Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Neuroscience ; 496: 230-240, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35724770

RESUMO

Animals perceive threat information mainly from vision, and the subcortical visual pathway plays a critical role in the rapid processing of fear visual information. The superior colliculus (SC) and lateral posterior (LP) nuclei of the thalamus are key components of the subcortical visual pathway; however, how animals encode and transmit fear visual information is unclear. To evaluate the response characteristics of neurons in SC and LP thalamic nuclei under fear visual stimuli, extracellular action potentials (spikes) and local field potential (LFP) signals were recorded under looming and dimming visual stimuli. The results showed that both SC and LP thalamic nuclei were strongly responsive to looming visual stimuli but not sensitive to dimming visual stimuli. Under the looming visual stimulus, the theta (θ) frequency bands of both nuclei showed obvious oscillations, which markedly enhanced the synchronization between neurons. The functional network characteristics also indicated that the network connection density and information transmission efficiency were higher under fear visual stimuli. These findings suggest that both SC and LP thalamic nuclei can effectively identify threatening fear visual information and rapidly transmit it between nuclei through the θ frequency band. This discovery can provide a basis for subsequent coding and decoding studies in the subcortical visual pathways.


Assuntos
Núcleos Posteriores do Tálamo , Colículos Superiores , Animais , Medo/fisiologia , Núcleos Laterais do Tálamo/fisiologia , Camundongos , Núcleos Posteriores do Tálamo/fisiologia , Colículos Superiores/fisiologia , Núcleos Talâmicos/fisiologia , Vias Visuais/fisiologia
2.
Neuropharmacology ; 204: 108906, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-34856204

RESUMO

The parasubthalamic nucleus (PSTN), a small nucleus located on the lateral edge of the posterior hypothalamus, has emerged in recent years as a highly interconnected node within the network of brain regions sensing and regulating autonomic function and homeostatic needs. Furthermore, the strong integration of the PSTN with extended amygdala circuits makes it ideally positioned to serve as an interface between interoception and emotions. While PSTN neurons are mostly glutamatergic, some of them also express neuropeptides that have been associated with stress-related affective and motivational dysfunction, including substance P, corticotropin-releasing factor, and pituitary adenylate-cyclase activating polypeptide. PSTN neurons respond to food ingestion and anorectic signals, as well as to arousing and distressing stimuli. Functional manipulation of defined pathways demonstrated that the PSTN serves as a central hub in multiple physiologically relevant networks and is notably implicated in appetite suppression, conditioned taste aversion, place avoidance, impulsive action, and fear-induced thermoregulation. We also discuss the putative role of the PSTN in interoceptive dysfunction and negative urgency. This review aims to synthesize the burgeoning preclinical literature dedicated to the PSTN and to stimulate interest in further investigating its influence on physiology and behavior.


Assuntos
Comportamento/fisiologia , Interocepção/fisiologia , Motivação/fisiologia , Núcleos Posteriores do Tálamo/fisiologia , Tonsila do Cerebelo/fisiologia , Animais , Anorexia/fisiopatologia , Apetite , Aprendizagem da Esquiva , Comportamento Aditivo , Hormônio Liberador da Corticotropina/metabolismo , Ingestão de Alimentos/fisiologia , Emoções/fisiologia , Humanos , Comportamento Impulsivo , Neurônios/metabolismo , Neurônios/fisiologia , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Núcleos Posteriores do Tálamo/metabolismo , Substância P/metabolismo
3.
J Comp Neurol ; 529(10): 2558-2575, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33458823

RESUMO

Ventroposterior medialis parvocellularis (VPMP) nucleus of the primate thalamus receives direct input from the nucleus of the solitary tract, whereas the homologous thalamic structure in the rodent does not. To reveal whether the synaptic circuitries in these nuclei lend evidence for conservation of design principles in the taste thalamus across species or across sensory thalamus in general, we characterized the ultrastructural and molecular properties of the VPMP in a close relative of primates, the tree shrew (Tupaia belangeri), and compared these to known properties of the taste thalamus in rodent, and the visual thalamus in mammals. Electron microscopy analysis to categorize the synaptic inputs in the VPMP revealed that the largest-size terminals contained many vesicles and formed large synaptic zones with thick postsynaptic density on multiple, medium-caliber dendrite segments. Some formed triads within glomerular arrangements. Smaller-sized terminals contained dark mitochondria; most formed a single asymmetric or symmetric synapse on small-diameter dendrites. Immuno-EM experiments revealed that the large-size terminals contained VGLUT2, whereas the small-size terminal populations contained VGLUT1 or ChAT. These findings provide evidence that the morphological and molecular characteristics of synaptic circuitry in the tree shrew VPMP are similar to that in nonchemical sensory thalamic nuclei. Furthermore, the results indicate that all primary sensory nuclei of the thalamus in higher mammals share a structural template for processing thalamocortical sensory information. In contrast, substantial morphological and molecular differences in rodent versus tree shrew taste nuclei suggest a fundamental divergence in cellular processing mechanisms of taste input in these two species.


Assuntos
Núcleos Posteriores do Tálamo/fisiologia , Núcleos Posteriores do Tálamo/ultraestrutura , Percepção Gustatória/fisiologia , Tupaiidae/anatomia & histologia , Tupaiidae/fisiologia , Animais , Imuno-Histoquímica , Microscopia Eletrônica de Transmissão , Neurônios/ultraestrutura
4.
J Neurosci ; 40(49): 9426-9439, 2020 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-33115928

RESUMO

The nodose and jugular vagal ganglia supply sensory innervation to the airways and lungs. Jugular vagal airway sensory neurons wire into a brainstem circuit with ascending projections into the submedius thalamic nucleus (SubM) and ventrolateral orbital cortex (VLO), regions known to regulate the endogenous analgesia system. Here we investigate whether the SubM-VLO circuit exerts descending regulation over airway vagal reflexes in male and female rats using a range of neuroanatomical tracing, reflex physiology, and chemogenetic techniques. Anterograde and retrograde neuroanatomical tracing confirmed the connectivity of the SubM and VLO. Laryngeal stimulation in anesthetized rats reduced respiration, a reflex that was potently inhibited by activation of SubM. Conversely, inhibition of SubM potentiated laryngeal reflex responses, while prior lesions of VLO abolished the effects of SubM stimulation. In conscious rats, selective chemogenetic activation of SubM neurons specifically projecting to VLO significantly inhibited respiratory responses evoked by inhalation of the nociceptor stimulant capsaicin. Jugular vagal inputs to SubM via the medullary paratrigeminal nucleus were confirmed using anterograde transsynaptic conditional herpes viral tracing. Respiratory responses evoked by microinjections of capsaicin into the paratrigeminal nucleus were significantly attenuated by SubM stimulation, whereas those evoked via the nucleus of the solitary tract were unaltered. These data suggest that jugular vagal sensory pathways input to a nociceptive thalamocortical circuit capable of regulating jugular sensory processing in the medulla. This circuit organization suggests an intersection between vagal sensory pathways and the endogenous analgesia system, potentially important for understanding vagal sensory processing in health and mechanisms of hypersensitivity in disease.SIGNIFICANCE STATEMENT Jugular vagal sensory pathways are increasingly recognized for their important role in defensive respiratory responses evoked from the airways. Jugular ganglia neurons wire into a central circuit that is notable for overlapping with somatosensory processing networks in the brain rather than the viscerosensory circuits in receipt of inputs from the nodose vagal ganglia. Here we demonstrate a novel and functionally relevant example of intersection between vagal and somatosensory processing in the brain. The findings of the study offer new insights into interactions between vagal and spinal sensory processing, including the medullary targets of the endogenous analgesia system, and offer new insights into the central processes involved in airway defense in health and disease.


Assuntos
Tronco Encefálico/fisiologia , Laringe/fisiologia , Núcleos Posteriores do Tálamo/fisiologia , Sensação/fisiologia , Nervo Vago/fisiologia , Vias Aferentes/fisiologia , Anestesia por Inalação , Animais , Capsaicina/administração & dosagem , Capsaicina/farmacologia , Feminino , Veias Jugulares/inervação , Masculino , Microinjeções , Nociceptores/efeitos dos fármacos , Córtex Pré-Frontal/fisiologia , Ratos , Ratos Sprague-Dawley , Reflexo/fisiologia , Mecânica Respiratória/fisiologia
5.
Neuron ; 107(3): 538-551.e7, 2020 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-32502461

RESUMO

Pain is a source of substantial discomfort. Abnormal activity in both the zona incerta (ZI) and posterior complex of the thalamus (Po) are implicated in neuropathic pain, but their exact roles remain unclear. In particular, the precise cell types and molecular mechanisms of the ZI-Po circuit that regulate nociception are largely uncharacterized. Here, we found that parvalbumin (PV)-positive neuronal projections from the ventral ZI (ZIv) to the Po (ZIv-Po) are critical for promoting nocifensive behaviors, whereas selectively inhibiting ZIv-Po activity reduces nocifensive withdrawal responses. Furthermore, cannabinoid type 1 receptors (CB1Rs) are expressed specifically at ZIv-Po axon terminals in this circuit, and cannabinoids attenuate nocifensive responses through presynaptic inhibition. Selective inhibition of the ZIv-Po circuit or administration of cannabinoids into the Po are sufficient to ameliorate pathological pain. These findings identify the critical role of the ZIv-Po circuit and its modulation by endocannabinoids in controlling nocifensive behaviors.


