Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 989
Filtrar
1.
Neuropeptides ; 105: 102418, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38442503

RESUMO

The aim of this study is to verify the impact of Leptin in blood pressure (BP) regulation and Leptin-resistance in metabolic/neurogenic hypertension through baroreflex afferents and dysregulation. Artery BP/heart rate (HR) were measured while nodose (NG) microinjection of Leptin, membrane depolarization/inward current were obtained by whole-cell patch from NG neurons isolated from adult female rats. Baroreflex sensitivity (BRS) tested with PE/SNP, distribution/expression of Leptin/receptors in the NG/nucleus tractus solitary (NTS) examined using immumostaining and qRT-PCR, and serum concentrations of Leptin/NE measured by ELISA were observed in control and high fructose-drinking induced hypertension (HTN-HFD) rats. The results showed that BP was significantly/dose-dependently reduced by Leptin NG microinjection likely through direct excitation of female-specific subpopulation of Ah-type neurons showing a potent membrane depolarization/inward currents. Sex-specific distribution/expression of OB-Ra/OB-Rb in the NG were detected with estrogen-dependent manner, similar observations were also confirmed in the NTS. As expected, BRS was dramatically decreased in the presence of PE/SNP in both male and female rats except for the female with PE at given concentrations. Additionally, serum concentration of Leptin was elevated in HFD-HTN model rats of either sex with more obvious in females. Under hypertensive condition, the mean fluorescent density of OB-R and mRNA expression for OB-Ra/OB-Rb in the NG/NTS were significantly down-regulated. These results have demonstrated that Leptin play a role in dominant parasympathetic drive via baroreflex afferent activation to buffer Leptin-mediated sympathetic activation systemically and Leptin-resistance is an innegligible mechanism for metabolic/neurogenic hypertension through baroreflex afferent dysregulation.


Assuntos
Barorreflexo , Pressão Sanguínea , Hipertensão , Leptina , Ratos Sprague-Dawley , Animais , Leptina/farmacologia , Leptina/metabolismo , Leptina/sangue , Barorreflexo/efeitos dos fármacos , Pressão Sanguínea/efeitos dos fármacos , Hipertensão/metabolismo , Hipertensão/fisiopatologia , Feminino , Masculino , Ratos , Gânglio Nodoso/metabolismo , Gânglio Nodoso/efeitos dos fármacos , Núcleo Solitário/metabolismo , Núcleo Solitário/efeitos dos fármacos , Frequência Cardíaca/efeitos dos fármacos , Receptores para Leptina/metabolismo , Neurônios/metabolismo , Neurônios/efeitos dos fármacos
2.
Am J Physiol Regul Integr Comp Physiol ; 321(5): R751-R767, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34523351

RESUMO

The gene Tas1r3 codes for the protein T1R3, which dimerizes with T1R2 to form a sweetener-binding receptor in taste cells. Tas1r3 influences sweetener preferences in mice, as shown by work with a 129.B6-Tas1r3 segregating congenic strain on a 129P3/J (129) genetic background; members of this strain vary in whether they do or do not have one copy of a donor fragment with the C57BL/6ByJ (B6) allele for Tas1r3 (B6/129 and 129/129 mice, respectively). Taste-evoked neural responses were measured in the nucleus of the solitary tract (NST), the first central gustatory relay, in B6/129 and 129/129 littermates, to examine how the activity dependent on the T1R2/T1R3 receptor is distributed across neurons and over time. Responses to sucrose were larger in B6/129 than in 129/129 mice, but only during a later, tonic response portion (>600 ms) sent to different cells than the earlier, phasic response. Similar results were found for artificial sweeteners, whose responses were best considered as complex spatiotemporal patterns. There were also group differences in burst firing of NST cells, with a significant positive correlation between bursting prevalence and sucrose response size in only the 129/129 group. The results indicate that sweetener transduction initially occurs through T1R3-independent mechanisms, after which the T1R2/T1R3 receptor initiates a separate, spatially distinct response, with the later period dominating sweet taste perceptions and driving sugar preferences. Furthermore, the current data suggest that burst firing is distributed across NST neurons nonrandomly and in a manner that may amplify weak incoming gustatory signals.


Assuntos
Potenciais de Ação/efeitos dos fármacos , Receptores Acoplados a Proteínas G/agonistas , Núcleo Solitário/efeitos dos fármacos , Sacarose/farmacologia , Edulcorantes/farmacologia , Percepção Gustatória , Paladar , Animais , Preferências Alimentares , Masculino , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Tempo de Reação , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Núcleo Solitário/fisiologia , Especificidade da Espécie , Fatores de Tempo
3.
Anesth Analg ; 133(5): 1311-1320, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34347648

RESUMO

BACKGROUND: Visceral and parietal peritoneum layers have different sensory innervations. Most visceral peritoneum sensory information is conveyed via the vagus nerve to the nucleus of the solitary tract (NTS). We already showed in animal models that intramuscular (i.m.) injection of local anesthetics decreases acute somatic and visceral pain and general inflammation induced by aseptic peritonitis. The goal of the study was to compare the effects of parietal block, i.m. bupivacaine, and vagotomy on spinal cord and NTS stimulation induced by a chemical peritonitis. METHODS: We induced peritonitis in rats using carrageenan and measured cellular activation in spinal cord and NTS under the following conditions, that is, a parietal nerve block with bupivacaine, a chemical right vagotomy, and i.m. microspheres loaded with bupivacaine. Proto-oncogene c-Fos (c-Fos), cluster of differentiation protein 11b (CD11b), and tumor necrosis factor alpha (TNF-α) expression in cord and NTS were studied. RESULTS: c-Fos activation in the cord was inhibited by nerve block 2 hours after peritoneal insult. Vagotomy and i.m. bupivacaine similarly inhibited c-Fos activation in NTS. Forty-eight hours after peritoneal insult, the number of cells expressing CD11b significantly increased in the cord (P = .010). The median difference in the effect of peritonitis compared to control was 30 cells (CI95, 13.5-55). TNF-α colocalized with CD11b. Vagotomy inhibited this microglial activation in the NTS, but not in the cord. This activation was inhibited by i.m. bupivacaine both in cord and in NTS. The median difference in the effect of i.m. bupivacaine added to peritonitis was 29 cells (80% increase) in the cord and 18 cells (75% increase) in the NTS. Our study underlines the role of the vagus nerve in the transmission of an acute visceral pain message and confirmed that systemic bupivacaine prevents noxious stimuli by inhibiting c-Fos and microglia activation. CONCLUSIONS: In rats receiving intraperitoneal carrageenan, i.m. bupivacaine similarly inhibited c-Fos and microglial activation both in cord and in the NTS. Vagal block inhibited activation only in the NTS. Our study underlines the role of the vagus nerve in the transmission of an acute visceral pain message and confirmed that systemic bupivacaine prevents noxious stimuli. This emphasizes the effects of systemic local anesthetics on inflammation and visceral pain.


Assuntos
Dor Aguda/prevenção & controle , Anestésicos Locais/administração & dosagem , Bupivacaína/administração & dosagem , Manejo da Dor , Núcleo Solitário/efeitos dos fármacos , Medula Espinal/efeitos dos fármacos , Vagotomia , Nervo Vago/cirurgia , Dor Visceral/prevenção & controle , Dor Aguda/induzido quimicamente , Dor Aguda/metabolismo , Dor Aguda/fisiopatologia , Animais , Antígeno CD11b/metabolismo , Carragenina , Modelos Animais de Doenças , Injeções Intramusculares , Masculino , Microglia/efeitos dos fármacos , Microglia/metabolismo , Peritonite/induzido quimicamente , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos Sprague-Dawley , Núcleo Solitário/metabolismo , Núcleo Solitário/fisiopatologia , Medula Espinal/metabolismo , Medula Espinal/patologia , Fator de Necrose Tumoral alfa/metabolismo , Nervo Vago/fisiopatologia , Dor Visceral/induzido quimicamente , Dor Visceral/metabolismo , Dor Visceral/fisiopatologia
4.
Physiol Res ; 70(4): 579-590, 2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34062082

RESUMO

Prolactin-releasing peptide (PrRP) has been proposed to mediate the central satiating effects of cholecystokinin (CCK) through the vagal CCK1 receptor. PrRP acts as an endogenous ligand of G protein-coupled receptor 10 (GPR10), which is expressed at the highest levels in brain areas related to food intake regulation, e.g., the paraventricular hypothalamic nucleus (PVN) and nucleus of the solitary tract (NTS). The NTS and PVN are also significantly activated after peripheral CCK administration. The aim of this study was to determine whether the endogenous PrRP neuronal system in the brain is involved in the central anorexigenic effect of the peripherally administered CCK agonist JMV236 or the CCK1 antagonist devazepide and whether the CCK system is involved in the central anorexigenic effect of the peripherally applied lipidized PrRP analog palm-PrRP31 in fasted lean mice. The effect of devazepide and JMV236 on the anorexigenic effects of palm-PrRP31 as well as devazepide combined with JMV236 and palm-PrRP31 on food intake and Fos cell activation in the PVN and caudal NTS was examined. Our results suggest that the anorexigenic effect of JMV236 is accompanied by activation of PrRP neurons of the NTS in a CCK1 receptor-dependent manner. Moreover, while the anorexigenic effect of palm-PrRP31 was not affected by JMV236, it was partially attenuated by devazepide in fasted mice. The present findings indicate that the exogenously influenced CCK system may be involved in the central anorexigenic effect of peripherally applied palm-PrRP31, which possibly indicates some interaction between the CCK and PrRP neuronal systems.


Assuntos
Depressores do Apetite/administração & dosagem , Colecistocinina/metabolismo , Ingestão de Alimentos/efeitos dos fármacos , Comportamento Alimentar/efeitos dos fármacos , Núcleo Hipotalâmico Paraventricular/efeitos dos fármacos , Hormônio Liberador de Prolactina/análogos & derivados , Núcleo Solitário/efeitos dos fármacos , Animais , Quimiocinas CC/efeitos dos fármacos , Quimiocinas CC/metabolismo , Devazepida/administração & dosagem , Jejum , Antagonistas de Hormônios/administração & dosagem , Injeções Intraperitoneais , Injeções Subcutâneas , Masculino , Camundongos Endogâmicos C57BL , Núcleo Hipotalâmico Paraventricular/metabolismo , Fragmentos de Peptídeos/administração & dosagem , Hormônio Liberador de Prolactina/administração & dosagem , Proteínas Proto-Oncogênicas c-fos/metabolismo , Transdução de Sinais , Sincalida/administração & dosagem , Sincalida/análogos & derivados , Núcleo Solitário/metabolismo
5.
Metab Brain Dis ; 36(6): 1305-1314, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33914222

RESUMO

Exposure to high fat diet during perinatal period (PHFD) leads to neuroplastic changes in autonomic circuits, however, the role of gender has been incompletely understood. This study aims to investigate (i) short, and (ii) long-term effects of PHFD on autonomic outflow, and (iii) sexual dimorphic variations emerge at adulthood. Male and female rats were fed a control diet (13.5 % kcal from fat) or PHFD (60 % kcal from fat) from embryonic day-14 to postnatal day-21. To assess changes in autonomic outflow, heart rate variability (HRV) was analyzed at 10- and 20-week-old ages. Expressions of tyrosine hydroxylase (TH), metabotropic glutamate2/3 receptor (mGlu2/3R), N-methyl-D-aspartate1 receptor (NMDA1R), and gamma aminobutyric acidA receptor (GABAAR) were evaluated by immunohistochemistry. PHFD did not affect the body weight of 4-, 10-or 20-week-old male or female offsprings. PHFD significantly increased the sympathetic marker low frequency (LF) component, and sympatho-vagal balance (LF:HF) only in 10-week-old PHFD males. Compared with control, the propranolol-induced (4 mg·kg- 1, ip) decline in LF was observed more prominently in PHFD rats, however, these changes were found to be restored at the age of 20 weeks. In caudal ventrolateral medulla and nucleus tractus solitarius, expression of mGlu2/3R was downregulated in PHFD males, whereas no change was detected in NMDA1R. The number of GABAAR-expressing TH-immunoreactive cells was decreased in rostral ventrolateral medulla of PHFD males. The findings of this study suggest that exposure to maternal high-fat diet could lead to autonomic imbalance with increased sympathetic tone in the early adulthood of male offspring rats without developing obesity.


Assuntos
Dieta Hiperlipídica , Exposição Materna , Bulbo/efeitos dos fármacos , Rede Nervosa/efeitos dos fármacos , Caracteres Sexuais , Sistema Nervoso Simpático/efeitos dos fármacos , Antagonistas Adrenérgicos beta/farmacologia , Animais , Animais Recém-Nascidos , Peso Corporal , Feminino , Frequência Cardíaca/efeitos dos fármacos , Masculino , Gravidez , Efeitos Tardios da Exposição Pré-Natal , Propranolol/farmacologia , Ratos , Ratos Sprague-Dawley , Receptores de GABA/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Núcleo Solitário/efeitos dos fármacos , Núcleo Solitário/metabolismo
6.
Front Endocrinol (Lausanne) ; 12: 772909, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34987476

RESUMO

Central administration of fibroblast growth factor-1 (FGF1) results in long-lasting resolution of hyperglycemia in various rodent models, but the pre- and postsynaptic mechanisms mediating the central effects of FGF1 are unknown. Here we utilize electrophysiology recordings from neuronal populations in the arcuate nucleus of the hypothalamus (ARH), nucleus of the solitary tract (NTS), and area postrema (AP) to investigate the mechanisms underlying FGF1 actions. While FGF1 did not alter membrane potential in ARH-NPY-GFP neurons, it reversibly depolarized 83% of ARH-POMC-EGFP neurons and decreased the frequency of inhibitory inputs onto ARH-POMC-EGFP neurons. This depolarizing effect persisted in the presence of FGF receptor (R) blocker FIIN1, but was blocked by pretreatment with the voltage-gated sodium channel (VGSC) blocker tetrodotoxin (TTX). Non-FGF1 subfamilies can activate vascular endothelial growth factor receptors (VEGFR). Surprisingly, the VEGFR inhibitors axitinib and BMS605541 blocked FGF1 effects on ARH-POMC-EGFP neurons. We also demonstrate that FGF1 induces c-Fos in the dorsal vagal complex, activates NTS-NPY-GFP neurons through a FGFR mediated pathway, and requires VGSCs to activate AP neurons. We conclude that FGF1 acts in multiple brain regions independent of FGFRs. These studies present anatomical and mechanistic pathways for the future investigation of the pharmacological and physiological role of FGF1 in metabolic processes.


Assuntos
Núcleo Arqueado do Hipotálamo/efeitos dos fármacos , Área Postrema/efeitos dos fármacos , Fator 1 de Crescimento de Fibroblastos/farmacologia , Neurônios/efeitos dos fármacos , Núcleo Solitário/efeitos dos fármacos , Animais , Núcleo Arqueado do Hipotálamo/metabolismo , Área Postrema/metabolismo , Potenciais da Membrana/efeitos dos fármacos , Camundongos , Neurônios/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Núcleo Solitário/metabolismo
7.
Acta Pharmacol Sin ; 42(6): 898-908, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33154555

RESUMO

Hydrogen sulfide (H2S), which is closely related to various cardiovascular disorders, lowers blood pressure (BP), but whether this action is mediated via the modification of baroreflex afferent function has not been elucidated. Therefore, the current study aimed to investigate the role of the baroreflex afferent pathway in H2S-mediated autonomic control of BP regulation. The results showed that baroreflex sensitivity (BRS) was increased by acute intravenous NaHS (a H2S donor) administration to renovascular hypertensive (RVH) and control rats. Molecular expression data also showed that the expression levels of critical enzymes related to H2S were aberrantly downregulated in the nodose ganglion (NG) and nucleus tractus solitarius (NTS) in RVH rats. A clear reduction in BP by the microinjection of NaHS or L-cysteine into the NG was confirmed in both RVH and control rats, and a less dramatic effect was observed in model rats. Furthermore, the beneficial effects of NaHS administered by chronic intraperitoneal infusion on dysregulated systolic blood pressure (SBP), cardiac parameters, and BRS were verified in RVH rats. Moreover, the increase in BRS was attributed to activation and upregulation of the ATP-sensitive potassium (KATP) channels Kir6.2 and SUR1, which are functionally expressed in the NG and NTS. In summary, H2S plays a crucial role in the autonomic control of BP regulation by improving baroreflex afferent function due at least in part to increased KATP channel expression in the baroreflex afferent pathway under physiological and hypertensive conditions.


Assuntos
Vias Aferentes/metabolismo , Barorreflexo/fisiologia , Pressão Sanguínea/fisiologia , Sulfeto de Hidrogênio/metabolismo , Hipertensão/fisiopatologia , Animais , Anti-Hipertensivos/farmacologia , Barorreflexo/efeitos dos fármacos , Pressão Sanguínea/efeitos dos fármacos , Cardiotônicos/farmacologia , Cistationina beta-Sintase/metabolismo , Cistationina gama-Liase/metabolismo , Sulfeto de Hidrogênio/farmacologia , Hipertensão/tratamento farmacológico , Masculino , Gânglio Nodoso/efeitos dos fármacos , Gânglio Nodoso/enzimologia , Gânglio Nodoso/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Ratos Sprague-Dawley , Núcleo Solitário/efeitos dos fármacos , Núcleo Solitário/enzimologia , Núcleo Solitário/metabolismo , Sulfetos/farmacologia , Receptores de Sulfonilureias/metabolismo , Sulfurtransferases/metabolismo
8.
J Physiol Pharmacol ; 71(4)2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33214338

RESUMO

Hydrogen sulfide (H2S) is a neuromodulator in the central nervous system. The physiological function of H2S in the nucleus tractus solitarii (NTS) has rarely been reported. This research aimed to explore the role of H2S in regulating gastric functions. Wistar rats were randomly assigned to sodium hydrosulfide (NaHS; 4 and 8 nmol) groups, physiological saline (PS) group, capsazepine (10 pmol) + NaHS (4 nmol) group, L703606 (4 nmol) + NaHS (4 nmol) group, and pyrrolidine dithiocarbamate (4 nmol) + NaHS (4 nmol) group. The pH values of gastric acid were measured using a pH meter pre- and post-injection. It was found that the microinjetion of NaHS (4 and 8 nmol), an exogenous H2S donor, into the NTS (n = 6) remarkably decreased the pH values of gastric juice. The inductive effect of NaHS on gastric juice production could be suppressed by capsazepine (a transient receptor potential vanilloid 1 antagonist), L703606 (a NK1 receptor antagonist) and pyrrolidine dithiocarbamate (a nuclear fator-κB inhibitor). However, the same amount of PS did not induce any significant change in the pH value of gastric acid (P > 0.05). The findings of this study revealed that NaHS within the NTS remarkably promoted gastric acid secretion via the activation of TRPV1 channels and nuclear factor-κB-dependent mechanism in rats.


Assuntos
Gasotransmissores/metabolismo , Ácido Gástrico/metabolismo , Mucosa Gástrica/inervação , Sulfeto de Hidrogênio/metabolismo , Núcleo Solitário/efeitos dos fármacos , Sulfetos/farmacologia , Animais , Determinação da Acidez Gástrica , Concentração de Íons de Hidrogênio , Masculino , NF-kappa B/metabolismo , Ratos Wistar , Receptores da Neurocinina-1/metabolismo , Via Secretória , Núcleo Solitário/metabolismo , Sulfetos/metabolismo , Canais de Cátion TRPV/metabolismo
9.
Am J Physiol Regul Integr Comp Physiol ; 319(6): R673-R683, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33026822

RESUMO

Oxytocin (OT) is a neuropeptide whose central receptor-mediated actions include reducing food intake. One mechanism of its behavioral action is the amplification of the feeding inhibitory effects of gastrointestinal (GI) satiation signals processed by hindbrain neurons. OT treatment also reduces carbohydrate intake in humans and rodents, and correspondingly, deficits in central OT receptor (OT-R) signaling increase sucrose self-administration. This suggests that additional processes contribute to central OT effects on feeding. This study investigated the hypothesis that central OT reduces food intake by decreasing food seeking and food motivation. As central OT-Rs are expressed widely, a related focus was to assess the role of one or more OT-R-expressing nuclei in food motivation and food-seeking behavior. OT was delivered to the lateral ventricle (LV), nucleus tractus solitarius (NTS), or ventral tegmental area (VTA), and a progressive ratio (PR) schedule of operant reinforcement and an operant reinstatement paradigm were used to measure motivated feeding behavior and food-seeking behavior, respectively. OT delivered to the LV, NTS, or VTA reduced 1) motivation to work for food and 2) reinstatement of food-seeking behavior. Results provide a novel and additional interpretation for central OT-driven food intake inhibition to include the reduction of food motivation and food seeking.


Assuntos
Depressores do Apetite/administração & dosagem , Regulação do Apetite/efeitos dos fármacos , Ingestão de Alimentos/efeitos dos fármacos , Comportamento Alimentar/efeitos dos fármacos , Ventrículos Laterais/efeitos dos fármacos , Motivação/efeitos dos fármacos , Ocitocina/administração & dosagem , Núcleo Solitário/efeitos dos fármacos , Área Tegmentar Ventral/efeitos dos fármacos , Animais , Infusões Intraventriculares , Ventrículos Laterais/fisiologia , Masculino , Ratos Sprague-Dawley , Núcleo Solitário/fisiologia , Área Tegmentar Ventral/fisiologia
10.
Brain Res ; 1746: 147006, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32628919

RESUMO

Neuronatin (Nnat) is involved in the regulation of cellular molecular signaling and appears to be also linked to metabolic processes. The gastrointestinal peptides cholecystokinin (CCK) and bombesin (BN) have an effect on the short-term inhibition of food intake and induce neuronal activation in different brain nuclei, prominently in the nucleus of the solitary tract (NTS) involved in the modulation of food intake. The aim of the study was to examine if Nnat immunoreactivity is detectable in the NTS, and whether peripheral CCK-8S or BN cause c-Fos activation of Nnat neurons. Non-fasted male Sprague-Dawley rats received an intraperitoneal (i.p.) injection of 5.2 or 8.7 nmol CCK-8S/kg or 26 or 32 nmol BN/kg (n = 4 all groups) or vehicle solution (0.15 M NaCl; n = 7). The number of c-Fos neurons was determined 90 min post injection in the NTS and dorsal motor nucleus of the vagus (DMV). We observed Nnat immunoreactive neurons in the NTS and DMV. CCK-8S (25-fold and 51-fold, p = 0.025 and p = 0.001) and BN (31-fold and 59-fold, p = 0.007 and p = 0.001) at both doses increased the number of c-Fos positive neurons in the NTS. CCK and BN did not show a significant effect in the DMV. Both doses of CCK-8S (24-fold and 48-fold p = 0.011 and p = 0.001) and bombesin (31-fold and 56-fold, p = 0.002 and p = 0.001) increased the number of activated Nnat neurons in the NTS (p = 0.001) compared to the vehicle group, while in the DMV no significant increase of c-Fos activation was detected. In conclusion, i.p. injected CCK-8S or BN induce an increased neuronal activity in NTS Nnat neurons, giving rise that Nnat may play a role in the regulation of food intake mediated by peripheral CCK-8S or BN.


Assuntos
Bombesina/farmacologia , Colecistocinina/farmacologia , Neurônios/efeitos dos fármacos , Fragmentos de Peptídeos/farmacologia , Núcleo Solitário/citologia , Núcleo Solitário/efeitos dos fármacos , Animais , Masculino , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Ratos , Ratos Sprague-Dawley , Núcleo Solitário/metabolismo
11.
Brain Res ; 1743: 146949, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32522627

RESUMO

The α2-adrenergic receptor (α2-AR) agonist dexmedetomidine increases baroreflex sensitivity (BRS). In the current study, we examined the potential role of adenosine A1 receptor (A1R) within the nucleus tractus solitaries (NTS) in such a response. Briefly, adult male Sprague-Dawley rats were anesthetized and randomly received microinjection of selective A1R antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX; 0.1 pmol/1 µl) or saline vehicle into the right NTS. Ten min after the microinjection, dexmedetomidine infusion started at a rate of 30 µg/kg over 15 min followed by infusion at 15 µg·kg-1·h-1 for 105 min, or 100 µg/kg over 15 min followed by infusion at 50 µg·kg-1·h-1 for 105 min. BRS was examined using a standard phenylephrine method prior to infusion (T0), 60 min (T1) and 120 min (T2) after dexmedetomidine infusion started. Adenosine concentration in plasma and brainstem was measured with high-performance liquid chromatography with vs. without α2-AR antagonist atipamezole pretreatment (0.5 mg/kg, i.p.). Dexmedetomidine increased BRS at both 30 (T0: 0.55 ± 0.25 vs. T1: 2.45 ± 0.37, T2: 2.26 ± 0.56 ms/mmHg, P < 0.05) and 100 µg/kg (T0: 0.63 ± 0.24 vs. T1: 6.21 ± 1.87, T2: 6.30 ± 2.12 ms/mmHg, P < 0.05). DPCPX pretreatment obliterated BRS response to 100-µg/kg dexmedetomidine. At 100 µg/kg, dexmedetomidine increased adenosine concentration in plasma (0.23 ± 0.11 to 0.45 ± 0.07 µg/ml, P < 0.05) and brainstem (1.46 ± 0.30 to 2.52 ± 0.22 µg/ml, P < 0.05); such effect was blocked by atipamezole pretreatment. Western blot analysis showed α2-AR up-regulation by 100-µg/kg dexmedetomidine, which can be prevented by DPCPX. Double-labeling with glial fibrillary acidic protein showed α2-AR up-regulation in astrocytes in the NTS. These results suggest that dexmedetomidine enhances baroreflex sensitivity, possibly by increasing adenosine in NTS and α2-AR expression in astrocytes.


Assuntos
Antagonistas do Receptor A1 de Adenosina/farmacologia , Agonistas de Receptores Adrenérgicos alfa 2/farmacologia , Barorreflexo/efeitos dos fármacos , Dexmedetomidina/farmacologia , Receptor A1 de Adenosina/metabolismo , Núcleo Solitário/metabolismo , Animais , Masculino , Ratos , Ratos Sprague-Dawley , Núcleo Solitário/efeitos dos fármacos
12.
J Neuroendocrinol ; 32(6): e12855, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32436241

RESUMO

Phoenixin (PNX) is a neuropeptide shown to play roles in the control of reproduction. The nucleus of the solitary tract (NTS), a critical autonomic integrating centre in the hindbrain, is one of many areas with dense expression of PNX. Using coronal NTS slices obtained from male Sprague-Dawley rats, the present study characterised the effects of PNX on both spike frequency and membrane potential of NTS neurones. Extracellular recordings demonstrated that bath-applied 10 nmol L-1 PNX increased the firing frequency in 32% of NTS neurones, effects which were confirmed with patch-clamp recordings showing that 50% of NTS neurones tested depolarised in response to application of the peptide. Surprisingly, the responsiveness to PNX in NTS neurones then declined suddenly to 9% (P < 0.001). This effect was subsequently attributed to stress associated with construction in our animal care facility because PNX responsiveness was again observed in slices from rats delivered and maintained in a construction-free facility. We then examined whether this loss of PNX responsiveness could be replicated in rats placed on a chronic stress regimen involving ongoing corticosterone (CORT) treatment in the construction-free facility. Slices from animals treated in this way showed a similar lack of neuronal responsiveness to PNX (9.1 ± 3.9%) within 2 weeks of CORT treatment. These effects were specific to PNX responsiveness because CORT treatment had no effect on the responsiveness of NTS neurones to angiotensin II. These results are the first to implicate PNX with respect to directly controlling the excitability of NTS neurones and also provide intriguing data showing the plasticity of these effects associated with environmental and glucocorticoid stress levels of the animal.


Assuntos
Microambiente Celular , Glucocorticoides/efeitos adversos , Neurônios/efeitos dos fármacos , Hormônios Peptídicos/farmacologia , Núcleo Solitário/efeitos dos fármacos , Potenciais de Ação/efeitos dos fármacos , Animais , Microambiente Celular/efeitos dos fármacos , Microambiente Celular/fisiologia , Estimulação Elétrica , Fenômenos Eletrofisiológicos/efeitos dos fármacos , Masculino , Potenciais da Membrana/efeitos dos fármacos , Neurônios/fisiologia , Ratos , Ratos Sprague-Dawley , Núcleo Solitário/citologia , Núcleo Solitário/fisiologia , Estresse Fisiológico/efeitos dos fármacos , Estresse Fisiológico/fisiologia
13.
Physiol Rep ; 8(10): e14443, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32441441

RESUMO

It is crucial for animals to discriminate between palatable (safe) and aversive (toxic) tastants. The mechanisms underlying neuronal discrimination of taste stimuli remain unclear. We examined relations between taste response properties (spike counts, response duration, and coefficient of variation [CV]) and location of taste-sensitive neurons in the pontine parabrachial nucleus (PBN). Extracellular single units' activity in the PBN of Wistar rats was recorded using multibarrel glass micropipettes under urethane anesthesia. Forty taste-sensitive neurons were classified as NaCl (N)-best (n = 15), NaCl/HCl (NH)-best (n = 14), HCl (H)-best (n = 8), and sucrose (S)-best (n = 3) neurons. The net response to NaCl (15.2 ± 2.3 spikes/s) among the N-best neurons was significantly larger than that among the NH-best (4.5 ± 0.8 spikes/s) neurons. The response duration (4.5 ± 0.2 s) of the N-best neurons to NaCl was significantly longer than that of the NH-best (2.2 ± 0.3 s) neurons. These differences in the spike counts and the response durations between the two neuronal types in the PBN were similar to that previously reported in the rostral nucleus of the solitary tract (rNST). The CVs in the N-best and the NH-best neurons were significantly smaller in the PBN than those in the rNST. Histologically, most N-best neurons (12/13, 92%) were localized to the medial region, while NH-best neurons (11/13, 85%) were primarily found within the brachium conjunctivum. These results suggest that NaCl-specific taste information is transmitted by two distinct neuronal groups (N-best and NH-best), with different taste properties and locations within rNST to PBN tractography. Future studies on the higher order nuclei for taste could reveal more palatable and aversive taste pathways.


Assuntos
Neurônios/fisiologia , Núcleos Parabraquiais/fisiologia , Cloreto de Sódio/farmacologia , Núcleo Solitário/fisiologia , Percepção Gustatória/fisiologia , Paladar/fisiologia , Potenciais de Ação , Animais , Masculino , Neurônios/efeitos dos fármacos , Núcleos Parabraquiais/efeitos dos fármacos , Ratos , Ratos Wistar , Núcleo Solitário/efeitos dos fármacos , Paladar/efeitos dos fármacos , Percepção Gustatória/efeitos dos fármacos
14.
Psychoneuroendocrinology ; 117: 104687, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32388229

RESUMO

The gut-brain peptide glucagon-like peptide-1 (GLP-1) reduces reward from palatable food and drugs of abuse. Recent rodent studies show that activation of GLP-1 receptors (GLP-1R) within the nucleus of the solitary tract (NTS) not only suppresses the motivation and intake of palatable food, but also reduces alcohol-related behaviors. As reward induced by addictive drugs and sexual behaviors involve similar neurocircuits, we hypothesized that activation of GLP-1R suppresses sexual behavior in sexually naïve male mice. We initially identified that systemic administration of the GLP-1R agonist, exendin-4 (Ex4), decreased the frequency and duration of mounting behaviors, but did not alter the preference for females or female bedding. Thereafter infusion of Ex4 into the NTS decreased various behaviors of the sexual interaction chain, namely social, mounting and self-grooming behaviors. In male mice tested in the sexual interaction test, NTS-Ex4 increased dopamine turnover and enhanced serotonin levels in the nucleus accumbens (NAc). In addition, these mice displayed higher corticosterone, but not testosterone, levels in plasma. Finally, GLP-1R antagonist, exendin-3 (9-39) amide (Ex9), infused into the NTS differentially altered the ability of systemic-Ex4 to suppress the various behaviors of the sexual interaction chain, indicating that GLP-1R within the NTS is one of many sub-regions contributing to the GLP-1 dependent sexual behavior link. In these mice NTS-Ex9 partly blocked the systemic-Ex4 enhancement of corticosterone levels. Collectively, these data highlight that activation of GLP-1R, specifically those in the NTS, reduces sexual interaction behaviors in sexually naïve male mice and further provide a link between NTS-GLP-1R activation and reward-related behaviors.


Assuntos
Corticosterona/sangue , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Núcleo Accumbens/metabolismo , Recompensa , Comportamento Sexual Animal/fisiologia , Núcleo Solitário/metabolismo , Animais , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Receptor do Peptídeo Semelhante ao Glucagon 1/antagonistas & inibidores , Masculino , Camundongos , Núcleo Accumbens/efeitos dos fármacos , Comportamento Sexual Animal/efeitos dos fármacos , Núcleo Solitário/efeitos dos fármacos
15.
Am J Physiol Regul Integr Comp Physiol ; 318(6): R1068-R1077, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32320636

RESUMO

Severe trauma can produce a postinjury "metabolic self-destruction" characterized by catabolic metabolism and hyperglycemia. The severity of the hyperglycemia is highly correlated with posttrauma morbidity and mortality. Although no mechanism has been posited to connect severe trauma with a loss of autonomic control over metabolism, traumatic injury causes other failures of autonomic function, notably, gastric stasis and ulceration ("Cushing's ulcer"), which has been connected with the generation of thrombin. Our previous studies established that proteinase-activated receptors (PAR1; "thrombin receptors") located on astrocytes in the autonomically critical nucleus of the solitary tract (NST) can modulate gastric control circuit neurons to cause gastric stasis. Hindbrain astrocytes have also been implicated as important detectors of low glucose or glucose utilization. When activated, these astrocytes communicate with hindbrain catecholamine neurons that, in turn, trigger counterregulatory responses (CRR). There may be a convergence between the effects of thrombin to derange hindbrain gastrointestinal control and the hindbrain circuitry that initiates CRR to increase glycemia in reaction to critical hypoglycemia. Our results suggest that thrombin acts within the NST to increase glycemia through an astrocyte-dependent mechanism. Blockade of purinergic gliotransmission pathways interrupted the effect of thrombin to increase glycemia. Our studies also revealed that thrombin, acting in the NST, produced a rapid, dramatic, and potentially lethal suppression of respiratory rhythm that was also a function of purinergic gliotransmission. These results suggest that the critical connection between traumatic injury and a general collapse of autonomic regulation involves thrombin action on astrocytes.


Assuntos
Astrócitos/efeitos dos fármacos , Glicemia , Neurônios/efeitos dos fármacos , Rombencéfalo/efeitos dos fármacos , Trombina/farmacologia , Animais , Masculino , Nervo Frênico/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Taxa Respiratória/efeitos dos fármacos , Núcleo Solitário/efeitos dos fármacos
16.
Horm Behav ; 120: 104675, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31923417

RESUMO

Consumption of a high fat diet (HFD) increases circulating free fatty acids, which can enter the brain and promote a state of microgliosis, as defined by a change in microglia number and/or morphology. Most studies investigating diet-induced microgliosis have been conducted in male rodents despite well-documented sex differences in the neural control of food intake and neuroimmune signaling. This highlights the need to investigate how sex hormones may modulate the behavioral and cellular response to HFD consumption. Estradiol is of particular interest since it exerts a potent anorexigenic effect and has both anti-inflammatory and neuroprotective effects in the brain. As such, the aim of the current study was to investigate whether estradiol attenuates the development of HFD-induced microgliosis in female rats. Estradiol- and vehicle-treated ovariectomized rats were fed either a low-fat chow diet or a 60% HFD for 4 days, after which they were perfused and brain sections were processed via immunohistochemistry for microglia-specific Iba1 protein. Four days of HFD consumption promoted microgliosis, as measured via an increase in the number of microglia in the arcuate nucleus (ARC) of the hypothalamus and nucleus of the solitary tract (NTS), and a decrease in microglial branching in the ARC, NTS, lateral hypothalamus (LH), and ventromedial hypothalamus. Estradiol replacement attenuated the HFD-induced changes in microglia accumulation and morphology in the ARC, LH, and NTS. We conclude that estradiol has protective effects against HFD-induced microgliosis in a region-specific manner in hypothalamic and hindbrain areas implicated in the neural control of food intake.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Estradiol/farmacologia , Gliose/prevenção & controle , Microglia/efeitos dos fármacos , Ovariectomia/efeitos adversos , Animais , Núcleo Arqueado do Hipotálamo/efeitos dos fármacos , Núcleo Arqueado do Hipotálamo/patologia , Encefalopatias/etiologia , Encefalopatias/patologia , Encefalopatias/prevenção & controle , Contagem de Células , Tamanho Celular/efeitos dos fármacos , Gorduras na Dieta/efeitos adversos , Estradiol/deficiência , Feminino , Gliose/etiologia , Gliose/patologia , Hipotálamo/metabolismo , Hipotálamo/patologia , Microglia/patologia , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Núcleo Solitário/efeitos dos fármacos , Núcleo Solitário/patologia
17.
Respir Physiol Neurobiol ; 271: 103310, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31568840

RESUMO

The neuropeptide relaxin-3 is expressed by the pontine nucleus incertus. Relaxin-3 and synthetic agonist peptides modulate arousal and cognitive processes via activation of the relaxin-family peptide 3 receptor (RXFP3). Despite the presence of RXFP3 in the nucleus of the solitary tract (NTS), the ability of RXFP3 to modulate NTS-mediated cardiorespiratory functions has not been explored. Therefore, we examined the effects of bilateral microinjections of the selective agonist, RXFP3-A2 (40 µM, 100 nL/side), into the NTS in perfused working-heart-brainstem-preparations from rats (n = 6), while recording phrenic, vagal, and thoracic sympathetic chain activity (PNA, VNA, t-SCA) and heart rate (HR). RXFP3-A2 significantly increased respiratory rate and shortened post-inspiratory VNA. RXFP3-A2 in the NTS also significantly enhanced arterial chemoreceptor reflex (a-CR)-mediated tachypnea. However, RXFP3-A2 had no significant effect on HR and t-SCA at baseline or during the a-CR. These data represent the first evidence that RXFP3 activation in the NTS can selectively modulate respiration at baseline and during reflex behaviour.


Assuntos
Células Quimiorreceptoras/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Peptídeos/metabolismo , Taxa Respiratória/fisiologia , Núcleo Solitário/metabolismo , Animais , Células Quimiorreceptoras/efeitos dos fármacos , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Microinjeções/métodos , Técnicas de Cultura de Órgãos , Ratos , Ratos Sprague-Dawley , Receptores Acoplados a Proteínas G/agonistas , Receptores de Peptídeos/agonistas , Taxa Respiratória/efeitos dos fármacos , Núcleo Solitário/efeitos dos fármacos
18.
Clin Sci (Lond) ; 133(23): 2401-2413, 2019 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-31755934

RESUMO

G protein-coupled receptors (GPCRs) are important drug targets. Blocking angiotensin II (Ang II) type 1 receptor signaling alleviates hypertension and improves outcomes in patients with heart failure. Changes in structure and trafficking of GPCR, and desensitization of GPCR signaling induce pathophysiological processes. We investigated whether Ang II, via induction of AT1R and µ-opioid receptor (µOR) dimerization in the nucleus tractus solitarius (NTS), leads to progressive hypertension. Ang II signaling increased µOR and adrenergic receptor α2A (α2A-AR) heterodimer levels and decreased expression of extracellular signal-regulated kinases 1/2T202/Y204, ribosomal protein S6 kinaseT359/S363, and nNOSS1416 phosphorylation. Dimethylarginine dimethylaminohydrolase 1 (DDAH1) expression was abolished in the NTS of adult spontaneously hypertensive rats (SHRs). Endomorphin-2 was overexpressed in NTS of adult SHRs compared with that in 6-week-old Wistar-Kyoto rats (WKY). Administration of µOR agonist into the NTS of WKY increased blood pressure (BP), decreased nitric oxide (NO) production, and decreased DDAH1 activity. µOR agonist significantly reduced the activity of DDAH1 and decreased neuronal NO synthase (nNOS) phosphorylation. The AT1R II inhibitor, losartan, significantly decreased BP and abolished AT1R-induced formation of AT1R and µOR, and α2A-AR and µOR, heterodimers. Losartan also significantly increased the levels of nNOSS1416 phosphorylation and DDAH1 expression. These results show that Ang II may induce expression of endomorphin-2 and abolished DDAH1 activity by enhancing the formation of AT1R and µOR heterodimers in the NTS, leading to progressive hypertension.


Assuntos
Angiotensina II/metabolismo , Pressão Sanguínea/efeitos dos fármacos , Óxido Nítrico Sintase Tipo I/metabolismo , Núcleo Solitário/efeitos dos fármacos , Amidoidrolases , Bloqueadores do Receptor Tipo 1 de Angiotensina II/farmacologia , Animais , Dimerização , MAP Quinases Reguladas por Sinal Extracelular , Hipertensão/fisiopatologia , Losartan/farmacologia , Masculino , Óxido Nítrico/metabolismo , Oligopeptídeos/metabolismo , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Receptor Tipo 1 de Angiotensina , Receptores Opioides mu/agonistas , Transdução de Sinais , Núcleo Solitário/enzimologia
19.
Croat Med J ; 60(4): 352-360, 2019 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-31483121

RESUMO

AIM: To analyze the effects of glutamatergic agonists and antagonists on the activation of the A1 and A2 noradrenergic neurons localized in caudal ventrolateral medulla and nucleus tractus solitarii, respectively. METHODS: Rats were injected with glutamatergic agonists - kainic acid, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), or N-methyl-D-aspartic acid (NMDA), and the brain sections were prepared for immunohistochemistry. Before agonist injections, antagonists - 6-cyano-7-nitroquinoxaline-2,3-dione or dizocilpine were administered. The expression of c-Fos, as the neuronal activation marker, and tyrosine hydroxylase (TH), as the marker of noradrenergic neurons was assessed with dual immunohistochemistry. The percentage of c-Fos-positive noradrenergic neurons relative to all TH-positive neurons in the respective areas of the brain stem was calculated. RESULTS: All three glutamatergic agonists significantly increased the number of the c-Fos-positive noradrenergic neurons in both the A1 and A2 area when compared with control animals. Kainic acid injection activated about 57% of TH-positive neurons in A1 and 40% in A2, AMPA activated 26% in A1 and 38% in A2, and NMDA 77% in A1 and 22% in A2. The injections of appropriate glutamatergic antagonists greatly decreased the number of activated noradrenergic neurons. CONCLUSION: Our results suggest that noradrenergic neurons are regulated and/or activated by glutamatergic system and that these neurons express functional glutamate receptors.


Assuntos
Neurônios Adrenérgicos/efeitos dos fármacos , Tronco Encefálico/efeitos dos fármacos , Fármacos Atuantes sobre Aminoácidos Excitatórios/agonistas , Fármacos Atuantes sobre Aminoácidos Excitatórios/antagonistas & inibidores , Animais , Feminino , Imuno-Histoquímica , Ácido Caínico/farmacologia , N-Metilaspartato/farmacologia , Proteínas Proto-Oncogênicas c-fos/biossíntese , Ratos , Ratos Sprague-Dawley , Núcleo Solitário/efeitos dos fármacos , Tirosina 3-Mono-Oxigenase/biossíntese , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico/farmacologia
20.
Neuroreport ; 30(13): 914-920, 2019 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-31373972

RESUMO

This study was designed to investigate the cardiovascular effects of sulfur dioxide within the nucleus tractus solitarii. Sulfur dioxide or artificial cerebrospinal fluid was unilaterally applied into the nucleus tractus solitarii of rats, and the effects on blood pressure, heart rate, and arterial baroreflex sensitivity (ABR) were determined. To explore the mechanisms of the effects of intra-nucleus tractus solitarii sulfur dioxide, various inhibitors were applied prior to sulfur dioxide treatment. Unilateral microinjection of sulfur dioxide produced a dose-dependent decrease in blood pressure in anesthetized rats. Significant decreases in heart rate were also seen after unilateral microinjection of 20 and 200 pmol of sulfur dioxide (P < 0.05). Bilateral microinjection of sulfur dioxide into the nucleus tractus solitarii significantly decreased blood pressure and heart rate and also attenuated ABR. Pretreatment with glibenclamide or nicardipine within the nucleus tractus solitarii did not alter the hypotension or bradycardia (P > 0.05) induced by intra-nucleus tractus solitarii sulfur dioxide. Pretreatment with 1H-[1,2,4]Oxadiazolo[4,3-a]quinoxalin-1-one, however, significantly attenuated this hypotension and bradycardia. Prior application of kynurenic acid or N(G)-Nitro-L-arginine methyl ester into the nucleus tractus solitarii partially diminished the hypotension and bradycardia induced by intra-nucleus tractus solitarii sulfur dioxide. Our present study shows that sulfur dioxide produces cardiovascular inhibitory effects in the nucleus tractus solitarii, predominantly mediated by glutamate receptors and the nitric oxide/cyclic GMP signal transduction pathway.


Assuntos
Canais de Cálcio/metabolismo , GMP Cíclico/metabolismo , Canais KATP/metabolismo , Óxido Nítrico/metabolismo , Núcleo Solitário/metabolismo , Dióxido de Enxofre/administração & dosagem , Animais , Barorreflexo/efeitos dos fármacos , Barorreflexo/fisiologia , GMP Cíclico/antagonistas & inibidores , Canais KATP/antagonistas & inibidores , Masculino , Microinjeções/métodos , Óxido Nítrico/antagonistas & inibidores , Ratos , Ratos Sprague-Dawley , Núcleo Solitário/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA