RESUMO
Speech impediments are a prominent yet understudied symptom of Parkinson's disease (PD). While the subthalamic nucleus (STN) is an established clinical target for treating motor symptoms, these interventions can lead to further worsening of speech. The interplay between dopaminergic medication, STN circuitry, and their downstream effects on speech in PD is not yet fully understood. Here, we investigate the effect of dopaminergic medication on STN circuitry and probe its association with speech and cognitive functions in PD patients. We found that changes in intrinsic functional connectivity of the STN were associated with alterations in speech functions in PD. Interestingly, this relationship was characterized by altered functional connectivity of the dorsolateral and ventromedial subdivisions of the STN with the language network. Crucially, medication-induced changes in functional connectivity between the STN's dorsolateral subdivision and key regions in the language network, including the left inferior frontal cortex and the left superior temporal gyrus, correlated with alterations on a standardized neuropsychological test requiring oral responses. This relation was not observed in the written version of the same test. Furthermore, changes in functional connectivity between STN and language regions predicted the medication's downstream effects on speech-related cognitive performance. These findings reveal a previously unidentified brain mechanism through which dopaminergic medication influences speech function in PD. Our study sheds light into the subcortical-cortical circuit mechanisms underlying impaired speech control in PD. The insights gained here could inform treatment strategies aimed at mitigating speech deficits in PD and enhancing the quality of life for affected individuals.
Assuntos
Idioma , Doença de Parkinson , Fala , Núcleo Subtalâmico , Humanos , Doença de Parkinson/fisiopatologia , Doença de Parkinson/tratamento farmacológico , Núcleo Subtalâmico/fisiopatologia , Núcleo Subtalâmico/efeitos dos fármacos , Masculino , Fala/fisiologia , Fala/efeitos dos fármacos , Feminino , Pessoa de Meia-Idade , Idoso , Imageamento por Ressonância Magnética , Dopamina/metabolismo , Rede Nervosa/efeitos dos fármacos , Rede Nervosa/fisiopatologia , Cognição/efeitos dos fármacos , Dopaminérgicos/farmacologia , Dopaminérgicos/uso terapêuticoRESUMO
Levodopa-induced dyskinesia (LID) is an intractable motor complication arising in Parkinson's disease with the progression of disease and chronic treatment of levodopa. However, the specific cell assemblies mediating dyskinesia have not been fully elucidated. Here, we utilize the activity-dependent tool to identify three brain regions (globus pallidus external segment [GPe], parafascicular thalamic nucleus, and subthalamic nucleus) that specifically contain dyskinesia-activated ensembles. An intensity-dependent hyperactivity in the dyskinesia-activated subpopulation in GPe (GPeTRAPed in LID) is observed during dyskinesia. Optogenetic inhibition of GPeTRAPed in LID significantly ameliorates LID, whereas reactivation of GPeTRAPed in LID evokes dyskinetic behavior in the levodopa-off state. Simultaneous chemogenetic reactivation of GPeTRAPed in LID and another previously reported ensemble in striatum fully reproduces the dyskinesia induced by high-dose levodopa. Finally, we characterize GPeTRAPed in LID as a subset of prototypic neurons in GPe. These findings provide theoretical foundations for precision medication and modulation of LID in the future.
Assuntos
Discinesia Induzida por Medicamentos , Globo Pálido , Levodopa , Levodopa/efeitos adversos , Globo Pálido/efeitos dos fármacos , Globo Pálido/fisiopatologia , Discinesia Induzida por Medicamentos/fisiopatologia , Discinesia Induzida por Medicamentos/patologia , Animais , Neurônios/efeitos dos fármacos , Masculino , Optogenética , Camundongos , Doença de Parkinson/tratamento farmacológico , Humanos , Núcleo Subtalâmico/efeitos dos fármacos , Núcleo Subtalâmico/fisiopatologiaRESUMO
BACKGROUND: The gold standard anesthesia for deep brain stimulation (DBS) surgery is the "awake" approach, using local anesthesia alone. Although it offers high-quality microelectrode recordings and therapeutic-window assessment, it potentially causes patients extreme stress and might result in suboptimal surgical outcomes. General anesthesia or deep sedation is an alternative, but may reduce physiological testing reliability and lead localization accuracy. OBJECTIVES: The aim is to investigate a novel anesthesia regimen of ketamine-induced conscious sedation for the physiological testing phase of DBS surgery. METHODS: Parkinson's patients undergoing subthalamic DBS surgery were randomly divided into experimental and control groups. During physiological testing, the groups received 0.25 mg/kg/h ketamine infusion and normal saline, respectively. Both groups had moderate propofol sedation before and after physiological testing. The primary outcome was recording quality. Secondary outcomes included hemodynamic stability, lead accuracy, motor and cognitive outcome, patient satisfaction, and adverse events. RESULTS: Thirty patients, 15 from each group, were included. Intraoperatively, the electrophysiological signature and lead localization were similar under ketamine and saline. Tremor amplitude was slightly lower under ketamine. Postoperatively, patients in the ketamine group reported significantly higher satisfaction with anesthesia. The improvement in Unified Parkinson's disease rating scale part-III was similar between the groups. No negative effects of ketamine on hemodynamic stability or cognition were reported perioperatively. CONCLUSIONS: Ketamine-induced conscious sedation provided high quality microelectrode recordings comparable with awake conditions. Additionally, it seems to allow superior patient satisfaction and hemodynamic stability, while maintaining similar post-operative outcomes. Therefore, it holds promise as a novel alternative anesthetic regimen for DBS. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Assuntos
Estimulação Encefálica Profunda , Hemodinâmica , Ketamina , Doença de Parkinson , Propofol , Humanos , Ketamina/farmacologia , Estimulação Encefálica Profunda/métodos , Masculino , Propofol/farmacologia , Feminino , Pessoa de Meia-Idade , Método Duplo-Cego , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/terapia , Idoso , Hemodinâmica/efeitos dos fármacos , Hemodinâmica/fisiologia , Núcleo Subtalâmico/efeitos dos fármacosRESUMO
OBJECTIVES: To evaluate spectra and their correlations with clinical symptoms of local field potentials (LFP) acquired from wide- and close-spaced contacts (i.e. between contacts 0-3 or LFP03, and contacts 1-2 or LFP12 respectively) on the same DBS electrode within the subthalamus (STN) in Parkinson's disease (PD), before and after levodopa administration. METHODS: LFP12 and LFP03 were recorded from 20 PD patients. We evaluated oscillatory power, local and switched phase-amplitude coupling (l- and Sw-PAC) and correlation with motor symptoms (UPDRSIII). RESULTS: Before levodopa, both LFP03 and LFP12 power in the α band inversely correlated with UPDRSIII. Differences between contacts were found in the low-frequency bands power. After levodopa, differences in UPDRSIII were associated to changes in LFP03 low-ß and LFP12 HFO (high frequency oscillations, 250-350 Hz) power, while a modulation of the low-ß power and an increased ß-LFO (low frequency oscillations, 15-45 Hz) PAC was found only for LFP12. CONCLUSION: This study reveals differences in spectral pattern between LFP12 and LFP03 before and after levodopa administration, as well as different correlations with PD motor symptoms. SIGNIFICANCE: Differences between LFP12 and LFP03 may offer an opportunity for optimizing adaptive deep brain stimulation (aDBS) protocols for PD. LFP12 can be used to detect ß-HFO coupling and ß power (i.e. bradykinesia), while LFP03 are optimal for low frequency oscillations (dyskinesias).
Assuntos
Potenciais da Membrana/fisiologia , Doença de Parkinson/fisiopatologia , Núcleo Subtalâmico/fisiopatologia , Adulto , Idoso , Antiparkinsonianos/farmacologia , Antiparkinsonianos/uso terapêutico , Estimulação Encefálica Profunda , Eletrodos Implantados , Feminino , Humanos , Levodopa/farmacologia , Levodopa/uso terapêutico , Masculino , Potenciais da Membrana/efeitos dos fármacos , Pessoa de Meia-Idade , Doença de Parkinson/tratamento farmacológico , Núcleo Subtalâmico/efeitos dos fármacosRESUMO
Parkinson's disease motor symptoms are associated with an increase in subthalamic nucleus beta band oscillatory power. However, these oscillations are phasic, and there is a growing body of evidence suggesting that beta burst duration may be of critical importance to motor symptoms. This makes insights into the dynamics of beta bursting generation valuable, in particular to refine closed-loop deep brain stimulation in Parkinson's disease. In this study, we ask the question "Can average burst duration reveal how dynamics change between the ON and OFF medication states?". Our analysis of local field potentials from the subthalamic nucleus demonstrates using linear surrogates that the system generating beta oscillations is more likely to act in a non-linear regime OFF medication and that the change in a non-linearity measure is correlated with motor impairment. In addition, we pinpoint the simplest dynamical changes that could be responsible for changes in the temporal patterning of beta oscillations between medication states by fitting to data biologically inspired models, and simpler beta envelope models. Finally, we show that the non-linearity can be directly extracted from average burst duration profiles under the assumption of constant noise in envelope models. This reveals that average burst duration profiles provide a window into burst dynamics, which may underlie the success of burst duration as a biomarker. In summary, we demonstrate a relationship between average burst duration profiles, dynamics of the system generating beta oscillations, and motor impairment, which puts us in a better position to understand the pathology and improve therapies such as deep brain stimulation.
Assuntos
Ritmo beta/fisiologia , Doença de Parkinson/fisiopatologia , Núcleo Subtalâmico/fisiologia , Núcleo Subtalâmico/fisiopatologia , Antiparkinsonianos/farmacologia , Ritmo beta/efeitos dos fármacos , Biologia Computacional , Humanos , Modelos Neurológicos , Núcleo Subtalâmico/efeitos dos fármacosRESUMO
Pathological oscillations including elevated beta activity in the subthalamic nucleus (STN) and between STN and cortical areas are a hallmark of neural activity in Parkinson's disease (PD). Oscillations also play an important role in normal physiological processes and serve distinct functional roles at different points in time. We characterised the effect of dopaminergic medication on oscillatory whole-brain networks in PD in a time-resolved manner by employing a hidden Markov model on combined STN local field potentials and magnetoencephalography (MEG) recordings from 17 PD patients. Dopaminergic medication led to coherence within the medial and orbitofrontal cortex in the delta/theta frequency range. This is in line with known side effects of dopamine treatment such as deteriorated executive functions in PD. In addition, dopamine caused the beta band activity to switch from an STN-mediated motor network to a frontoparietal-mediated one. In contrast, dopamine did not modify local STN-STN coherence in PD. STN-STN synchrony emerged both on and off medication. By providing electrophysiological evidence for the differential effects of dopaminergic medication on the discovered networks, our findings open further avenues for electrical and pharmacological interventions in PD.
Assuntos
Antiparkinsonianos/uso terapêutico , Ondas Encefálicas/efeitos dos fármacos , Dopaminérgicos/uso terapêutico , Neurônios Dopaminérgicos/efeitos dos fármacos , Levodopa/uso terapêutico , Córtex Motor/efeitos dos fármacos , Doença de Parkinson/tratamento farmacológico , Núcleo Subtalâmico/efeitos dos fármacos , Idoso , Neurônios Dopaminérgicos/metabolismo , Potencial Evocado Motor/efeitos dos fármacos , Feminino , Humanos , Aprendizado de Máquina , Magnetoencefalografia , Masculino , Cadeias de Markov , Pessoa de Meia-Idade , Córtex Motor/metabolismo , Córtex Motor/fisiopatologia , Doença de Parkinson/diagnóstico , Doença de Parkinson/metabolismo , Doença de Parkinson/fisiopatologia , Processamento de Sinais Assistido por Computador , Núcleo Subtalâmico/metabolismo , Núcleo Subtalâmico/fisiopatologia , Fatores de Tempo , Resultado do TratamentoRESUMO
Standard treatment of Parkinson's disease involves the dopaminergic medications. Deep brain stimulation of the subthalamic nucleus (STN-DBS) is an important neurosurgical intervention often used as alternative treatment to drug therapy; however, it can be associated with increase of impulsive behaviors. This descriptive review focused on studies investigating the correlation between Deep brain stimulation of the subthalamic nucleus and impulsivity in Parkinson's disease patients, arguing, the action's mechanism and the specific role of the subthalamic nucleus. We searched on PubMed and Web of Science databases and screening references of included studies and review articles for additional citations. From initial 106 studies, only 15 met the search criteria. Parkinson's Disease patients with and without Deep Brain Stimulation were compared with healthy controls, through 16 different tasks that assessed some aspects of impulsivity. Both Deep brain stimulation of the subthalamic nucleus and medication were associated with impulsive behavior and influenced decision-making processes. Moreover, findings demonstrated that: Impulse Control Disorders (ICDs) occurred soon after surgery, while, in pharmacological treatment, they appeared mainly after the initiation of treatment or the increase in dosage, especially with dopamine agonists. The subthalamic nucleus plays a part in the fronto-striato-thalamic-cortical loops mediating motor, cognitive, and emotional functions: this could explain the role of the Deep Brain Stimulation in behavior modulation in Parkinson's Disease patients. Indeed, increase impulsivity has been reported also after deep brain stimulation of the subthalamic nucleus independently by dopaminergic medication status.
Assuntos
Estimulação Encefálica Profunda/métodos , Comportamento Impulsivo/fisiologia , Doença de Parkinson/metabolismo , Doença de Parkinson/terapia , Núcleo Subtalâmico/metabolismo , Estimulação Encefálica Profunda/psicologia , Dopamina/metabolismo , Dopaminérgicos/farmacologia , Dopaminérgicos/uso terapêutico , Humanos , Comportamento Impulsivo/efeitos dos fármacos , Doença de Parkinson/diagnóstico , Núcleo Subtalâmico/efeitos dos fármacosRESUMO
Parkinson's disease is characterized by both hypokinetic and hyperkinetic symptoms. While increased subthalamic burst discharges have a direct causal relationship with the hypokinetic manifestations (e.g., rigidity and bradykinesia), the origin of the hyperkinetic symptoms (e.g., resting tremor and propulsive gait) has remained obscure. Neuronal burst discharges are presumed to be autonomous or less responsive to synaptic input, thereby interrupting the information flow. We, however, demonstrate that subthalamic burst discharges are dependent on cortical glutamatergic synaptic input, which is enhanced by A-type K+ channel inhibition. Excessive top-down-triggered subthalamic burst discharges then drive highly correlative activities bottom-up in the motor cortices and skeletal muscles. This leads to hyperkinetic behaviors such as tremors, which are effectively ameliorated by inhibition of cortico-subthalamic AMPAergic synaptic transmission. We conclude that subthalamic burst discharges play an imperative role in cortico-subcortical information relay, and they critically contribute to the pathogenesis of both hypokinetic and hyperkinetic parkinsonian symptoms.
Assuntos
Globo Pálido/fisiopatologia , Hipercinese/fisiopatologia , Córtex Motor/fisiopatologia , Doença de Parkinson Secundária/fisiopatologia , Núcleo Subtalâmico/fisiopatologia , Tremor/fisiopatologia , 4-Aminopiridina/farmacologia , 6-Ciano-7-nitroquinoxalina-2,3-diona/farmacologia , Animais , Agonistas de Aminoácidos Excitatórios/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Feminino , Globo Pálido/efeitos dos fármacos , Globo Pálido/metabolismo , Ácido Glutâmico/metabolismo , Ácido Glutâmico/farmacologia , Humanos , Hipercinese/metabolismo , Masculino , Potenciais da Membrana/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Córtex Motor/efeitos dos fármacos , Córtex Motor/metabolismo , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiopatologia , Optogenética/métodos , Doença de Parkinson Secundária/metabolismo , Ratos , Ratos Wistar , Núcleo Subtalâmico/efeitos dos fármacos , Núcleo Subtalâmico/metabolismo , Sinapses/efeitos dos fármacos , Sinapses/metabolismo , Sinapses/patologia , Transmissão Sináptica , Tremor/metabolismo , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico/farmacologiaRESUMO
BACKGROUND: Dexmedetomidine is frequently used for sedation during deep brain stimulator implantation in patients with Parkinson's disease, but its effect on subthalamic nucleus activity is not well known. The aim of this study was to quantify the effect of increasing doses of dexmedetomidine in this population. METHODS: Controlled clinical trial assessing changes in subthalamic activity with increasing doses of dexmedetomidine (from 0.2 to 0.6 µg kg-1 h-1) in a non-operating theatre setting. We recorded local field potentials in 12 patients with Parkinson's disease with bilateral deep brain stimulators (24 nuclei) and compared basal activity in the nuclei of each patient and activity recorded with different doses. Plasma levels of dexmedetomidine were obtained and correlated with the dose administered. RESULTS: With dexmedetomidine infusion, patients became clinically sedated, and at higher doses (0.5-0.6 µg kg-1 h-1) a significant decrease in the characteristic Parkinsonian subthalamic activity was observed (P<0.05 in beta activity). All subjects awoke to external stimulus over a median of 1 (range: 0-9) min, showing full restoration of subthalamic activity. Dexmedetomidine dose administered and plasma levels showed a positive correlation (repeated measures correlation coefficient=0.504; P<0.001). CONCLUSIONS: Patients needing some degree of sedation throughout subthalamic deep brain stimulator implantation for Parkinson's disease can probably receive dexmedetomidine up to 0.6 µg kg-1 h-1 without significant alteration of their characteristic subthalamic activity. If patients achieve a 'sedated' state, subthalamic activity decreases, but they can be easily awakened with a non-pharmacological external stimulus and recover baseline subthalamic activity patterns in less than 10 min. CLINICAL TRIAL REGISTRATION: EudraCT 2016-002680-34; NCT-02982512.
Assuntos
Estimulação Encefálica Profunda/métodos , Dexmedetomidina/farmacologia , Hipnóticos e Sedativos/farmacologia , Doença de Parkinson/terapia , Núcleo Subtalâmico/efeitos dos fármacos , Relação Dose-Resposta a Droga , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , EspanhaRESUMO
AIM: To investigate the effect of preoperative levodopa responsiveness to clinical outcomes in the first postoperative year, and to evaluate the changes in the postoperative levodopa responsiveness in patients undergoing subthalamic nucleus (STN) deep brain stimulation (DBS). MATERIAL AND METHODS: Forty-nine Parkinson?s Disease (PD) patients undergoing bilateral DBS of the STN were included in this study. Their clinical motor symptoms were assessed preoperatively by UPDRS Part III score in both OFF and ON medication states. Postoperatively, the assessments were obtained in three consecutive conditions. Preoperatively and postoperatively, the percentage difference between these two scores was evaluated as levodopa response. RESULTS: Mean age was 54.6 ± 9 years (27?70). Levodopa response significantly decreased postoperatively by 56% a year. Compared with preoperative med on and postoperative stim on / med on scores, the clinical results of the first year were obtained and an improvement of 25% on the UPDRS 3 score was observed. Compared with preoperative levodopa response and clinical outcomes, better clinical results were obtained in patients with higher preoperative levodopa response (p < 0.05). CONCLUSION: In this study, we confirm that the response of L-dopa decreases after DBS of the STN. The reasons for this finding are not clear. However, DBS of the STN allows for the reduction of PD medications and improvement of daily life activities, motor function, motor fluctuations, and dyskinesia.
Assuntos
Antiparkinsonianos/uso terapêutico , Estimulação Encefálica Profunda/tendências , Levodopa/uso terapêutico , Doença de Parkinson/terapia , Cuidados Pós-Operatórios/tendências , Núcleo Subtalâmico/fisiologia , Adulto , Idoso , Antiparkinsonianos/farmacologia , Estimulação Encefálica Profunda/métodos , Feminino , Seguimentos , Humanos , Levodopa/farmacologia , Masculino , Pessoa de Meia-Idade , Doença de Parkinson/diagnóstico , Doença de Parkinson/fisiopatologia , Cuidados Pós-Operatórios/métodos , Núcleo Subtalâmico/efeitos dos fármacos , Fatores de Tempo , Resultado do TratamentoRESUMO
BACKGROUND: Desflurane and sevoflurane are commonly used during inhalational anaesthesia, but few studies have investigated their effects on deep cerebral neuronal activity. In addition, the association between subthalamic nucleus (STN) neurophysiology and general anaesthesia induced by volatile anaesthetics are not yet identified. This study aimed to identify differences in neurophysiological characteristics of the STN during comparable minimal alveolar concentration (MAC) desflurane and sevoflurane anaesthesia for deep brain stimulation (DBS) in patients with Parkinson's disease. METHODS: Twelve patients with similar Parkinson's disease severity received desflurane (n=6) or sevoflurane (n=6) during DBS surgery. We obtained STN spike firing using microelectrode recording at 0.5-0.6 MAC and compared firing rate, power spectral density, and coherence. RESULTS: Neuronal firing rate was lower with desflurane (47.4 [26.7] Hz) than with sevoflurane (63.9 [36.5] Hz) anaesthesia (P<0.001). Sevoï¬urane entrained greater gamma oscillation power than desflurane (62.9% [0.9%] vs 57.0% [1.5%], respectively; P=0.002). There was greater coherence in the theta band of the desflurane group compared with the sevoflurane group (13% vs 6%, respectively). Anaesthetic choice did not differentially influence STN mapping accuracy or the clinical outcome of DBS electrode implantation. CONCLUSIONS: Desflurane and sevoflurane produced distinct neurophysiological profiles in humans that may be associated with their analgesic and hypnotic actions.
Assuntos
Anestésicos Inalatórios/administração & dosagem , Ondas Encefálicas/efeitos dos fármacos , Desflurano/administração & dosagem , Doença de Parkinson/terapia , Sevoflurano/administração & dosagem , Núcleo Subtalâmico/efeitos dos fármacos , Adulto , Idoso , Estimulação Encefálica Profunda , Eletroencefalografia , Feminino , Humanos , Monitorização Neurofisiológica Intraoperatória , Masculino , Pessoa de Meia-Idade , Doença de Parkinson/diagnóstico , Doença de Parkinson/fisiopatologia , Núcleo Subtalâmico/fisiopatologia , Resultado do TratamentoRESUMO
Dopaminergic medication for Parkinson's disease is associated with troubling dystonia and dyskinesia and, in rodents, dopaminergic agonists likewise induce a variety of orofacial motor responses, certain of which are mimicked by serotonin2C (5-HT2C) receptor agonists. However, the neural substrates underlying these communalities and their interrelationship remain unclear. In Sprague-Dawley rats, the dopaminergic agonist, apomorphine (0.03-0.3 mg/kg) and the preferential D2/3 receptor agonist quinpirole (0.2-0.5 mg/kg), induced purposeless oral movements (chewing, jaw tremor, tongue darting). The 5-HT2C receptor antagonist 5-methyl-1-[[2-[(2-methyl-3-pyridyl)oxyl]-5-pyridyl]carbamoyl]-6-trifluoromethylindone (SB 243213) (1 mg/kg) reduced the oral responses elicited by specific doses of both agonists (0.1 mg/kg apomorphine; 0.5 mg/kg quinpirole). After having confirmed that the oral bouts induced by quinpirole 0.5 mg/kg were blocked by another 5-HT2C antagonist (6-chloro-5-methyl-1-[6-(2-methylpiridin-3-yloxy)pyridine-3-yl carbamoyl] indoline (SB 242084), 1 mg/kg), we mapped the changes in neuronal activity in numerous sub-territories of the basal ganglia using c-Fos expression. We found a marked increase of c-Fos expression in the subthalamic nucleus (STN) in combining quinpirole (0.5 mg/kg) with either SB 243213 or SB 242084. In a parallel set of electrophysiological experiments, the same combination of SB 243213/quinpirole produced an irregular pattern of discharge and an increase in the firing rate of STN neurons. Finally, it was shown that upon the electrical stimulation of the anterior cingulate cortex, quinpirole (0.5 mg/kg) increased the response of substantia nigra pars reticulata neurons corresponding to activation of the "hyperdirect" (cortico-subthalamonigral) pathway. This effect of quinpirole was abolished by the two 5-HT2C antagonists. Collectively, these results suggest that induction of orofacial motor responses by D2/3 receptor stimulation involves 5-HT2C receptor-mediated activation of the STN by recruitment of the hyperdirect (cortico-subthalamonigral) pathway.
Assuntos
Agonistas de Dopamina/farmacologia , Receptor 5-HT2C de Serotonina/metabolismo , Serotonina/metabolismo , Núcleo Subtalâmico/efeitos dos fármacos , Aminopiridinas/farmacologia , Animais , Apomorfina/farmacologia , Gânglios da Base/efeitos dos fármacos , Gânglios da Base/metabolismo , Giro do Cíngulo/efeitos dos fármacos , Giro do Cíngulo/metabolismo , Indóis/farmacologia , Masculino , Córtex Motor/efeitos dos fármacos , Córtex Motor/metabolismo , Vias Neurais/efeitos dos fármacos , Vias Neurais/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Piridinas/farmacologia , Quimpirol/farmacologia , Ratos , Ratos Sprague-Dawley , Receptores de Dopamina D2/metabolismo , Agonistas do Receptor 5-HT2 de Serotonina/farmacologia , Antagonistas do Receptor 5-HT2 de Serotonina/farmacologia , Substância Negra/efeitos dos fármacos , Substância Negra/metabolismo , Núcleo Subtalâmico/metabolismoRESUMO
Microelectrode recording (MER) is often used to identify electrode location which is critical for the success of deep brain stimulation (DBS) treatment of Parkinson's disease. The usage of anesthesia and its' impact on MER quality and electrode placement is controversial. We recorded neuronal activity at a single depth inside the Subthalamic Nucleus (STN) before, during, and after remifentanil infusion. The root mean square (RMS) of the 250-6000 Hz band-passed signal was used to evaluate the regional spiking activity, the power spectrum to evaluate the oscillatory activity and the coherence to evaluate synchrony between two microelectrodes. We compare those to new frequency domain (spectral) analysis of previously obtained data during propofol sedation. Results showed Remifentanil decreased the normalized RMS by 9% (P < 0.001), a smaller decrease compared to propofol. Regarding the beta range oscillatory activity, remifentanil depressed oscillations (drop from 25 to 5% of oscillatory electrodes), while propofol did not (increase from 33.3 to 41.7% of oscillatory electrodes). In the cases of simultaneously recorded oscillatory electrodes, propofol did not change the synchronization while remifentanil depressed it. In conclusion, remifentanil interferes with the identification of the dorsolateral oscillatory region, whereas propofol interferes with RMS identification of the STN borders. Thus, both have undesired effect during the MER procedure.Trial registration: NCT00355927 and NCT00588926.
Assuntos
Hipnóticos e Sedativos/farmacologia , Microeletrodos , Neurônios/efeitos dos fármacos , Doença de Parkinson/tratamento farmacológico , Núcleo Subtalâmico/efeitos dos fármacos , Adulto , Idoso , Estimulação Encefálica Profunda , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Propofol/farmacologia , Remifentanil/farmacologiaRESUMO
The subthalamic nucleus (STN) plays a key role in the control of voluntary movements and basal ganglia disorders, such as Parkinson's disease and hemiballismus. The STN receives glutamatergic inputs directly from the cerebral cortex via the cortico-STN hyperdirect pathway and GABAergic inputs from the external segment of the globus pallidus (GPe) via the cortico-striato-GPe-STN indirect pathway. The STN then drives the internal segment of the globus pallidus, which is the output nucleus of the basal ganglia. Thus, clarifying how STN neuronal activity is controlled by the two inputs is crucial. Cortical stimulation evokes early excitation and late excitation in STN neurons, intervened by a short gap. Here, to examine the origin of each component of this biphasic response, we recorded neuronal activity in the STN, combined with electrical stimulation of the motor cortices and local drug application in two male monkeys (Macaca fuscata) in the awake state. Local application of glutamate receptor antagonists, a mixture of an AMPA/kainate receptor antagonist and an NMDA receptor antagonist, into the vicinity of recorded STN neurons specifically diminished early excitation. Blockade of the striatum (putamen) or GPe with local injection of a GABAA receptor agonist, muscimol, diminished late excitation in the STN. Blockade of striato-GPe transmission with local injection of a GABAA receptor antagonist, gabazine, into the GPe also abolished late excitation. These results indicate that cortically evoked early and late excitation in the STN is mediated by the cortico-STN glutamatergic hyperdirect and the cortico-striato-GPe-STN indirect pathways, respectively.SIGNIFICANCE STATEMENT Here we show that the subthalamic nucleus (STN), an input station of the basal ganglia, receives cortical inputs through the cortico-STN hyperdirect and cortico-striato-external pallido-STN indirect pathways. This knowledge is important for understanding not only the normal functions of the STN, but also the pathophysiology of STN-related disorders and therapy targeting the STN. Lesions or application of high-frequency stimulation in the STN ameliorates parkinsonian symptoms. These procedures could affect all components in the STN, such as afferent inputs through the hyperdirect and indirect pathways, and STN neuronal activity. If we can understand which component is most affected by such procedures, we may be able to identify more effective manipulation targets or methods to treat Parkinson's disease.
Assuntos
Potenciais Evocados , Córtex Motor/fisiologia , Núcleo Subtalâmico/fisiologia , Animais , GABAérgicos/farmacologia , Neurônios GABAérgicos/efeitos dos fármacos , Neurônios GABAérgicos/fisiologia , Macaca fuscata , Masculino , Córtex Motor/efeitos dos fármacos , Muscimol/farmacologia , Vias Neurais/efeitos dos fármacos , Vias Neurais/fisiologia , Putamen/efeitos dos fármacos , Putamen/fisiologia , Piridazinas/farmacologia , Receptores de AMPA/antagonistas & inibidores , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Núcleo Subtalâmico/efeitos dos fármacosRESUMO
OBJECTIVE: Phasic bursts of beta band synchronisation have been linked to motor impairment in Parkinson's disease (PD). However, little is known about what terminates bursts. METHODS: We used the Hilbert-Huang transform to investigate beta bursts in the local field potential recorded from the subthalamic nucleus in nine patients with PD on and off levodopa. RESULTS: The sharpness of the beta waveform extrema fell as burst amplitude dropped. Conversely, an index of phase slips between waveform extrema, and the power of concurrent theta activity increased as burst amplitude fell. Theta activity was also increased on levodopa when beta bursts were attenuated. These phenomena were associated with reduction in coupling between beta phase and high gamma activity amplitude. We discuss how these findings may suggest that beta burst termination is associated with relative desynchronization of the beta drive, increase in competing theta activity and increased phase slips in the beta activity. CONCLUSIONS: We characterise the dynamical nature of beta bursts, thereby permitting inferences about underlying activities and, in particular, about why bursts terminate. SIGNIFICANCE: Understanding the dynamical nature of beta bursts may help point to interventions that can cause their termination and potentially treat motor impairment in PD.
Assuntos
Antiparkinsonianos/administração & dosagem , Ritmo beta/fisiologia , Estimulação Encefálica Profunda , Levodopa/administração & dosagem , Doença de Parkinson/fisiopatologia , Núcleo Subtalâmico/fisiopatologia , Idoso , Ritmo beta/efeitos dos fármacos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Doença de Parkinson/tratamento farmacológico , Núcleo Subtalâmico/efeitos dos fármacosRESUMO
Repetitive behaviors (e.g., stereotypic movements, compulsions, rituals) are common features of a number of neurodevelopmental disorders. Clinical and animal model studies point to the importance of cortical-basal ganglia circuitry in the mediation of repetitive behaviors. In the current study, we tested whether a drug cocktail (dopamine D2 receptor antagonist + adenosine A2A receptor agonist + glutamate mGlu5 positive allosteric modulator) designed to activate the indirect basal ganglia pathway would reduce repetitive behavior in C58 mice after both acute and sub-chronic administration. In addition, we hypothesized that sub-chronic administration (i.e. 7 days of twice-daily injections) would increase the functional activation of the subthalamic nucleus (STN), a key node of the indirect pathway. Functional activation of STN was indexed by dendritic spine density, analysis of GABA, glutamate, and synaptic plasticity genes, and cytochrome oxidase activity. The drug cocktail used significantly reduced repetitive motor behavior in C58 mice after one night as well as seven nights of twice-nightly injections. These effects did not reflect generalized motor behavior suppression as non-repetitive motor behaviors such as grooming, digging and eating were not reduced relative to vehicle. Sub-chronic drug treatment targeting striatopallidal neurons resulted in significant changes in the STN, including a four-fold increase in brain-derived neurotrophic factor (BDNF) mRNA expression as well as a significant increase in dendritic spine density. The present findings are consistent with, and extend, our prior work linking decreased functioning of the indirect basal ganglia pathway to expression of repetitive motor behavior in C58 mice and suggest novel therapeutic targets.
Assuntos
Comportamento Estereotipado/efeitos dos fármacos , Núcleo Subtalâmico/efeitos dos fármacos , Adenosina/análogos & derivados , Adenosina/farmacologia , Animais , Transtorno do Espectro Autista/tratamento farmacológico , Transtorno do Espectro Autista/fisiopatologia , Gânglios da Base/fisiologia , Comportamento Animal/efeitos dos fármacos , Benzamidas/farmacologia , Comportamento Compulsivo/tratamento farmacológico , Corpo Estriado/fisiologia , Modelos Animais de Doenças , Indóis/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos , Vias Neurais/fisiologia , Neurônios/metabolismo , Fenetilaminas/farmacologia , Piperidinas/farmacologia , Pirazóis/farmacologia , Comportamento Estereotipado/fisiologia , Núcleo Subtalâmico/metabolismoRESUMO
Deep brain stimulation (DBS) of the subthalamic nucleus is a symptomatic treatment of Parkinson's disease but benefits only to a minority of patients due to stringent eligibility criteria. To investigate new targets for less invasive therapies, we aimed at elucidating key mechanisms supporting deep brain stimulation efficiency. Here, using in vivo electrophysiology, optogenetics, behavioral tasks and mathematical modeling, we found that subthalamic stimulation normalizes pathological hyperactivity of motor cortex pyramidal cells, while concurrently activating somatostatin and inhibiting parvalbumin interneurons. In vivo opto-activation of cortical somatostatin interneurons alleviates motor symptoms in a parkinsonian mouse model. A computational model highlights that a decrease in pyramidal neuron activity induced by DBS or by a stimulation of cortical somatostatin interneurons can restore information processing capabilities. Overall, these results demonstrate that activation of cortical somatostatin interneurons may constitute a less invasive alternative than subthalamic stimulation.
Assuntos
Estimulação Encefálica Profunda/métodos , Levodopa/uso terapêutico , Transtornos Parkinsonianos/terapia , Somatostatina/metabolismo , Algoritmos , Animais , Antiparkinsonianos/uso terapêutico , Modelos Animais de Doenças , Fenômenos Eletrofisiológicos/efeitos dos fármacos , Feminino , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Córtex Motor/efeitos dos fármacos , Córtex Motor/metabolismo , Córtex Motor/fisiopatologia , Optogenética/métodos , Oxidopamina , Transtornos Parkinsonianos/induzido quimicamente , Transtornos Parkinsonianos/fisiopatologia , Células Piramidais/efeitos dos fármacos , Células Piramidais/metabolismo , Células Piramidais/fisiologia , Núcleo Subtalâmico/efeitos dos fármacos , Núcleo Subtalâmico/metabolismo , Núcleo Subtalâmico/fisiopatologiaRESUMO
Although pain is a prevalent nonmotor symptom in Parkinson's disease (PD), it is undertreated, in part because of our limited understanding of the underlying mechanisms. Considering that the basal ganglia are implicated in pain sensation, and that their synaptic outputs are controlled by the subthalamic nucleus (STN), we hypothesized that the STN might play a critical role in parkinsonian pain hypersensitivity. To test this hypothesis, we established a unilateral parkinsonian mouse model with moderate lesions of dopaminergic neurons in the substantia nigra. The mice displayed pain hypersensitivity and neuronal hyperactivity in the ipsilesional STN and in central pain-processing nuclei. Optogenetic inhibition of STN neurons reversed pain hypersensitivity phenotypes in parkinsonian mice, while hyperactivity in the STN was sufficient to induce pain hypersensitivity in control mice. We further demonstrated that the STN differentially regulates thermal and mechanical pain thresholds through its projections to the substantia nigra pars reticulata (SNr) and the internal segment of the globus pallidus (GPi)/ventral pallidum (VP), respectively. Interestingly, optogenetic inhibition of STN-GPi/STN-VP and STN-SNr projections differentially elevated mechanical and thermal pain thresholds in parkinsonian mice. In summary, our results support the hypothesis that the STN and its divergent projections play critical roles in modulating pain processing under both physiological and parkinsonian conditions, and suggest that inhibition of individual STN projections may be a therapeutic strategy to relieve distinct pain phenotypes in PD.
Assuntos
Neurônios/fisiologia , Dor/fisiopatologia , Doença de Parkinson/fisiopatologia , Núcleo Subtalâmico/fisiopatologia , Animais , Gânglios da Base/efeitos dos fármacos , Gânglios da Base/fisiopatologia , Modelos Animais de Doenças , Antagonistas de Dopamina/farmacologia , Globo Pálido/efeitos dos fármacos , Humanos , Hipersensibilidade , Camundongos , Neurônios/efeitos dos fármacos , Oxidopamina/farmacologia , Dor/complicações , Limiar da Dor/efeitos dos fármacos , Limiar da Dor/fisiologia , Doença de Parkinson/complicações , Substância Negra/fisiopatologia , Núcleo Subtalâmico/efeitos dos fármacosRESUMO
BACKGROUND: General anesthetics-induced changes of electrical oscillations in the basal ganglia may render the identification of the stimulation targets difficult. The authors hypothesized that while sevoflurane anesthesia entrains coherent lower frequency oscillations, it does not affect the identification of the subthalamic nucleus and clinical outcome. METHODS: A cohort of 19 patients with Parkinson's disease with comparable disability underwent placement of electrodes under either sevoflurane general anesthesia (n = 10) or local anesthesia (n = 9). Microelectrode recordings during targeting were compared for neuronal spiking characteristics and oscillatory dynamics. Clinical outcomes were compared at 5-yr follow-up. RESULTS: Under sevoflurane anesthesia, subbeta frequency oscillations predominated (general vs. local anesthesia, mean ± SD; delta: 13 ± 7.3% vs. 7.8 ± 4.8%; theta: 8.4 ± 4.1% vs. 3.9 ± 1.6%; alpha: 8.1 ± 4.1% vs. 4.8 ± 1.5%; all P < 0.001). In addition, distinct dorsolateral beta and ventromedial gamma oscillations were detected in the subthalamic nucleus solely in awake surgery (mean ± SD; dorsal vs. ventral beta band power: 20.5 ± 6.6% vs. 15.4 ± 4.3%; P < 0.001). Firing properties of subthalamic neurons did not show significant difference between groups. Clinical outcomes with regard to improvement in motor and psychiatric symptoms and adverse effects were comparable for both groups. Tract numbers of microelectrode recording, active contact coordinates, and stimulation parameters were also equivalent. CONCLUSIONS: Sevoflurane general anesthesia decreased beta-frequency oscillations by inducing coherent lower frequency oscillations, comparable to the pattern seen in the scalp electroencephalogram. Nevertheless, sevoflurane-induced changes in electrical activity patterns did not reduce electrode placement accuracy and clinical effect. These observations suggest that microelectrode-guided deep brain stimulation under sevoflurane anesthesia is a feasible clinical option.
Assuntos
Anestésicos Inalatórios/administração & dosagem , Estimulação Encefálica Profunda/métodos , Neurônios/efeitos dos fármacos , Doença de Parkinson/terapia , Sevoflurano/administração & dosagem , Núcleo Subtalâmico/efeitos dos fármacos , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Adulto , Idoso , Anestésicos Locais/administração & dosagem , Ritmo beta/efeitos dos fármacos , Ritmo beta/fisiologia , Estudos de Coortes , Eletroencefalografia/efeitos dos fármacos , Eletroencefalografia/métodos , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Neurônios/fisiologia , Doença de Parkinson/fisiopatologia , Núcleo Subtalâmico/fisiologia , Resultado do TratamentoRESUMO
We performed optogenetic inactivation of rats' entopeduncular nucleus (EP, homologous to primates' globus pallidus interna (GPi)) and investigated the therapeutic effect in a rat model of PD. 6-Hydroxydopamine (6-OHDA)-induced hemiparkinsonian rats were injected with either a virus for halorhodopsin expression that is used to inactivate GABAergic neurons or a control virus injection and received optic fiber insertion. All the rats were illuminated by 590â¯nm of light. Each rat was then subjected to sequential sessions of stepping tests under controlled illumination patterns. The stepping test is a reliable evaluation method for forelimb akinesia. The number of adjusting steps was significantly higher in experimental (optogene with reporter gene expression) (5Hzâ¯-â¯10ms: 15.7⯱â¯1.9, 5Hzâ¯-â¯100ms: 16.0⯱â¯1.8, continuous: 21.6⯱â¯1.9) than control rats (reporter gene expression) (5Hz-10ms: 1.9⯱â¯1.1, 5Hz-100ms: 2.6⯱â¯1.0, continuous: 2.5⯱â¯1.2) (p < 0.001). Continuous EP illumination showed a significantly higher improvement of forelimb akinesia than other illumination patterns (p < 0.01). Optogene expression in the GABAergic neurons of the EP was confirmed by immunohistochemistry. Optogenetic inhibition of EP was effective to improve contralateral forelimb akinesia. However, further studies using prolonged illumination are needed to investigate the best illumination pattern for optogenetic stimulation.