Assuntos
Neurônios/fisiologia , Nociceptividade/fisiologia , Dor/fisiopatologia , Núcleos Posteriores do Tálamo/fisiologia , Receptor CB1 de Canabinoide/metabolismo , Zona Incerta/fisiologia , Animais , Comportamento Animal , Endocanabinoides , Camundongos , Inibição Neural , Vias Neurais , Neurônios/metabolismo , Dor/metabolismo , Parvalbuminas , Núcleos Posteriores do Tálamo/citologia , Receptor CB1 de Canabinoide/agonistas , Receptor CB1 de Canabinoide/antagonistas & inibidores , Zona Incerta/citologia
6.
Bull Exp Biol Med ; 168(1): 1-4, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31741241

RESUMO

Functional peculiarities of paralemniscal subdivision of the thalamocortical system were examined in normal Wistar and in WAG/Rij rats genetically prone to absence epilepsy. In 6-7-month-old WAG/Rij characterized by developed epileptic activity, the response of cortical somatosensory neurons to single electrical stimulation of the posterior thalamic nucleus was phasic, whereas in normal Wistar rats, similar reaction was tonic. The study views this phasic response as neural equivalent of spike-wave discharges known as typical EEG symptom of absence epilepsy.


Assuntos
Neurônios/metabolismo , Córtex Somatossensorial/citologia , Animais , Modelos Animais de Doenças , Estimulação Elétrica , Eletroencefalografia , Epilepsia Tipo Ausência/metabolismo , Masculino , Neurônios/fisiologia , Núcleos Posteriores do Tálamo/metabolismo , Núcleos Posteriores do Tálamo/fisiologia , Ratos , Ratos Wistar
7.
Brain Struct Funct ; 224(4): 1627-1645, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30919051

RESUMO

Rodents extract information about nearby objects from the movement of their whiskers through dynamic computations that are carried out by a network of forebrain structures that includes the thalamus and the primary sensory (S1BF) and motor (M1wk) whisker cortices. The posterior nucleus (Po), a higher order thalamic nucleus, is a key hub of this network, receiving cortical and brainstem sensory inputs and innervating both motor and sensory whisker-related cortical areas. In a recent study in rats, we showed that Po inputs differently impact sensory processing in S1BF and M1wk. Here, in C57BL/6 mice, we measured Po synaptic bouton layer distribution and size, compared cortical unit response latencies to "in vivo" Po activation, and pharmacologically examined the glutamatergic receptor mechanisms involved. We found that, in S1BF, a large majority (56%) of Po axon varicosities are located in layer (L)5a and only 12% in L2-L4, whereas in M1wk this proportion is inverted to 18% and 55%, respectively. Light and electron microscopic measurements showed that Po synaptic boutons in M1wk layers 3-4 are significantly larger (~ 50%) than those in S1BF L5a. Electrical Po stimulation elicits different area-specific response patterns. In S1BF, responses show weak or no facilitation, and involve both ionotropic and metabotropic glutamate receptors, whereas in M1wk, unit responses exhibit facilitation to repetitive stimulation and involve ionotropic NMDA glutamate receptors. Because of the different laminar distribution of axon terminals, synaptic bouton size and receptor mechanisms, the impact of Po signals on M1wk and S1BF, although simultaneous, is likely to be markedly different.


Assuntos
Axônios/fisiologia , Axônios/ultraestrutura , Córtex Motor/fisiologia , Núcleos Posteriores do Tálamo/fisiologia , Córtex Somatossensorial/fisiologia , Sinapses/fisiologia , Sinapses/ultraestrutura , Animais , Estimulação Elétrica , Masculino , Camundongos Endogâmicos C57BL , Córtex Motor/ultraestrutura , Vias Neurais/fisiologia , Vias Neurais/ultraestrutura , Núcleos Posteriores do Tálamo/ultraestrutura , Receptores de Glutamato Metabotrópico/fisiologia , Receptores de N-Metil-D-Aspartato/fisiologia , Córtex Somatossensorial/ultraestrutura , Vibrissas/fisiologia
8.
Front Neural Circuits ; 11: 69, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29021744

RESUMO

Rodents move rhythmically their facial whiskers and compute differences between signals predicted and those resulting from the movement to infer information about objects near their head. These computations are carried out by a large network of forebrain structures that includes the thalamus and the primary somatosensory (S1BF) and motor (M1wk) cortices. Spatially and temporally precise mechanorreceptive whisker information reaches the S1BF cortex via the ventroposterior medial thalamic nucleus (VPM). Other whisker-related information may reach both M1wk and S1BF via the axons from the posterior thalamic nucleus (Po). However, Po axons may convey, in addition to direct sensory signals, the dynamic output of computations between whisker signals and descending motor commands. It has been proposed that this input may be relevant for adjusting cortical responses to predicted vs. unpredicted whisker signals, but the effects of Po input on M1wk and S1BF function have not been directly tested or compared in vivo. Here, using electrophysiology, optogenetics and pharmacological tools, we compared in adult rats M1wk and S1BF in vivo responses in the whisker areas of the motor and primary somatosensory cortices to passive multi-whisker deflection, their dependence on Po activity, and their changes after a brief intense activation of Po axons. We report that the latencies of the first component of tactile-evoked local field potentials in M1wk and S1BF are similar. The evoked potentials decrease markedly in M1wk, but not in S1BF, by injection in Po of the GABAA agonist muscimol. A brief high-frequency electrical stimulation of Po decreases the responsivity of M1wk and S1BF cells to subsequent whisker stimulation. This effect is prevented by the local application of omega-agatoxin, suggesting that it may in part depend on GABA release by fast-spiking parvalbumin (PV)-expressing cortical interneurons. Local optogenetic activation of Po synapses in different cortical layers also diminishes M1wk and S1BF responses. This effect is most pronounced in the superficial layers of both areas, known to be the main source and target of their reciprocal cortico-cortical connections.


Assuntos
Córtex Motor/fisiologia , Núcleos Posteriores do Tálamo/fisiologia , Córtex Somatossensorial/fisiologia , Percepção do Tato/fisiologia , Animais , Feminino , Masculino , Microeletrodos , Córtex Motor/citologia , Córtex Motor/efeitos dos fármacos , Vias Neurais/citologia , Vias Neurais/efeitos dos fármacos , Vias Neurais/fisiologia , Neurônios/citologia , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Optogenética , Estimulação Física , Núcleos Posteriores do Tálamo/citologia , Núcleos Posteriores do Tálamo/efeitos dos fármacos , Ratos Sprague-Dawley , Receptores de GABA-A/metabolismo , Córtex Somatossensorial/citologia , Córtex Somatossensorial/efeitos dos fármacos , Percepção do Tato/efeitos dos fármacos , Vibrissas/fisiologia
9.
J Physiol ; 594(7): 1911-29, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-26842995

RESUMO

KEY POINTS: The lateral posterior and posterior thalamic nuclei have been implicated in aspects of visually guided behaviour and reflex responses to light, including those dependent on melanopsin photoreception. Here we investigated the extent and basic properties of visually evoked activity across the mouse lateral posterior and posterior thalamus. We show that a subset of retinal projections to these regions derive from melanopsin-expressing retinal ganglion cells and find many cells that exhibit melanopsin-dependent changes in firing. We also show that subsets of cells across these regions integrate signals from both eyes in various ways and that, within the lateral posterior thalamus, visual responses are retinotopically ordered. ABSTRACT: In addition to the primary thalamocortical visual relay in the lateral geniculate nuclei, a number of other thalamic regions contribute to aspects of visual processing. Thus, the lateral posterior thalamic nuclei (LP/pulvinar) appear important for various functions including determining visual saliency, visually guided behaviours and, alongside dorsal portions of the posterior thalamic nuclei (Po), multisensory processing of information related to aversive stimuli. However, despite the growing importance of mice as a model for understanding visual system organisation, at present we know very little about the basic visual response properties of cells in the mouse LP or Po. Prompted by earlier suggestions that melanopsin photoreception might be important for certain functions of these nuclei, we first employ specific viral tracing to show that a subset of retinal projections to the LP derive from melanopsin-expressing retinal ganglion cells. We next use multielectrode electrophysiology to demonstrate that LP and dorsal Po cells exhibit a variety of responses to simple visual stimuli including two distinct classes that express melanopsin-dependent changes in firing (together comprising ∼25% of neurons we recorded). We also show that subgroups of LP/Po cells integrate signals from both eyes in various ways and that, within the LP, visual responses are retinotopically ordered. Together our data reveal a diverse population of visually responsive neurons across the LP and dorsal Po whose properties align with some of the established functions of these nuclei and suggest new possible routes through which melanopsin photoreception could contribute to reflex light responses and/or higher order visual processing.


Assuntos
Potenciais Evocados Visuais , Núcleos Laterais do Tálamo/fisiologia , Núcleos Posteriores do Tálamo/fisiologia , Células Ganglionares da Retina/metabolismo , Animais , Núcleos Laterais do Tálamo/citologia , Camundongos , Camundongos Endogâmicos C57BL , Núcleos Posteriores do Tálamo/citologia , Células Ganglionares da Retina/fisiologia , Opsinas de Bastonetes/genética , Opsinas de Bastonetes/metabolismo , Vias Visuais/citologia , Vias Visuais/fisiologia
10.
PLoS One ; 11(1): e0148169, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26820514

RESUMO

Current knowledge of thalamocortical interaction comes mainly from studying lemniscal thalamic systems. Less is known about paralemniscal thalamic nuclei function. In the vibrissae system, the posterior medial nucleus (POm) is the corresponding paralemniscal nucleus. POm neurons project to L1 and L5A of the primary somatosensory cortex (S1) in the rat brain. It is known that L1 modifies sensory-evoked responses through control of intracortical excitability suggesting that L1 exerts an influence on whisker responses. Therefore, thalamocortical pathways targeting L1 could modulate cortical firing. Here, using a combination of electrophysiology and pharmacology in vivo, we have sought to determine how POm influences cortical processing. In our experiments, single unit recordings performed in urethane-anesthetized rats showed that POm imposes precise control on the magnitude and duration of supra- and infragranular barrel cortex whisker responses. Our findings demonstrated that L1 inputs from POm imposed a time and intensity dependent regulation on cortical sensory processing. Moreover, we found that blocking L1 GABAergic inhibition or blocking P/Q-type Ca2+ channels in L1 prevents POm adjustment of whisker responses in the barrel cortex. Additionally, we found that POm was also controlling the sensory processing in S2 and this regulation was modulated by corticofugal activity from L5 in S1. Taken together, our data demonstrate the determinant role exerted by the POm in the adjustment of somatosensory cortical processing and in the regulation of cortical processing between S1 and S2. We propose that this adjustment could be a thalamocortical gain regulation mechanism also present in the processing of information between cortical areas.


Assuntos
Núcleos Posteriores do Tálamo/fisiologia , Córtex Somatossensorial/fisiologia , Animais , Canais de Cálcio/metabolismo , Feminino , Masculino , Vias Neurais , Ratos , Ratos Sprague-Dawley , Vibrissas/fisiologia , Ácido gama-Aminobutírico/metabolismo
11.
J Comp Neurol ; 524(5): 963-85, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-26287809

RESUMO

Birds are almost always said to have two visual pathways from the retina to the telencephalon: thalamofugal terminating in the Wulst, and tectofugal terminating in the entopallium. Often ignored is a second tectofugal pathway that terminates in the nidopallium medial to and separate from the entopallium (e.g., Gamlin and Cohen [1986] J Comp Neurol 250:296-310). Using standard tract-tracing and electroanatomical techniques, we extend earlier evidence of a second tectofugal pathway in songbirds (Wild [1994] J Comp Neurol 349:512-535), by showing that visual projections to nucleus uvaeformis (Uva) of the posterior thalamus in zebra finches extend farther rostrally than to Uva, as generally recognized in the context of the song control system. Projections to "rUva" resulted from injections of biotinylated dextran amine into the lateral pontine nucleus (PL), and led to extensive retrograde labeling of tectal neurons, predominantly in layer 13. Injections in rUva also resulted in extensive retrograde labeling of predominantly layer 13 tectal neurons, retrograde labeling of PL neurons, and anterograde labeling of PL. It thus appears that some tectal neurons could project to rUva and PL via branched axons. Ascending projections of rUva terminated throughout a visually responsive region of the intermediate nidopallium (NI) lying between the nucleus interface medially and the entopallium laterally. Lastly, as shown by Clarke in pigeons ([1977] J Comp Neurol 174:535-552), we found that PL projects to caudal cerebellar folia.


Assuntos
Tentilhões/fisiologia , Tegmento Pontino/fisiologia , Núcleos Posteriores do Tálamo/fisiologia , Teto do Mesencéfalo/fisiologia , Estimulação Acústica/métodos , Animais , Feminino , Tentilhões/anatomia & histologia , Masculino , Estimulação Luminosa/métodos , Tegmento Pontino/citologia , Núcleos Posteriores do Tálamo/citologia , Aves Canoras , Teto do Mesencéfalo/citologia , Vias Visuais/citologia
12.
J Neurophysiol ; 114(3): 1652-76, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26180115

RESUMO

Tactile information processing in the rodent primary somatosensory cortex (S1) is layer specific and involves modulations from both thalamocortical and cortico-cortical loops. However, the extent to which these loops influence the dynamics of the primary somatosensory cortex while animals execute tactile discrimination remains largely unknown. Here, we describe neural dynamics of S1 layers across the multiple epochs defining a tactile discrimination task. We observed that neuronal ensembles within different layers of the S1 cortex exhibited significantly distinct neurophysiological properties, which constantly changed across the behavioral states that defined a tactile discrimination. Neural dynamics present in supragranular and granular layers generally matched the patterns observed in the ventral posterior medial nucleus of the thalamus (VPM), whereas the neural dynamics recorded from infragranular layers generally matched the patterns from the posterior nucleus of the thalamus (POM). Selective inactivation of contralateral S1 specifically switched infragranular neural dynamics from POM-like to those resembling VPM neurons. Meanwhile, ipsilateral M1 inactivation profoundly modulated the firing suppression observed in infragranular layers. This latter effect was counterbalanced by contralateral S1 block. Tactile stimulus encoding was layer specific and selectively affected by M1 or contralateral S1 inactivation. Lastly, causal information transfer occurred between all neurons in all S1 layers but was maximal from infragranular to the granular layer. These results suggest that tactile information processing in the S1 of awake behaving rodents is layer specific and state dependent and that its dynamics depend on the asynchronous convergence of modulations originating from ipsilateral M1 and contralateral S1.


Assuntos
Discriminação Psicológica , Núcleos Posteriores do Tálamo/fisiologia , Córtex Somatossensorial/fisiologia , Percepção do Tato , Animais , Feminino , Neurônios/citologia , Núcleos Posteriores do Tálamo/citologia , Ratos , Ratos Long-Evans , Córtex Somatossensorial/citologia
13.
Eur J Neurosci ; 41(10): 1321-31, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25912157

RESUMO

Behavioural reactions to sensory stimuli vary with the level of arousal, but little is known about the underlying reorganization of neuronal networks. In this study, we use chronic recordings from the somatosensory regions of the thalamus and cortex of behaving rats together with a novel analysis of functional connectivity to show that during low arousal tactile signals are transmitted via the ventral posteromedial thalamic nucleus (VPM), a first-order thalamic relay, to the primary somatosensory (barrel) cortex and then from the cortex to the posterior medial thalamic nucleus (PoM), which plays a role of a higher-order thalamic relay. By contrast, during high arousal this network scheme is modified and both VPM and PoM transmit peripheral input to the barrel cortex acting as first-order relays. We also show that in urethane anaesthesia PoM is largely excluded from the thalamo-cortical loop. We thus demonstrate a way in which the thalamo-cortical system, despite its fixed anatomy, is capable of dynamically reconfiguring the transmission route of a sensory signal in concert with the behavioural state of an animal.


Assuntos
Nível de Alerta , Neurônios/fisiologia , Núcleos Posteriores do Tálamo/fisiologia , Córtex Somatossensorial/fisiologia , Percepção do Tato/fisiologia , Animais , Masculino , Ratos , Ratos Wistar , Tato
14.
Cereb Cortex ; 25(3): 563-77, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24062318

RESUMO

In whisking rodents, object location is encoded at the receptor level by a combination of motor and sensory related signals. Recoding of the encoded signals can result in various forms of internal representations. Here, we examined the coding schemes occurring at the first forebrain level that receives inputs necessary for generating such internal representations--the thalamocortical network. Single units were recorded in 8 thalamic and cortical stations in artificially whisking anesthetized rats. Neuronal representations of object location generated across these stations and expressed in response latency and magnitude were classified based on graded and binary coding schemes. Both graded and binary coding schemes occurred across the entire thalamocortical network, with a general tendency of graded-to-binary transformation from thalamus to cortex. Overall, 63% of the neurons of the thalamocortical network coded object position in their firing. Thalamocortical responses exhibited a slow dynamics during which the amount of coded information increased across 4-5 whisking cycles and then stabilized. Taken together, the results indicate that the thalamocortical network contains dynamic mechanisms that can converge over time on multiple coding schemes of object location, schemes which essentially transform temporal coding to rate coding and gradual to labeled-line coding.


Assuntos
Potenciais de Ação , Modelos Neurológicos , Núcleos Posteriores do Tálamo/fisiologia , Córtex Somatossensorial/fisiologia , Percepção Espacial/fisiologia , Tato/fisiologia , Núcleos Ventrais do Tálamo/fisiologia , Animais , Masculino , Vias Neurais/fisiologia , Estimulação Física , Ratos , Ratos Wistar , Vibrissas/fisiologia
15.
J Comp Neurol ; 522(10): 2431-45, 2014 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-24435957

RESUMO

The pallid bat (Antrozous pallidus) listens to prey-generated noise to localize and hunt terrestrial prey while reserving echolocation to avoid obstacles. The thalamocortical connections in the pallid bat are organized as parallel pathways that may serve echolocation and prey localization behaviors. Thalamic inputs to the cortical echolocation call- and noise-selective regions originate primarily in the suprageniculate nucleus (SG) and ventral division of medial geniculate body (MGBv), respectively. Here we examined the distribution of parvalbumin (PV) and calbindin (CB) expression in cortical regions and thalamic nuclei of these pathways. Electrophysiology was used to identify cortical regions selective for echolocation calls and noise. Immunohistochemistry was used to stain for PV and CB in the auditory cortex and MGB. A higher percentage (relative to Nissl-stained cells) of PV(+) cells compared with CB(+) cells was found in both echolocation call- and noise-selective regions. This was due to differences in cortical layers V-VI, but not layers I-IV. In the MGB, CB(+) cells were present across all divisions of the MGB, with a higher percentage in the MGBv than the SG. Perhaps the most surprising result was the virtual absence of PV staining in the MGBv. PV staining was present only in the SG. Even in the SG, the staining was mostly diffuse in the neuropil. These data support the notion that calcium binding proteins are differentially distributed in different processing streams. Our comparative data, however, do not support a general mammalian pattern of PV/CB staining that distinguishes lemniscal and nonlemniscal pathways.


Assuntos
Córtex Auditivo/anatomia & histologia , Calbindinas/metabolismo , Quirópteros/anatomia & histologia , Parvalbuminas/metabolismo , Tálamo/anatomia & histologia , Estimulação Acústica , Animais , Córtex Auditivo/fisiologia , Percepção Auditiva/fisiologia , Contagem de Células , Quirópteros/fisiologia , Ecolocação/fisiologia , Feminino , Corpos Geniculados/anatomia & histologia , Corpos Geniculados/fisiologia , Processamento de Imagem Assistida por Computador , Imuno-Histoquímica , Masculino , Microeletrodos , Vias Neurais/anatomia & histologia , Vias Neurais/fisiologia , Neurônios/citologia , Neurônios/fisiologia , Fotomicrografia , Núcleos Posteriores do Tálamo/anatomia & histologia , Núcleos Posteriores do Tálamo/fisiologia , Tálamo/fisiologia
16.
Nat Neurosci ; 16(8): 1060-7, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23831966

RESUMO

The primary somatosensory cortex (S1) contains a complete body map that mirrors the subcortical maps developed by peripheral sensory input projecting to the sensory hindbrain, the thalamus and then S1. Peripheral changes during development alter these maps through 'bottom-up' plasticity. Unknown is how S1 size influences map organization and whether an altered S1 map feeds back to affect subcortical maps. We show that the size of S1 in mice is significantly reduced by cortex-specific deletion of Pax6, resulting in a reduced body map and loss of body representations by an exclusion of later-differentiating sensory thalamocortical input. An initially normal sensory thalamus was repatterned to match the aberrant S1 map by apoptotic deletion of thalamic neurons representing body parts with axons excluded from S1. Deleted representations were rescued by altering competition between thalamocortical axons using sensory deprivation or increasing the size of S1. Thus, S1 size determined the resolution and completeness of body maps and engaged 'top-down' plasticity that repatterned the sensory thalamus to match S1.


Assuntos
Plasticidade Neuronal/fisiologia , Núcleos Posteriores do Tálamo/fisiologia , Córtex Somatossensorial/fisiologia , Animais , Apoptose , Axônios/fisiologia , Imagem Corporal , Proteínas do Olho/genética , Proteínas do Olho/fisiologia , Feminino , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Vias Neurais/fisiologia , Neurônios/fisiologia , Especificidade de Órgãos , Fator de Transcrição PAX6 , Fatores de Transcrição Box Pareados/deficiência , Fatores de Transcrição Box Pareados/genética , Fatores de Transcrição Box Pareados/fisiologia , Núcleos Posteriores do Tálamo/crescimento & desenvolvimento , Proteínas Recombinantes de Fusão/fisiologia , Proteínas Repressoras/deficiência , Proteínas Repressoras/genética , Proteínas Repressoras/fisiologia , Rombencéfalo/fisiologia , Sensação/fisiologia , Córtex Somatossensorial/patologia , Vibrissas/inervação
17.
Neuroscience ; 228: 382-94, 2013 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-23123887

RESUMO

Previous anatomical and physiological studies suggest that the superior colliculus sends integrated sensory information to the multimodal cortical areas via the thalamic suprageniculate nucleus (SG). However, the detailed distribution of rat tecto-SG axon terminals and SG neurons projecting to the multimodal cortex, as well as synaptic connections between these tectal axons and SG neurons, remains unclear. In this study, the organization of the tecto-thalamo-cortical pathway was investigated via combined injections of anterograde and retrograde tracers followed by light and electron microscopic observations. Injections of a retrograde tracer, cholera toxin B subunit (CTB), into the temporal cortex, area 2, dorsal part (Te2D), and injections of an anterograde tracer, biotinylated dextran amine (BDA), into the deep layers of the superior colliculus produced the following results: (1) Retrogradely CTB-labeled neurons were found throughout SG, predominantly in its rostral part. CTB-labeled neurons were also found in other cortical areas such as the visual cortex, the auditory cortex, the parietal association cortex, and the perirhinal cortex. (2) Anterogradely BDA-labeled axons and their terminals were also observed throughout SG. Dual visualization of BDA and CTB showed that retrogradely labeled SG neurons and anterogradely labeled tectal axon terminal boutons overlapped considerably in the rostral part of SG, and their direct synaptic contacts were also confirmed via electron microscopy. These findings suggest that multimodal information from the superior colliculus can be processed directly in SG neurons projecting to Te2D.


Assuntos
Córtex Auditivo/anatomia & histologia , Vias Auditivas/anatomia & histologia , Núcleos Posteriores do Tálamo/anatomia & histologia , Colículos Superiores/anatomia & histologia , Animais , Córtex Auditivo/fisiologia , Vias Auditivas/fisiologia , Corpos Geniculados/anatomia & histologia , Corpos Geniculados/fisiologia , Núcleos Posteriores do Tálamo/fisiologia , Ratos , Ratos Long-Evans , Colículos Superiores/fisiologia
18.
Exp Neurol ; 239: 235-47, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23124095

RESUMO

PURPOSE: The brain is a highly interconnected neuronal assembly in which network analyses can greatly enlarge our knowledge on seizure generation. The cortico-thalamo-cortical network is the brain-network of interest in absence epilepsy. Here, network synchronization is assessed in a genetic absence model during 5 s long pre-ictal->ictal transition periods. METHOD: 16 male WAG/Rij rats were equipped with multiple electrodes targeting layer 4 to 6 of the somatosensory-cortex, rostral and caudal RTN, VPM, anterior-(ATN) and posterior (Po) thalamic nucleus. Local field potentials measured during pre-ictal->ictal transition and during control periods were subjected to time-frequency and pairwise phase consistency analysis. RESULTS: Pre-ictally, all channels showed spike-wave discharge (SWD) precursor activity (increases in spectral power), which were earliest and most pronounced in the somatosensory cortex. The caudal RTN decoupled from VPM, Po and cortical layer 4. Strong increases in synchrony were found between cortex and thalamus during SWD. Although increases between cortex and VPM were seen in SWD frequencies and its harmonics, boarder spectral increases (6-48Hz) were seen between cortex and Po. All thalamic nuclei showed increased phase synchronization with Po but not with VPM. CONCLUSION: Absence seizures are not sudden and unpredictable phenomena: the somatosensory cortex shows highest and earliest precursor activity. The pre-ictal decoupling of the caudal RTN might be a prerequisite of SWD generation. Po nucleus might be the primary thalamic counterpart to the somatosensory-cortex in the generation of the cortico-thalamic-cortical oscillations referred to as SWD.


Assuntos
Eletroencefalografia , Rede Nervosa/fisiopatologia , Convulsões/fisiopatologia , Animais , Córtex Cerebral/fisiopatologia , Eletrodos Implantados , Epilepsia Tipo Ausência/genética , Epilepsia Tipo Ausência/fisiopatologia , Potenciais Evocados/fisiologia , Masculino , Núcleos Posteriores do Tálamo/fisiologia , Ratos , Processamento de Sinais Assistido por Computador , Córtex Somatossensorial/fisiologia , Tálamo/fisiopatologia
19.
Neuroimage ; 66: 110-8, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23085111

RESUMO

Recent electrophysiological studies have reported short latency modulations in cortical regions for multisensory stimuli, thereby suggesting a subcortical, possibly thalamic origin of these modulations. Concurrently, there is an ongoing debate, whether multisensory interplay reflects automatic, bottom-up driven processes or relies on top-down influences. Here, we dissociated the effects of task set and stimulus configurations on BOLD-signals in the human thalamus with event-related functional magnetic resonance imaging (fMRI). We orthogonally manipulated temporal and spatial congruency of audio-visual stimulus configurations, while subjects judged either their temporal or spatial congruency. Voxel-based fMRI results revealed increased fMRI-signals for the temporal versus spatial task in posterior and central thalamus, respectively. A more sensitive region of interest (ROI)-analysis confirmed that the posterior thalamic nuclei showed a preference for the temporal task and central thalamic nuclei for the spatial task. Moreover, the ROI-analysis also revealed enhanced fMRI-signals for spatially incongruent stimuli in the central thalamus. Together, our results demonstrate that both audio-visual stimulus configurations and task-related processing of spatial or temporal stimulus features selectively modulate thalamic processing and thus are in a position to influence cortical processing at an early stage.


Assuntos
Percepção Auditiva/fisiologia , Tálamo/fisiologia , Percepção do Tempo/fisiologia , Percepção Visual/fisiologia , Adulto , Mapeamento Encefálico , Feminino , Humanos , Imageamento por Ressonância Magnética/instrumentação , Imageamento por Ressonância Magnética/métodos , Masculino , Núcleos Posteriores do Tálamo/fisiologia , Percepção Espacial/fisiologia , Tálamo/citologia , Adulto Jovem
20.
Neuroscience ; 226: 208-26, 2012 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-22989916

RESUMO

Thalamic cell activity is under a significant influence of inhibition from the thalamic reticular nucleus (TRN) that is composed of domains connected with first and higher order thalamic nuclei, which are thought to subserve transmission of sensory inputs to the cortex and cortico-thalamo-cortical transmission of cortical outputs, respectively. Provided that TRN cells have distinct activities along with their projections to first and higher order thalamic nuclei, TRN cells could shape cell activities of the two thalamic nuclei in different manners for the distinct functions. In anesthetized rats, visual response and spontaneous activity were recorded from TRN cells projecting to the dorsal lateral geniculate (first order) and lateral posterior (higher order) nuclei (TRN-DLG and TRN-LP cells), using juxta-cellular recording and labeling techniques. TRN-DLG cells had a higher propensity for burst spiking and exhibited bursts of larger numbers of spikes with shorter inter-spike intervals as compared to TRN-LP cells in both visual response and spontaneous activity. Sustained effects of visual input on burst spiking were recognized in recurrent activation of TRN-DLG but not of TRN-LP cells. Further, the features of burst spiking were related with the locations of topographically connected cell bodies and terminal fields. The difference in burst spiking contrasts with the difference between thalamic cells in the DLG and LP, which show low and high levels of burst spiking, respectively. The synergy between thalamic and TRN cell activities with their contrasting features of burst spiking may compose distinctive sensory processing and attentional gating functions of geniculate and extra-geniculate systems.


Assuntos
Corpos Geniculados/fisiologia , Neurônios/fisiologia , Núcleos Posteriores do Tálamo/fisiologia , Núcleos Talâmicos/fisiologia , Anestesia , Animais , Interpretação Estatística de Dados , Fenômenos Eletrofisiológicos , Masculino , Estimulação Luminosa , Ratos , Ratos Wistar , Núcleos Talâmicos/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA