esteroides , Ferroptose , Degeneração do Disco Intervertebral , Fator 2 Relacionado a NF-E2 , Ferroptose/efeitos dos fármacos , Animais , Degeneração do Disco Intervertebral/tratamento farmacológico , Degeneração do Disco Intervertebral/patologia , Degeneração do Disco Intervertebral/metabolismo , Ratos , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/genética , Anti-Inflamatórios não Esteroides/farmacologia , Humanos , Núcleo Pulposo/efeitos dos fármacos , Núcleo Pulposo/metabolismo , Núcleo Pulposo/patologia , Simulação de Acoplamento Molecular , Masculino , Ratos Sprague-Dawley , Dor Lombar/tratamento farmacológico , Dor Lombar/patologia
7.
Matrix Biol ; 131: 46-61, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38806135

RESUMO

Syndecan 4 (SDC4), a cell surface heparan sulfate proteoglycan, is known to regulate matrix catabolism by nucleus pulposus cells in an inflammatory milieu. However, the role of SDC4 in the aging spine has never been explored. Here we analyzed the spinal phenotype of Sdc4 global knockout (KO) mice as a function of age. Micro-computed tomography showed that Sdc4 deletion severely reduced vertebral trabecular and cortical bone mass, and biomechanical properties of vertebrae were significantly altered in Sdc4 KO mice. These changes in vertebral bone were likely due to elevated osteoclastic activity. The histological assessment showed subtle phenotypic changes in the intervertebral disc. Imaging-Fourier transform-infrared analyses showed a reduced relative ratio of mature collagen crosslinks in young adult nucleus pulposus (NP) and annulus fibrosus (AF) of KO compared to wildtype discs. Additionally, relative chondroitin sulfate levels increased in the NP compartment of the KO mice. Transcriptomic analysis of NP tissue using CompBio, an AI-based tool showed biological themes associated with prominent dysregulation of heparan sulfate GAG degradation, mitochondria metabolism, autophagy, endoplasmic reticulum (ER)-associated misfolded protein processes and ER to Golgi protein processing. Overall, this study highlights the important role of SDC4 in fine-tuning vertebral bone homeostasis and extracellular matrix homeostasis in the mouse intervertebral disc.


Assuntos
Envelhecimento , Doenças Ósseas Metabólicas , Homeostase , Camundongos Knockout , Sindecana-4 , Animais , Camundongos , Sindecana-4/metabolismo , Sindecana-4/genética , Envelhecimento/metabolismo , Envelhecimento/genética , Doenças Ósseas Metabólicas/genética , Doenças Ósseas Metabólicas/metabolismo , Doenças Ósseas Metabólicas/patologia , Microtomografia por Raio-X , Disco Intervertebral/metabolismo , Disco Intervertebral/patologia , Núcleo Pulposo/metabolismo , Núcleo Pulposo/patologia , Matriz Extracelular/metabolismo , Matriz Extracelular/genética , Coluna Vertebral/metabolismo , Coluna Vertebral/patologia , Coluna Vertebral/diagnóstico por imagem , Anel Fibroso/metabolismo , Anel Fibroso/patologia , Osteoclastos/metabolismo
8.
Int J Biol Sci ; 20(7): 2370-2387, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38725841

RESUMO

The pathogenesis of Intervertebral Disc Degeneration (IDD) is complex and multifactorial, with cellular senescence of nucleus pulposus (NP) cells and inflammation playing major roles in the progression of IDD. The stimulator of interferon genes (STING) axis is a key mediator of inflammation during infection, cellular stress, and tissue damage. Here, we present a progressive increase in STING in senescent NP cells with the degradation disorder. The STING degradation function in normal NP cells can prevent IDD. However, the dysfunction of STING degradation through autophagy causes the accumulation and high expression of STING in senescent NP cells as well as inflammation continuous activation together significantly promotes IDD. In senescent NP cells and intervertebral discs (IVDs), we found that STING autophagy degradation was significantly lower than that of normal NP cells and IVDs when STING was activated by 2'3'-cGAMP. Also, the above phenomenon was found in STINGgt/gt, cGAS-/- mice with models of age-induced, lumbar instability-induced IDD as well as found in the rat caudal IVD puncture models. Taken together, we suggested that the promotion of STING autophagy degradation in senescent NP Cells demonstrated a potential therapeutic modality for the treatment of IDD.


Assuntos
Autofagia , Senescência Celular , Degeneração do Disco Intervertebral , Proteínas de Membrana , Núcleo Pulposo , Animais , Humanos , Masculino , Camundongos , Ratos , Autofagia/fisiologia , Senescência Celular/fisiologia , Degeneração do Disco Intervertebral/patologia , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Camundongos Endogâmicos C57BL , Núcleo Pulposo/metabolismo , Ratos Sprague-Dawley
9.
J Nanobiotechnology ; 22(1): 292, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38802882

RESUMO

BACKGROUND: The use of gene therapy to deliver microRNAs (miRNAs) has gradually translated to preclinical application for the treatment of intervertebral disc degeneration (IDD). However, the effects of miRNAs are hindered by the short half-life time and the poor cellular uptake, owing to the lack of efficient delivery systems. Here, we investigated nucleus pulposus cell (NPC) specific aptamer-decorated polymeric nanoparticles that can load miR-150-5p for IDD treatment. METHODS: The role of miR-150-5p during disc development and degeneration was examined by miR-150-5p knockout (KO) mice. Histological analysis was undertaken in disc specimens. The functional mechanism of miR-150-5p in IDD development was investigated by qRT-PCR assay, Western blot, coimmunoprecipitation and immunofluorescence. NPC specific aptamer-decorated nanoparticles was designed, and its penetration, stability and safety were evaluated. IDD progression was assessed by radiological analysis including X-ray and MRI, after the annulus fibrosus needle puncture surgery with miR-150-5p manipulation by intradiscal injection of nanoparticles. The investigations into the interaction between aptamer and receptor were conducted using mass spectrometry, molecular docking and molecular dynamics simulations. RESULTS: We investigated NPC-specific aptamer-decorated polymeric nanoparticles that can bind to miR-150-5p for IDD treatment. Furthermore, we detected that nanoparticle-loaded miR-150-5p inhibitors alleviated NPC senescence in vitro, and the effects of the nanoparticles were sustained for more than 3 months in vivo. The microenvironment of NPCs improves the endo/lysosomal escape of miRNAs, greatly inhibiting the secretion of senescence-associated factors and the subsequent degeneration of NPCs. Importantly, nanoparticles delivering miR-150-5p inhibitors attenuated needle puncture-induced IDD in mouse models by targeting FBXW11 and inhibiting TAK1 ubiquitination, resulting in the downregulation of NF-kB signaling pathway activity. CONCLUSIONS: NPC-targeting nanoparticles delivering miR-150-5p show favorable therapeutic efficacy and safety and may constitute a promising treatment for IDD.


Assuntos
Degeneração do Disco Intervertebral , Camundongos Knockout , MicroRNAs , Nanopartículas , Núcleo Pulposo , MicroRNAs/metabolismo , MicroRNAs/genética , Animais , Degeneração do Disco Intervertebral/metabolismo , Degeneração do Disco Intervertebral/terapia , Degeneração do Disco Intervertebral/tratamento farmacológico , Núcleo Pulposo/metabolismo , Nanopartículas/química , Camundongos , Masculino , Humanos , Camundongos Endogâmicos C57BL
10.
J Nanobiotechnology ; 22(1): 301, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38816771

RESUMO

Intervertebral disc degeneration (IVDD) is the primary factor contributing to low back pain (LBP). Unlike elderly patients, many young IVDD patients usually have a history of trauma or long-term abnormal stress, which may lead to local inflammatory reaction causing by immune cells, and ultimately accelerates degeneration. Research has shown the significance of M1-type macrophages in IVDD; nevertheless, the precise mechanism and the route by which it influences the function of nucleus pulposus cell (NPC) remain unknown. Utilizing a rat acupuncture IVDD model and an NPC degeneration model induced by lipopolysaccharide (LPS), we investigated the function of M1 macrophage-derived exosomes (M1-Exos) in IVDD both in vivo and in vitro in this study. We found that M1-Exos enhanced LPS-induced NPC senescence, increased the number of SA-ß-gal-positive cells, blocked the cell cycle, and promoted the activation of P21 and P53. M1-Exos derived from supernatant pretreated with the exosome inhibitor GW4869 reversed this result in vivo and in vitro. RNA-seq showed that Lipocalin2 (LCN2) was enriched in M1-Exos and targeted the NF-κB pathway. The quantity of SA-ß-gal-positive cells was significantly reduced with the inhibition of LCN2, and the expression of P21 and P53 in NPCs was decreased. The same results were obtained in the acupuncture-induced IVDD model. In addition, inhibition of LCN2 promotes the expression of type II collagen (Col-2) and inhibits the expression of matrix metalloproteinase 13 (MMP13), thereby restoring the equilibrium of metabolism inside the extracellular matrix (ECM) in vitro and in vivo. In addition, the NF-κB pathway is crucial for regulating M1-Exo-mediated NPC senescence. After the addition of M1-Exos to LPS-treated NPCs, p-p65 activity was significantly activated, while si-LCN2 treatment significantly inhibited p-p65 activity. Therefore, this paper demonstrates that M1 macrophage-derived exosomes have the ability to deliver LCN2, which activates the NF-κB signaling pathway, and exacerbates IVDD by accelerating NPC senescence. This may shed new light on the mechanism of IVDD and bring a fresh approach to IVDD therapy.


Assuntos
Senescência Celular , Exossomos , Degeneração do Disco Intervertebral , Lipocalina-2 , Macrófagos , NF-kappa B , Núcleo Pulposo , Ratos Sprague-Dawley , Transdução de Sinais , Animais , Exossomos/metabolismo , Núcleo Pulposo/metabolismo , Degeneração do Disco Intervertebral/metabolismo , Lipocalina-2/metabolismo , Lipocalina-2/genética , Ratos , NF-kappa B/metabolismo , Transdução de Sinais/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Masculino , Lipopolissacarídeos/farmacologia , Modelos Animais de Doenças
11.
Free Radic Biol Med ; 220: 139-153, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38705495

RESUMO

Epigenetic changes are important considerations for degenerative diseases. DNA methylation regulates crucial genes by epigenetic mechanism, impacting cell function and fate. DNA presents hypermethylation in degenerated nucleus pulposus (NP) tissue, but its role in intervertebral disc degeneration (IVDD) remains elusive. This study aimed to demonstrate that methyltransferase mediated hypermethylation was responsible for IVDD by integrative bioinformatics and experimental verification. Methyltransferase DNMT3B was highly expressed in severely degenerated NP tissue (involving human and rats) and in-vitro degenerated human NP cells (NPCs). Bioinformatics elucidated that hypermethylated genes were enriched in oxidative stress and ferroptosis, and the ferroptosis suppressor gene SLC40A1 was identified with lower expression and higher methylation in severely degenerated human NP tissue. Cell culture using human NPCs showed that DNMT3B induced ferroptosis and oxidative stress in NPCs by downregulating SLC40A1, promoting a degenerative cell phenotype. An in-vivo rat IVDD model showed that DNA methyltransferase inhibitor 5-AZA alleviated puncture-induced IVDD. Taken together, DNA methyltransferase DNMT3B aggravates ferroptosis and oxidative stress in NPCs via regulating SLC40A1. Epigenetic mechanism within DNA methylation is a promising therapeutic biomarker for IVDD.


Assuntos
DNA (Citosina-5-)-Metiltransferases , Metilação de DNA , DNA Metiltransferase 3B , Ferroptose , Degeneração do Disco Intervertebral , Núcleo Pulposo , Estresse Oxidativo , Adulto , Animais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Ratos , Azacitidina/farmacologia , Modelos Animais de Doenças , DNA (Citosina-5-)-Metiltransferases/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , Epigênese Genética , Ferroptose/genética , Degeneração do Disco Intervertebral/genética , Degeneração do Disco Intervertebral/patologia , Degeneração do Disco Intervertebral/metabolismo , Núcleo Pulposo/metabolismo , Núcleo Pulposo/patologia , Ratos Sprague-Dawley , Regulação para Cima
12.
Am J Physiol Cell Physiol ; 326(5): C1384-C1397, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38690917

RESUMO

Metabolic dysfunction of the extracellular matrix (ECM) is one of the primary causes of intervertebral disc degeneration (IVDD). Previous studies have demonstrated that the transcription factor Brachyury (Bry) has the potential to promote the synthesis of collagen II and aggrecan, while the specific mechanism is still unknown. In this study, we used a lipopolysaccharide (LPS)-induced model of nucleus pulposus cell (NPC) degeneration and a rat acupuncture IVDD model to elucidate the precise mechanism through which Bry affects collagen II and aggrecan synthesis in vitro and in vivo. First, we confirmed Bry expression decreased in degenerated human nucleus pulposus (NP) cells (NPCs). Knockdown of Bry exacerbated the decrease in collagen II and aggrecan expression in the lipopolysaccharide (LPS)-induced NPCs degeneration in vitro model. Bioinformatic analysis indicated that Smad3 may participate in the regulatory pathway of ECM synthesis regulated by Bry. Chromatin immunoprecipitation followed by quantitative polymerase chain reaction (ChIP-qPCR) and luciferase reporter gene assays demonstrated that Bry enhances the transcription of Smad3 by interacting with a specific motif on the promoter region. In addition, Western blot and reverse transcription-qPCR assays demonstrated that Smad3 positively regulates the expression of aggrecan and collagen II in NPCs. The following rescue experiments revealed that Bry-mediated regulation of ECM synthesis is partially dependent on Smad3 phosphorylation. Finally, the findings from the in vivo rat acupuncture-induced IVDD model were consistent with those obtained from in vitro assays. In conclusion, this study reveals that Bry positively regulates the synthesis of collagen II and aggrecan in NP through transcriptional activation of Smad3.NEW & NOTEWORTHY Mechanically, in the nucleus, Bry enhances the transcription of Smad3, leading to increased expression of Smad3 protein levels; in the cytoplasm, elevated substrate levels further lead to an increase in the phosphorylation of Smad3, thereby regulating collagen II and aggrecan expression. Further in vivo experiments provide additional evidence that Bry can alleviate IVDD through this mechanism.


Assuntos
Agrecanas , Matriz Extracelular , Proteínas Fetais , Degeneração do Disco Intervertebral , Núcleo Pulposo , Ratos Sprague-Dawley , Proteína Smad3 , Proteínas com Domínio T , Proteína Smad3/metabolismo , Proteína Smad3/genética , Núcleo Pulposo/metabolismo , Núcleo Pulposo/patologia , Animais , Matriz Extracelular/metabolismo , Proteínas com Domínio T/genética , Proteínas com Domínio T/metabolismo , Humanos , Ratos , Degeneração do Disco Intervertebral/genética , Degeneração do Disco Intervertebral/metabolismo , Degeneração do Disco Intervertebral/patologia , Agrecanas/metabolismo , Agrecanas/genética , Masculino , Proteínas Fetais/genética , Proteínas Fetais/metabolismo , Colágeno Tipo II/metabolismo , Colágeno Tipo II/genética , Regulação da Expressão Gênica , Feminino , Adulto , Pessoa de Meia-Idade , Células Cultivadas , Transcrição Gênica
13.
Exp Cell Res ; 439(1): 114089, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38740166

RESUMO

Nucleus pulposus cells (NPCs) apoptosis and inflammation are the extremely critical factors of intervertebral disc degeneration (IVDD). Nevertheless, the underlying procedure remains mysterious. Macrophage migration inhibitory factor (MIF) is a cytokine that promotes inflammation and has been demonstrated to have a significant impact on apoptosis and inflammation. For this research, we employed a model of NPCs degeneration stimulated by lipopolysaccharides (LPS) and a rat acupuncture IVDD model to examine the role of MIF in vitro and in vivo, respectively. Initially, we verified that there was a significant rise of MIF expression in the NP tissues of individuals with IVDD, as well as in rat models of IVDD. Furthermore, this augmented expression of MIF was similarly evident in degenerated NPCs. Afterwards, it was discovered that ISO-1, a MIF inhibitor, effectively decreased the quantity of cells undergoing apoptosis and inhibited the release of inflammatory molecules (TNF-α, IL-1ß, IL-6). Furthermore, it has been shown that the PI3K/Akt pathway plays a vital part in the regulation of NPCs degeneration by MIF. Ultimately, we showcased that the IVDD process was impacted by the MIF inhibitor in the rat model. In summary, our experimental results substantiate the significant involvement of MIF in the degeneration of NPCs, and inhibiting MIF activity can effectively mitigate IVDD.


Assuntos
Apoptose , Inflamação , Degeneração do Disco Intervertebral , Fatores Inibidores da Migração de Macrófagos , Núcleo Pulposo , Ratos Sprague-Dawley , Animais , Fatores Inibidores da Migração de Macrófagos/antagonistas & inibidores , Fatores Inibidores da Migração de Macrófagos/metabolismo , Núcleo Pulposo/metabolismo , Núcleo Pulposo/patologia , Degeneração do Disco Intervertebral/patologia , Degeneração do Disco Intervertebral/metabolismo , Apoptose/efeitos dos fármacos , Inflamação/metabolismo , Inflamação/patologia , Ratos , Masculino , Humanos , Oxirredutases Intramoleculares/metabolismo , Oxirredutases Intramoleculares/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Feminino , Isoxazóis/farmacologia , Adulto , Pessoa de Meia-Idade , Proteínas Proto-Oncogênicas c-akt/metabolismo , Células Cultivadas , Modelos Animais de Doenças , Fosfatidilinositol 3-Quinases/metabolismo
14.
Mil Med Res ; 11(1): 28, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38711073

RESUMO

BACKGROUND: Intervertebral disc degeneration (IVDD) is a multifaceted condition characterized by heterogeneity, wherein the balance between catabolism and anabolism in the extracellular matrix of nucleus pulposus (NP) cells plays a central role. Presently, the available treatments primarily focus on relieving symptoms associated with IVDD without offering an effective cure targeting its underlying pathophysiological processes. D-mannose (referred to as mannose) has demonstrated anti-catabolic properties in various diseases. Nevertheless, its therapeutic potential in IVDD has yet to be explored. METHODS: The study began with optimizing the mannose concentration for restoring NP cells. Transcriptomic analyses were employed to identify the mediators influenced by mannose, with the thioredoxin-interacting protein (Txnip) gene showing the most significant differences. Subsequently, small interfering RNA (siRNA) technology was used to demonstrate that Txnip is the key gene through which mannose exerts its effects. Techniques such as colocalization analysis, molecular docking, and overexpression assays further confirmed the direct regulatory relationship between mannose and TXNIP. To elucidate the mechanism of action of mannose, metabolomics techniques were employed to pinpoint glutamine as a core metabolite affected by mannose. Next, various methods, including integrated omics data and the Gene Expression Omnibus (GEO) database, were used to validate the one-way pathway through which TXNIP regulates glutamine. Finally, the therapeutic effect of mannose on IVDD was validated, elucidating the mechanistic role of TXNIP in glutamine metabolism in both intradiscal and orally treated rats. RESULTS: In both in vivo and in vitro experiments, it was discovered that mannose has potent efficacy in alleviating IVDD by inhibiting catabolism. From a mechanistic standpoint, it was shown that mannose exerts its anti-catabolic effects by directly targeting the transcription factor max-like protein X-interacting protein (MondoA), resulting in the upregulation of TXNIP. This upregulation, in turn, inhibits glutamine metabolism, ultimately accomplishing its anti-catabolic effects by suppressing the mitogen-activated protein kinase (MAPK) pathway. More importantly, in vivo experiments have further demonstrated that compared with intradiscal injections, oral administration of mannose at safe concentrations can achieve effective therapeutic outcomes. CONCLUSIONS: In summary, through integrated multiomics analysis, including both in vivo and in vitro experiments, this study demonstrated that mannose primarily exerts its anti-catabolic effects on IVDD through the TXNIP-glutamine axis. These findings provide strong evidence supporting the potential of the use of mannose in clinical applications for alleviating IVDD. Compared to existing clinically invasive or pain-relieving therapies for IVDD, the oral administration of mannose has characteristics that are more advantageous for clinical IVDD treatment.


Assuntos
Proteínas de Ciclo Celular , Glutamina , Degeneração do Disco Intervertebral , Manose , Degeneração do Disco Intervertebral/tratamento farmacológico , Manose/farmacologia , Manose/uso terapêutico , Animais , Ratos , Glutamina/farmacologia , Glutamina/metabolismo , Masculino , Ratos Sprague-Dawley , Humanos , Núcleo Pulposo/efeitos dos fármacos , Núcleo Pulposo/metabolismo
15.
Commun Biol ; 7(1): 539, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38714886

RESUMO

Intervertebral disc degeneration (IDD) is a highly prevalent musculoskeletal disorder affecting millions of adults worldwide, but a poor understanding of its pathogenesis has limited the effectiveness of therapy. In the current study, we integrated untargeted LC/MS metabolomics and magnetic resonance spectroscopy data to investigate metabolic profile alterations during IDD. Combined with validation via a large-cohort analysis, we found excessive lipid droplet accumulation in the nucleus pulposus cells of advanced-stage IDD samples. We also found abnormal palmitic acid (PA) accumulation in IDD nucleus pulposus cells, and PA exposure resulted in lipid droplet accumulation and cell senescence in an endoplasmic reticulum stress-dependent manner. Complementary transcriptome and proteome profiles enabled us to identify solute carrier transporter (SLC) 43A3 involvement in the regulation of the intracellular PA level. SLC43A3 was expressed at low levels and negatively correlated with intracellular lipid content in IDD nucleus pulposus cells. Overexpression of SLC43A3 significantly alleviated PA-induced endoplasmic reticulum stress, lipid droplet accumulation and cell senescence by inhibiting PA uptake. This work provides novel integration analysis-based insight into the metabolic profile alterations in IDD and further reveals new therapeutic targets for IDD treatment.


Assuntos
Senescência Celular , Estresse do Retículo Endoplasmático , Degeneração do Disco Intervertebral , Gotículas Lipídicas , Núcleo Pulposo , Ácido Palmítico , Núcleo Pulposo/metabolismo , Núcleo Pulposo/efeitos dos fármacos , Núcleo Pulposo/patologia , Núcleo Pulposo/citologia , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Ácido Palmítico/metabolismo , Ácido Palmítico/farmacologia , Senescência Celular/efeitos dos fármacos , Degeneração do Disco Intervertebral/metabolismo , Degeneração do Disco Intervertebral/patologia , Humanos , Gotículas Lipídicas/metabolismo , Masculino , Feminino , Adulto , Pessoa de Meia-Idade
16.
Int Immunopharmacol ; 134: 112161, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38728878

RESUMO

Intervertebral disc degeneration (IVDD) is a leading cause of degenerative spinal disorders, involving complex biological processes. This study investigates the role of the kallikrein-kinin system (KKS) in IVDD, focusing on the protective effects of bradykinin (BK) on nucleus pulposus cells (NPCs) under oxidative stress. Clinical specimens were collected, and experiments were conducted using human and rat primary NPCs to elucidate BK's impact on tert-butyl hydroperoxide (TBHP)-induced oxidative stress and damage. The results demonstrate that BK significantly inhibits TBHP-induced NPC apoptosis and restores mitochondrial function. Further analysis reveals that this protective effect is mediated through the BK receptor 2 (B2R) and its downstream PI3K/AKT pathway. Additionally, BK/PLGA sustained-release microspheres were developed and validated in a rat model, highlighting their potential therapeutic efficacy for IVDD. Overall, this study sheds light on the crucial role of the KKS in IVDD pathogenesis and suggests targeting the B2R as a promising therapeutic strategy to delay IVDD progression and promote disc regeneration.


Assuntos
Apoptose , Bradicinina , Degeneração do Disco Intervertebral , Núcleo Pulposo , Estresse Oxidativo , Ratos Sprague-Dawley , terc-Butil Hidroperóxido , Animais , Núcleo Pulposo/efeitos dos fármacos , Núcleo Pulposo/patologia , Núcleo Pulposo/metabolismo , terc-Butil Hidroperóxido/toxicidade , Degeneração do Disco Intervertebral/tratamento farmacológico , Degeneração do Disco Intervertebral/patologia , Humanos , Masculino , Bradicinina/farmacologia , Apoptose/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Ratos , Células Cultivadas , Receptor B2 da Bradicinina/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Feminino , Microesferas , Transdução de Sinais/efeitos dos fármacos , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Fosfatidilinositol 3-Quinases/metabolismo , Modelos Animais de Doenças
17.
J Orthop Surg Res ; 19(1): 308, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38773639

RESUMO

BACKGROUND: Intervertebral disc degeneration (IDD) is an increasingly important cause of low back pain (LBP) that results in substantial health and economic burdens. Inflammatory pathway activation and the production of reactive oxygen species (ROS) play vital roles in the progression of IDD. Several studies have suggested that phillyrin has a protective role and inhibits inflammation and the production of ROS. However, the role of phillyrin in IDD has not been confirmed. PURPOSE: The purpose of this study was to investigate the role of phillyrin in IDD and its mechanisms. STUDY DESIGN: To establish IDD models in vivo, ex-vivo, and in vitro to verify the function of phillyrin in IDD. METHOD: The effects of phillyrin on extracellular matrix (ECM) degeneration, inflammation, and oxidation in nucleus pulposus (NP) cells were assessed using immunoblotting and immunofluorescence analysis. Additionally, the impact of phillyrin administration on acupuncture-mediated intervertebral disc degeneration (IDD) in rats was evaluated using various techniques such as MRI, HE staining, S-O staining, and immunohistochemistry (IHC). RESULT: Pretreatment with phillyrin significantly inhibited the IL-1ß-mediated reduction in the degeneration of ECM and apoptosis by alleviating activation of the NF-κB inflammatory pathway and the generation of ROS. In addition, in vivo and ex-vivo experiments verified the protective effect of phillyrin against IDD. CONCLUSION: Phillyrin can attenuate the progression of IDD by reducing ROS production and activating inflammatory pathways.


Assuntos
Progressão da Doença , Degeneração do Disco Intervertebral , NF-kappa B , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio , Degeneração do Disco Intervertebral/metabolismo , Degeneração do Disco Intervertebral/patologia , Animais , Espécies Reativas de Oxigênio/metabolismo , NF-kappa B/metabolismo , Ratos , Masculino , Núcleo Pulposo/metabolismo , Núcleo Pulposo/efeitos dos fármacos , Núcleo Pulposo/patologia , Transdução de Sinais/efeitos dos fármacos , Matriz Extracelular/metabolismo , Matriz Extracelular/efeitos dos fármacos , Modelos Animais de Doenças , Células Cultivadas , Humanos , Apoptose/efeitos dos fármacos
18.
Int Immunopharmacol ; 133: 112101, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38640717

RESUMO

Intervertebral disc degeneration (IVDD) is a progressive degenerative disease influenced by various factors. Genkwanin, a known anti-inflammatory flavonoid, has not been explored for its potential in IVDD management. This study aims to investigate the effects and mechanisms of genkwanin on IVDD. In vitro, cell experiments revealed that genkwanin dose-dependently inhibited Interleukin-1ß-induced expression levels of inflammatory factors (Interleukin-6, inducible nitric oxide synthase, cyclooxygenase-2) and degradation metabolic protein (matrix metalloproteinase-13). Concurrently, genkwanin upregulated the expression of synthetic metabolism genes (type II collagen, aggrecan). Moreover, genkwanin effectively reduced the phosphorylation of phosphatidylinositol 3-kinase (PI3K)/AKT/mammalian target of rapamycin, mitogen-activated protein kinase (MAPK), and nuclear factor-κB (NF-κB) pathways. Transcriptome sequencing analysis identified integrin α2 (ITGA2) as a potential target of genkwanin, and silencing ITGA2 reversed the activation of PI3K/AKT pathway induced by Interleukin-1ß. Furthermore, genkwanin alleviated Interleukin-1ß-induced senescence and apoptosis in nucleus pulposus cells. In vivo animal experiments demonstrated that genkwanin mitigated the progression of IVDD in the rat model through imaging and histological examinations. In conclusion, This study suggest that genkwanin inhibits inflammation in nucleus pulposus cells, promotes extracellular matrix remodeling, suppresses cellular senescence and apoptosis, through the ITGA2/PI3K/AKT, NF-κB and MAPK signaling pathways. These findings indicate that genkwanin may be a promising therapeutic candidate for IVDD.


Assuntos
Apoptose , Senescência Celular , Flavonoides , Degeneração do Disco Intervertebral , Transdução de Sinais , Animais , Humanos , Masculino , Ratos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Apoptose/efeitos dos fármacos , Senescência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Integrina alfa2/metabolismo , Integrina alfa2/genética , Interleucina-1beta/metabolismo , Degeneração do Disco Intervertebral/tratamento farmacológico , Degeneração do Disco Intervertebral/patologia , Degeneração do Disco Intervertebral/metabolismo , Metaloproteinase 13 da Matriz/metabolismo , Metaloproteinase 13 da Matriz/genética , Núcleo Pulposo/efeitos dos fármacos , Núcleo Pulposo/patologia , Núcleo Pulposo/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos
19.
Cell Mol Biol (Noisy-le-grand) ; 70(4): 164-168, 2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38678607

RESUMO

This study aimed to explore the effects of miR-129-5p on inflammation and nucleus pulposus (NP) cell apoptosis in rats with intervertebral disc degeneration (IVDD) through the c-Jun N-terminal kinase (JNK) signaling pathway. A total of 20 rats were randomly divided into control group (n=10) or IVDD group (n=10). The mRNA expressions of miR-129-5p and apoptosis index Fas in IVDD tissues were determined using RT-PCR. NP cell apoptosis rate was detected via TUNEL assay. NP cells were extracted from IVDD tissues for primary culture. Subsequently, the cells were transfected with miR-129-5p inhibitor or mimic to inhibit or overexpress miR-129-5p, respectively. Furthermore, the changes in the JNK pathway indexes and apoptosis indexes were detected using Western blotting. In IVDD group, the expression of miR-129-5p was significantly down-regulated, while the transcriptional level of Fas was up-regulated compared with those in control group. Pearson correlation analysis revealed a negative correlation between the expressions of miR-129-5p and Fas mRNA (r=-0.75, P<0.05). IVDD group exhibited significantly higher levels of serum TNF-α, IL-6 and IL-1 than control group. Subsequent TUNEL assay indicated that the apoptosis rate was evidently higher in IVDD group (60.6%) than control group (2.5%). The results of Western blotting showed that the protein expressions of JNK1, JNK2 and Fas remarkably rose in IVDD group compared with those in control group. However, they declined remarkably in miR-129-5p mimic group compared with those in control group. Furthermore, such trends were significantly reversed in miR-129-5p inhibitor group. MiR-129-5p was significantly down-regulated in IVDD, whose overexpression has anti-inflammatory and anti-apoptotic effects.


Assuntos
Apoptose , Inflamação , Degeneração do Disco Intervertebral , Sistema de Sinalização das MAP Quinases , MicroRNAs , Núcleo Pulposo , Ratos Sprague-Dawley , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Degeneração do Disco Intervertebral/genética , Degeneração do Disco Intervertebral/patologia , Degeneração do Disco Intervertebral/metabolismo , Apoptose/genética , Núcleo Pulposo/metabolismo , Núcleo Pulposo/patologia , Inflamação/genética , Inflamação/patologia , Sistema de Sinalização das MAP Quinases/genética , Masculino , Ratos , Receptor fas/genética , Receptor fas/metabolismo
20.
Acta Biomater ; 180: 244-261, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38615812

RESUMO

Low back pain is a leading cause of disability worldwide, often attributed to intervertebral disc (IVD) degeneration with loss of the functional nucleus pulposus (NP). Regenerative strategies utilizing biomaterials and stem cells are promising for NP repair. Human NP tissue is highly viscoelastic, relaxing stress rapidly under deformation. However, the impact of tissue-specific viscoelasticity on the activities of adipose-derived stem cells (ASC) remains largely unexplored. Here, we investigated the role of matrix viscoelasticity in regulating ASC differentiation for IVD regeneration. Viscoelastic alginate hydrogels with stress relaxation time scales ranging from 100 s to 1000s were developed and used to culture human ASCs for 21 days. Our results demonstrated that the fast-relaxing hydrogel significantly enhanced ASCs long-term cell survival and NP-like extracellular matrix secretion of aggrecan and type-II collagen. Moreover, gene expression analysis revealed a substantial upregulation of the mechanosensitive ion channel marker TRPV4 and NP-specific markers such as SOX9, HIF-1α, KRT18, CDH2 and CD24 in ASCs cultured within the fast-relaxing hydrogel, compared to slower-relaxing hydrogels. These findings highlight the critical role of matrix viscoelasticity in regulating ASC behavior and suggest that viscoelasticity is a key parameter for novel biomaterials design to improve the efficacy of stem cell therapy for IVD regeneration. STATEMENT OF SIGNIFICANCE: Systematically characterized the influence of tissue-mimetic viscoelasticity on ASC. NP-mimetic hydrogels with tunable viscoelasticity and tissue-matched stiffness. Long-term survival and metabolic activity of ASCs are substantially improved in the fast-relaxing hydrogel. The fast-relaxing hydrogel allows higher rate of cell protrusions formation and matrix remodeling. ASC differentiation towards an NP-like cell phenotype is promoted in the fast-relaxing hydrogel, with more CD24 positive expression indicating NP committed cell fate. The expression of TRPV4, a molecular sensor of matrix viscoelasticity, is significantly enhanced in the fast-relaxing hydrogel, indicating ASC sensing matrix viscoelasticity during cell development. The NP-specific ECM secretion of ASC is considerably influenced by matrix viscoelasticity, where the deposition of aggrecan and type-II collagen are significantly enhanced in the fast-relaxing hydrogel.


Assuntos
Tecido Adiposo , Hidrogéis , Células-Tronco Mesenquimais , Núcleo Pulposo , Regeneração , Hidrogéis/química , Hidrogéis/farmacologia , Humanos , Núcleo Pulposo/citologia , Núcleo Pulposo/metabolismo , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Regeneração/efeitos dos fármacos , Tecido Adiposo/citologia , Viscosidade , Elasticidade , Diferenciação Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Alginatos/química , Alginatos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA