Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.715
Filtrar
1.
Eur J Pharmacol ; 918: 174774, 2022 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-35077674

RESUMO

Deficits in the translation between egocentric-allocentric strategies may become another diagnostic mark for neurodegenerative disorders, especially Alzheimer's disease. Regarding the specific regional distribution of serotonin-1A receptor in brain areas mediating allocentric (externally-centered) spatial navigation to the escape location, here we studied the effects of median raphe nucleus serotonin-1A autoreceptors stimulation, [8-hydroxy-2-(di-n-propylamino) tetralin (8-OH-DPAT); 4 µg/0.5 µl saline], of a selective cholinergic denervation by intracerebroventricular administration of the 192IgG saporin (1µl/each ventricle), on male Wistar rats search strategies in a Morris maze during acquisition, and before probe sessions. Despite some evidence of spatial hippocampal dependent knowledge to those PBS/Saline animals, their performance dropped to chance levels on probe trial. Therefore, we considered two probabilities and first analyzed the ability of the rats to make better use of one or more strategies. We showed statistically significant increases in the distances associated with egocentric (body-centered) non-spatial strategies, random searching in particular, in 192IgG/8OH rats, which led to their improved performance. Second, considering to what extent a shift in search strategy use improves performance indicated that 8-OH-DPAT alone did not affect learning since it appeared the related performance was impaired over days. However, the strategy choices made by 192IgG/8OH rats increased performance by more than 12% compared to 192IgG/Saline rats, an effect reversed with pre-treatment by serotonin-1A receptor antagonist, N-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]-N-(2-pyridinyl) cyclohexane-carboxamide (WAY 100635). The results strongly suggest the potential role of serotonergic system, via the serotonin-1A receptors, in spatial navigation. We argue that the receptors are of interest as therapeutic targets that can be used against age-related cognitive decline.


Assuntos
8-Hidroxi-2-(di-n-propilamino)tetralina/farmacologia , Anticorpos Monoclonais/farmacologia , Encéfalo , Piperazinas/farmacologia , Piridinas/farmacologia , Receptor 5-HT1A de Serotonina/metabolismo , Saporinas/farmacologia , Agonistas do Receptor de Serotonina/farmacologia , Navegação Espacial , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Colinérgicos/farmacologia , Cognição/efeitos dos fármacos , Cognição/fisiologia , Infusões Intraventriculares , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/metabolismo , Núcleos da Rafe/efeitos dos fármacos , Núcleos da Rafe/metabolismo , Ratos , Ratos Wistar , Antagonistas da Serotonina/farmacologia , Navegação Espacial/efeitos dos fármacos , Navegação Espacial/fisiologia
2.
Life Sci ; 286: 120037, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34637795

RESUMO

AIMS: Median raphe region (MRR) is an important bottom-up regulatory center for various behaviors as well as vegetative functions, but detailed descriptions and links between the two are still largely unexplored. METHODS: Pharmacogenetics was used to study the role of MRR in social (sociability, social interaction, resident intruder test) and emotional behavior (forced swim test) parallel with some vegetative changes (biotelemetry: core body temperature). Additionally, to validate pharmacogenetics, the effect of clozapine-N-oxide (CNO), the ligand of the artificial receptor, was studied by measuring (i) serum and brainstem concentrations of CNO and clozapine; (ii) MRR stimulation induced neurotransmitter release in hippocampus; (iii) CNO induced changes in body temperature and locomotor activity. KEY FINDINGS: MRR stimulation decreased locomotion, increased friendly social behavior in the resident intruder test and enhanced depressive-like behavior. The latter was accompanied by diminished decrease in core body temperature. Thirty minutes after CNO injection clozapine was predominant in the brainstem. Nonetheless, peripheral CNO injection was able to induce glutamate release in the hippocampus. CNO had no immediate (<30 min) or chronic (repeated injections) effect on the body temperature or locomotion. SIGNIFICANCE: We confirmed the role of MRR in locomotion, social and depressive-like behavior. Most interestingly, only depressive-like behavior was accompanied by changed body temperature regulation, which was also observed in human depressive disorders previously. This indicates clinical relevance of our findings. Despite low penetration, CNO acts centrally, but does not influence the examined basic parameters, being suitable for repeated behavioral testing.


Assuntos
Núcleos da Rafe/efeitos dos fármacos , Núcleos da Rafe/metabolismo , Núcleos da Rafe/fisiologia , Animais , Temperatura Corporal/fisiologia , Clozapina/análogos & derivados , Clozapina/análise , Clozapina/sangue , Clozapina/farmacologia , Depressão/metabolismo , Depressão/fisiopatologia , Locomoção/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Farmacogenética , Comportamento Social
3.
Int J Neuropsychopharmacol ; 24(7): 570-579, 2021 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-33674836

RESUMO

BACKGROUND: Clinical studies have shown that the rapid antidepressant effect of the glutamate N-methyl-D-aspartate receptor antagonist ketamine generally disappears within 1 week but can be maintained by repeated administration. Preclinical studies showed that a single ketamine injection immediately increases the firing and burst activity of norepinephrine (NE) neurons, but not that of serotonin (5-HT) neurons. It also enhances the population activity of dopamine (DA) neurons. In the present study, we investigated whether such alterations of monoamine neuronal firing are still present 1 day after a single injection, and whether they can be maintained by repeated injections. METHODS: Rats received a single ketamine injection or 6 over 2 weeks and the firing activity of dorsal raphe nucleus 5-HT, locus coeruleus NE, and ventral tegmental area DA neurons was assessed. RESULTS: One day following a single injection of ketamine, there was no change in the firing activity of 5-HT, NE, or DA neurons. One day after repeated ketamine administration, however, there was a robust increase of the firing activity of NE neurons and an enhancement of burst and population activities of DA neurons, but still no change in firing parameters of 5-HT neurons. The increased activity of NE neurons was no longer present 3 days after the last injection, whereas that of DA neurons was still present. DA neurons were firing normally 7 days after repeated injections. CONCLUSION: These results imply that the enhanced activity of NE and DA neurons may play a significant role in the maintenance of the antidepressant action of ketamine.


Assuntos
Neurônios Adrenérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/efeitos dos fármacos , Antagonistas de Aminoácidos Excitatórios/farmacologia , Ketamina/farmacologia , Tegmento Mesencefálico/efeitos dos fármacos , Potenciais de Ação/efeitos dos fármacos , Animais , Antagonistas de Aminoácidos Excitatórios/administração & dosagem , Ketamina/administração & dosagem , Locus Cerúleo/efeitos dos fármacos , Masculino , Núcleos da Rafe/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Neurônios Serotoninérgicos/efeitos dos fármacos , Área Tegmentar Ventral/efeitos dos fármacos
4.
J Neurophysiol ; 125(4): 1279-1288, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33596722

RESUMO

Animal models indicate that serotonin (5-HT) release onto motoneurons facilitates motor output, particularly during strong motor activities. However, evidence for 5-HT effects during human movement are limited. This study examined how antagonism of the 5-HT2 receptor, which is a 5-HT receptor that promotes motoneuron excitability, affects human movement. Ten healthy participants (24.2 ± 1.9 yr) ingested 8 mg of cyproheptadine (competitive 5-HT2 antagonist) in a double-blinded, placebo-controlled, repeated-measures design. Transcranial magnetic stimulation (TMS) of the motor cortex was used to elicit motor evoked potentials (MEPs) from biceps brachii. First, stimulus-response curves (90%-160% active motor threshold) were obtained during very weak elbow flexions (10% of maximal). Second, to determine if 5-HT effects are scaled to the intensity of muscle contraction, TMS at a fixed intensity was applied during elbow flexions of 20%, 40%, 60%, 80%, and 100% of maximal. Cyproheptadine reduced the size of MEPs across the stimulus-response curves (P = 0.045). Notably, MEP amplitude was 22.3% smaller for the cyproheptadine condition for the strongest TMS intensity. In addition, cyproheptadine reduced maximal torque (P = 0.045), lengthened the biceps silent period during maximal elbow flexions (P = 0.037), and reduced superimposed twitch amplitude during moderate-intensity elbow flexions (P = 0.035). This study presents novel evidence that 5-HT2 receptors influence corticospinal-motoneuronal output, which was particularly evident when a large number of descending inputs to motoneurons were active. Although it is likely that antagonism of 5-HT2 receptors reduces motoneuron gain to ionotropic inputs, supraspinal mechanisms may have also contributed to the study findings.NEW & NOTEWORTHY Voluntary contractions and responses to magnetic stimulation of the motor cortex are dependent on serotonin activity in the central nervous system. 5-HT2 antagonism decreased evoked potential size to high-intensity stimulation, and reduced torque and lengthened inhibitory silent periods during maximal contractions. We provide novel evidence that 5-HT2 receptors are involved in muscle activation, where 5-HT effects are strongest when a large number of descending inputs activate motoneurons.


Assuntos
Ciproeptadina/farmacologia , Potencial Evocado Motor/efeitos dos fármacos , Córtex Motor/efeitos dos fármacos , Neurônios Motores/efeitos dos fármacos , Contração Muscular/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Tratos Piramidais/efeitos dos fármacos , Núcleos da Rafe/efeitos dos fármacos , Antagonistas do Receptor 5-HT2 de Serotonina/farmacologia , Medula Espinal/efeitos dos fármacos , Adulto , Estudos Cross-Over , Ciproeptadina/administração & dosagem , Método Duplo-Cego , Feminino , Humanos , Masculino , Córtex Motor/metabolismo , Neurônios Motores/metabolismo , Núcleos da Rafe/metabolismo , Serotonina/fisiologia , Antagonistas do Receptor 5-HT2 de Serotonina/administração & dosagem , Medula Espinal/metabolismo , Estimulação Magnética Transcraniana , Adulto Jovem
5.
J Neurochem ; 156(6): 1020-1032, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32785947

RESUMO

Propofol is the most common intravenous anesthetic agent for induction and maintenance of anesthesia, and has been used clinically for more than 30 years. However, the mechanism by which propofol induces loss of consciousness (LOC) remains largely unknown. The adenosine A2A receptor (A2A R) has been extensively proven to have an effect on physiological sleep. It is, therefore, important to investigate the role of A2A R in the induction of LOC using propofol. In the present study, the administration of the highly selective A2A R agonist (CGS21680) and antagonist (SCH58261) was utilized to investigate the function of A2A R under general anesthesia induced by propofol by means of animal behavior studies, resting-state magnetic resonance imaging and c-Fos immunofluorescence staining approaches. Our results show that CGS21680 significantly prolonged the duration of LOC induced by propofol, increased the c-Fos expression in nucleus accumbens (NAc) and suppressed the functional connectivity of NAc-dorsal raphe nucleus (DR) and NAc-cingulate cortex (CG). However, SCH58261 significantly shortened the duration of LOC induced by propofol, decreased the c-Fos expression in NAc, increased the c-Fos expression in DR, and elevated the functional connectivity of NAc-DR and NAc-CG. Collectively, our findings demonstrate the important roles played by A2A R in the LOC induced by propofol and suggest that the neural circuit between NAc-DR maybe controlled by A2A R in the mechanism of anesthesia induced by propofol.


Assuntos
Anestesia Geral , Anestésicos Intravenosos/farmacologia , Propofol/farmacologia , Receptor A2A de Adenosina/efeitos dos fármacos , Inconsciência/diagnóstico por imagem , Agonistas do Receptor A2 de Adenosina/farmacologia , Antagonistas do Receptor A2 de Adenosina/farmacologia , Animais , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Genes fos/efeitos dos fármacos , Giro do Cíngulo/efeitos dos fármacos , Imageamento por Ressonância Magnética , Núcleo Accumbens/efeitos dos fármacos , Núcleos da Rafe/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Inconsciência/induzido quimicamente
6.
Pflugers Arch ; 472(11): 1563-1576, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32914212

RESUMO

Active expiration represents an important mechanism to improve ventilation in conditions of augmented ventilatory demand, such as hypercapnia. While a rostral ventromedullary region, the parafacial respiratory group (pFRG), has been identified as a conditional expiratory oscillator, little is known about how central chemosensitive sites contribute to modulate active expiration under hypercapnia. In this study, we investigated the influence of the medullary raphe in the emergence of phasic expiratory abdominal activity during hypercapnia in unanesthetized adult male rats, in a state-dependent manner. To do so, reverse microdialysis of muscimol (GABAA receptor agonist, 1 mM) or 8-OH-DPAT (5-HT1A agonist, 1 mM) was applied in the MR during sleep and wakefulness periods, both in normocapnic (room air) and hypercapnic conditions (7% CO2). Electromyography (EMG) of diaphragm and abdominal muscles was performed to measure inspiratory and expiratory motor outputs. We found that active expiration did not occur in room air exposure during wakefulness or sleep. However, hypercapnia did recruit active expiration, and differential effects were observed with the drug dialyses in the medullary raphe. Muscimol increased the diaphragm inspiratory motor output and also increased the amplitude and frequency of abdominal expiratory rhythmic activity during hypercapnia in wakefulness periods. On the other hand, the microdialysis of 8-OH-DPAT attenuated hypercapnia-induced active expiration in a state-dependent manner. Our data suggest that the medullary raphe can either inhibit or potentiate respiratory motor activity during hypercapnia, and the balance of these inhibitory or excitatory outputs may determine the expression of active expiration.


Assuntos
Diafragma/fisiopatologia , Expiração , Hipercapnia/fisiopatologia , Núcleos da Rafe/fisiopatologia , 8-Hidroxi-2-(di-n-propilamino)tetralina/farmacologia , Músculos Abdominais/inervação , Músculos Abdominais/fisiopatologia , Animais , Diafragma/inervação , Agonistas de Receptores de GABA-A/farmacologia , Masculino , Muscimol/farmacologia , Contração Muscular , Núcleos da Rafe/efeitos dos fármacos , Ratos , Ratos Wistar , Agonistas do Receptor de Serotonina/farmacologia , Sono , Vigília
7.
Pharmacol Biochem Behav ; 198: 173017, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32828972

RESUMO

Limbic system associated membrane protein (Lsamp) is a neural adhesion protein which has been recently found to be differentially expressed between serotonergic neuron subtypes. We have previously shown elevated serotonin (5-HT) turnover rate in Lsamp-deficient mice. The purpose of the current study was to elucidate the role of Lsamp in serotonergic neurotransmission. Chronic (18 days) administration of serotonin reuptake inhibitor (SSRI) escitalopram (10 mg/kg) significantly increased general activity in wild-type mice in the open field and protected exploration in Lsamp-/- mice in the elevated-plus maze. An important psychopathology-related endophenotype, elevated 5-HT turnover in the brain of Lsamp-deficient mice, was reproduced in the saline group. Escitalopram restored the elevated 5-HT turnover of Lsamp-deficient mice to a level comparable with their wild-type littermates, suggesting that high 5-HT turnover in mutants is mediated by the increased activity of serotonin transporter (SERT protein encoded by Slc6a4 gene). The baseline level of Slc6a4 transcript was not changed in Lsamp-deficient mice, however, our immunohistochemical analysis showed partial co-expression of Lsamp with both SERT and Tph2 proteins in raphe. Overactivity of SERT in Lsamp-/- mice is further supported by significant elevation of Maoa transcript and increase of DOPAC, another Mao A product, specifically in the raphe. Again, elevation of DOPAC was reduced to the level of wild-type by chronic SSRI treatment. The activity of Lsamp gene promoters varied in 5-HT producing nuclei: both Lsamp 1a and 1b promoters were active in the dorsal raphe; most of the expression in the median raphe was from 1b promoter, whereas Lsamp 1a promoter was almost exclusively active in the caudal subgroup of raphe nuclei. We suggest that Lsamp may have an impact on the integrity of serotonergic synapses, which is possibly the neurochemical basis of the anxiety- and sociability-related phenotype in Lsamp-deficient mice.


Assuntos
Ansiedade/metabolismo , Moléculas de Adesão Celular Neuronais/metabolismo , Citalopram/farmacologia , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Neurônios Serotoninérgicos/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos , Animais , Ansiedade/tratamento farmacológico , Comportamento Animal/efeitos dos fármacos , Moléculas de Adesão Celular Neuronais/genética , Citalopram/administração & dosagem , Teste de Labirinto em Cruz Elevado , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/metabolismo , Expressão Gênica , Masculino , Camundongos , Teste de Campo Aberto , Núcleos da Rafe/efeitos dos fármacos , Núcleos da Rafe/metabolismo , Receptores de Serotonina/metabolismo , Serotonina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Inibidores Seletivos de Recaptação de Serotonina/administração & dosagem , Triptofano Hidroxilase/metabolismo
8.
Int J Mol Sci ; 21(14)2020 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-32698469

RESUMO

Pharmacological neuromodulation of swallowing may represent a promising therapeutic option to treat dysphagia. Previous studies suggested a serotonergic control of swallowing, but mechanisms remain poorly understood. Here, we investigated the effects of the serotonergic agonist quipazine on swallowing, using the arterially perfused working heart-brainstem (in situ) preparation in rats. Systemic injection of quipazine produced single swallows with motor patterns and swallow-breathing coordination similar to spontaneous swallows, and increased swallow rate with moderate changes in cardiorespiratory functions. Methysergide, a 5-HT2 receptor antagonist, blocked the excitatory effect of quipazine on swallowing, but had no effect on spontaneous swallow rate. Microinjections of quipazine in the nucleus of the solitary tract were without effect. In contrast, similar injections in caudal medullary raphe nuclei increased swallow rate without changes in cardiorespiratory parameters. Thus, quipazine may exert an excitatory effect on raphe neurons via stimulation of 5-HT2A receptors, leading to increased excitability of the swallowing network. In conclusion, we suggest that pharmacological stimulation of swallowing by quipazine in situ represents a valuable model for experimental studies. This work paves the way for future investigations on brainstem serotonergic modulation, and further identification of neural populations and mechanisms involved in swallowing and/or swallow-breathing interaction.


Assuntos
Deglutição/efeitos dos fármacos , Quipazina/farmacologia , Núcleos da Rafe/efeitos dos fármacos , Agonistas do Receptor de Serotonina/farmacologia , Animais , Injeções Intra-Arteriais , Quipazina/administração & dosagem , Núcleos da Rafe/fisiologia , Ratos , Ratos Wistar , Respiração/efeitos dos fármacos , Agonistas do Receptor de Serotonina/administração & dosagem
9.
J Psychopharmacol ; 34(8): 901-913, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32638619

RESUMO

BACKGROUND: Exposure to stressful aversive situations induces physiological and behavioral changes. Serotonin has been suggested to mediate such changes, as well as adaptation to stressful events. Serotoninergic projections arising from the median raphe nucleus to the dorsal hippocampus have been suggested to promote adaptation to chronic aversive stimuli. Such pathway may involve serotonin type 1a receptor-mediated neurotransmission. However, the serotonin 7 receptor can also be found in the median raphe nucleus and may be involved in mechanisms underlying response to stress. AIMS: In this work we sought to investigate if activation of serotonin type 7 receptors would attenuate stress-induced deficits in different animal models of depression. METHODS: Male Wistar rats with a guide-cannula aimed to the median raphe nucleus were submitted to restraint or forced swim stress and were tested in an elevated plus maze or forced swim test, respectively, 24 h later. SB 258741 (serotonin type 7 receptor antagonist) and/or LP 44 (serotonin type 7 receptor agonist) were administered intra-median raphe nucleus immediately before or after exposure to stress or before test. Control groups received intra-median raphe nucleus treatment 24 h or immediately before test in the elevated plus maze or forced swim test. RESULTS: LP 44 attenuated restraint-induced exploratory deficits independently of the moment it was administered. Similar results were observed in the forced swim test, with the exception on post-stress condition. These effects on adaptation to stress induced by serotonin type 7 receptor activation were prevented by previous treatment with SB 258741. CONCLUSIONS: Our data support the idea that activation of median raphe nucleus serotonin 7 receptor is important to the development of adaptation to stress.


Assuntos
Comportamento Animal/efeitos dos fármacos , Depressão/tratamento farmacológico , Núcleos da Rafe/efeitos dos fármacos , Receptores de Serotonina/efeitos dos fármacos , Antagonistas da Serotonina/farmacologia , Agonistas do Receptor de Serotonina/farmacologia , Estresse Psicológico/tratamento farmacológico , Animais , Comportamento Animal/fisiologia , Depressão/fisiopatologia , Masculino , Ratos , Ratos Wistar , Antagonistas da Serotonina/administração & dosagem , Agonistas do Receptor de Serotonina/administração & dosagem , Estresse Psicológico/fisiopatologia
10.
J Psychiatry Neurosci ; 45(5): 344-355, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32459080

RESUMO

Background: Altered function of serotonin receptor 1A (5-HT1AR) has been consistently implicated in anxiety, major depressive disorder and resistance to antidepressants. Mechanisms by which the function of 5-HT1AR (expressed as an autoreceptor in serotonergic raphe neurons and as a heteroreceptor in serotonin [5-HT] projection areas) is altered include regulation of its expression, but 5-HT1AR trafficking may also be involved. Methods: We investigated the consequences of the lack of Yif1B (the 5-HT1AR trafficking protein) on 5-HT neurotransmission in mice, and whether Yif1B expression might be affected under conditions known to alter 5-HT neurotransmission, such as anxious or depressive states or following treatment with fluoxetine (a selective serotonin reuptake inhibitor) in humans, monkeys and mice. Results: Compared with wild-type mice, Yif1B-knockout mice showed a significant decrease in the forebrain density of 5-HT projection fibres and a hypofunctionality of 5-HT1A autoreceptors expressed on raphe 5-HT neurons. In addition, social interaction was less in Yif1B-knockout mice, which did not respond to the antidepressant-like effect of acute fluoxetine injection. In wild-type mice, social defeat was associated with downregulated Yif1B mRNA in the prefrontal cortex, and chronic fluoxetine treatment increased Yif1B expression. The expression of Yif1B was also downregulated in the postmortem prefrontal cortex of people with major depressive disorder and upregulated after chronic treatment with a selective serotonin reuptake inhibitor in monkeys. Limitations: We found sex differences in Yif1B expression in humans and monkeys, but not in mice under the tested conditions. Conclusion: These data support the concept that Yif1B plays a critical role in 5-HT1AR functioning and brain 5-HT homeostasis. The opposite changes in its expression observed in anxious or depressive states and after therapeutic fluoxetine treatment suggest that Yif1B might be involved in vulnerability to anxiety and depression, and fluoxetine efficacy.


Assuntos
Transtorno Depressivo Maior/metabolismo , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/metabolismo , Receptor 5-HT1A de Serotonina/metabolismo , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Serotonina/metabolismo , Comportamento Social , Proteínas de Transporte Vesicular/efeitos dos fármacos , Proteínas de Transporte Vesicular/metabolismo , Animais , Autopsia , Comportamento Animal/fisiologia , Modelos Animais de Doenças , Feminino , Fluoxetina/farmacologia , Humanos , Macaca mulatta , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Núcleos da Rafe/efeitos dos fármacos , Núcleos da Rafe/fisiologia , Neurônios Serotoninérgicos/efeitos dos fármacos , Neurônios Serotoninérgicos/fisiologia , Agonistas do Receptor 5-HT1 de Serotonina/farmacologia , Caracteres Sexuais
11.
Neurol Res ; 42(7): 554-563, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32336224

RESUMO

OBJECTIVES: Opioid analgesics have been used for a long time in the treatment of acute and chronic pain. However, they have many side effects including tolerance development to a significant extent. Agomelatine, an atypical antidepressant, has been demonstrated to be effective in experimental studies on pain. However, the effect of agomelatine on morphine tolerance development and its mechanism of action are unknown. The antinociceptive effects of agomelatine, morphine and their combination were assessed in a mice model for painful diabetic neuropathy. The roles of glutamate ionotropic receptor N-methyl-D-aspartate (NMDA) type subunit-1 (GluN1) in raphe nucleus and periaqueductal gray (PAG) in the effect of agomelatine on neuropathic pain were also investigated in diabetic mice. METHODS: Agomelatine (10 mg/kg), morphine (10 mg/kg) and agomelatine + morphine were administered intraperitoneally for 15 consecutive days (twice per day), and the analgesic responses were assessed at days 1, 3, 6, 9, 12 and 15 in healthy and diabetic mice. Real time polymerase chain reaction (RT-PCR) was used to determine the changes in GluN1 expression. RESULTS: The tolerance development for morphine was evident, started at 6th day and remained thereafter, but not for agomelatine. GluN1 in raphe nucleus and PAG was upregulated in morphine treated but not in agomelatine-treated groups. DISCUSSION: The combination of agomelatine with morphine alone causes outlasting analgesic effects of repeated treatment, which can be interpreted as attenuated tolerance. Moreover, we also pointed out for the first time the modulatory effects of agomelatine on GluN1 expression in raphe nucleus and PAG after chronic morphine treatment. ABBREVIATIONS: Ca2+: Calcium; D2DR: Dopamine D2 receptor; GAPDH: Glyceraldehyde-3-phosphate dehydrogenase; GluN1: Glutamate ionotropic receptor N-methyl-D-aspartate type subunit-1; 5-HT: 5-hydroxytryptamine; i.p.: intraperitoneal injection; MPE: Maximal possible effect; MT: Melatonin; NMDA: N-methyl-D-aspartate; NMDAR1: NMDA receptors-1; PAG: Periaqueductal grey; PKCγ: Protein kinase C gamma; RT-PCR: Real time polymerase chain reaction; STZ: Streptozotocin.


Assuntos
Acetamidas/farmacologia , Neuropatias Diabéticas , Morfina/farmacologia , Substância Cinzenta Periaquedutal/efeitos dos fármacos , Núcleos da Rafe/efeitos dos fármacos , Receptores de N-Metil-D-Aspartato/efeitos dos fármacos , Analgésicos/farmacologia , Animais , Diabetes Mellitus Experimental/complicações , Tolerância a Medicamentos/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Substância Cinzenta Periaquedutal/metabolismo , Núcleos da Rafe/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo
12.
Physiol Res ; 69(Suppl 1): S151-S161, 2020 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-32228021

RESUMO

We studied the effects of GABA receptor agonists microinjections in medullary raphé on the mechanically induced tracheobronchial cough response in anesthetized, unparalyzed, spontaneously breathing cats. The results suggest that GABA-ergic inhibition significantly contributes to the regulation of cough reflex by action of both GABA(A) and GABA(B) receptors. The data are consistent with inhomogeneous occurrence of GABA-ergic neurons in medullary raphé and their different involvement in the cough reflex control. Cells within rostral nucleus raphéobscurus with dominant role of GABA(A) receptors and neurons of rostral nucleus raphépallidus and caudal nucleus raphémagnus with dominant role of GABA(B) receptors participate in regulation of cough expiratory efforts. These cough control elements are distinct from cough gating mechanism. GABA-ergic inhibition in the raphé caudal to obex had insignificant effect on cough. Contradictory findings for GABA, muscimol and baclofen administration in medullary raphé suggest involvement of coordinated activity of GABA on multiple receptors affecting raphé neurons and/or the local neuronal circuits in the raphé modulating cough motor drive.


Assuntos
Tosse/fisiopatologia , Bulbo/fisiologia , Núcleos da Rafe/fisiologia , Receptores de GABA-A/fisiologia , Receptores de GABA-B/fisiologia , Reflexo/fisiologia , Animais , Baclofeno/farmacologia , Baclofeno/uso terapêutico , Gatos , Tosse/tratamento farmacológico , Agonistas de Receptores de GABA-A/farmacologia , Agonistas de Receptores de GABA-A/uso terapêutico , Agonistas dos Receptores de GABA-B/farmacologia , Agonistas dos Receptores de GABA-B/uso terapêutico , Bulbo/efeitos dos fármacos , Muscimol/farmacologia , Muscimol/uso terapêutico , Núcleos da Rafe/efeitos dos fármacos , Reflexo/efeitos dos fármacos
13.
Psychopharmacology (Berl) ; 237(4): 1091-1106, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31897576

RESUMO

Eating disorders are frequently triggered by stress and are more prevalent in women than men. First signs often appear during early adolescence, but the biological basis for the sex-specific differences is unknown. Central administration of native relaxin-3 (RLN3) peptide or chimeric/truncated analogues produces differential effects on food intake and HPA axis activity in adult male and female rats, but the precise role of endogenous RLN3 signalling in metabolic and neuroendocrine control is unclear. Therefore, we examined the effects of microRNA-induced depletion (knock-down) of RLN3 mRNA/(peptide) production in neurons of the brainstem nucleus incertus (NI) in female rats on a range of physiological, behavioural and neurochemical indices, including food intake, body weight, anxiety, plasma corticosterone, mRNA levels of key neuropeptides in the paraventricular nucleus of hypothalamus (PVN) and limbic neural activity patterns (reflected by c-fos mRNA). Validated depletion of RLN3 in NI neurons of female rats (n = 8) produced a small, sustained (~ 2%) decrease in body weight, an imbalance in food intake and an increase in anxiety-like behaviour in the large open field, but not in the elevated plus-maze or light/dark box. Furthermore, NI RLN3 depletion disrupted corticosterone regulation, increased oxytocin and arginine-vasopressin, but not corticotropin-releasing factor, mRNA, in PVN, and decreased basal levels of c-fos mRNA in parvocellular and magnocellular PVN, bed nucleus of stria terminalis and the lateral hypothalamic area, brain regions involved in stress and feeding. These findings support a role for NI RLN3 neurons in fine-tuning stress and neuroendocrine responses and food intake regulation in female rats.


Assuntos
Ansiedade/metabolismo , Peso Corporal/fisiologia , Ingestão de Alimentos/fisiologia , Sistema Límbico/metabolismo , Proteínas do Tecido Nervoso/deficiência , Núcleos da Rafe/metabolismo , Relaxina/deficiência , Animais , Ansiedade/psicologia , Peso Corporal/efeitos dos fármacos , Ingestão de Alimentos/efeitos dos fármacos , Ingestão de Alimentos/psicologia , Feminino , Técnicas de Silenciamento de Genes/métodos , Sistema Límbico/efeitos dos fármacos , MicroRNAs/administração & dosagem , Proteínas do Tecido Nervoso/antagonistas & inibidores , Proteínas do Tecido Nervoso/genética , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Núcleos da Rafe/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Relaxina/antagonistas & inibidores , Relaxina/genética
14.
Peptides ; 126: 170249, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31911169

RESUMO

Serotonergic neurons of the median raphe nucleus (MnR) and hypothalamic melanin-concentrating hormone (MCH)-containing neurons, have been involved in the control of REM sleep and mood. In the present study, we examined in rats and cats the anatomical relationship between MCH-containing fibers and MnR neurons, as well as the presence of MCHergic receptors in these neurons. In addition, by means of in vivo unit recording in urethane anesthetized rats, we determined the effects of MCH in MnR neuronal firing. Our results showed that MCH-containing fibers were present in the central and paracentral regions of the MnR. MCHergic fibers were in close apposition to serotonergic and non-serotonergic neurons. By means of an indirect approach, we also analyzed the presence of MCHergic receptors within the MnR. Accordingly, we microinjected MCH conjugated with the fluorophore rhodamine (R-MCH) into the lateral ventricle. R-MCH was internalized into serotonergic and non-serotonergic MnR neurons; some of these neurons were GABAergic. Furthermore, we determined that intracerebroventricular administration of MCH induced a significant decrease in the firing rate of 53 % of MnR neurons, while the juxtacellular administration of MCH reduced the frequency of discharge in 67 % of these neurons. Finally, the juxtacellular administration of the MCH-receptor antagonist ATC-0175 produced an increase in the firing rate in 78 % of MnR neurons. Hence, MCH produces a strong regulation of MnR neuronal activity. We hypothesize that MCHergic modulation of the MnR neuronal activity may be involved in the promotion of REM sleep and in the pathophysiology of depressive disorders.


Assuntos
Hormônios Hipotalâmicos/farmacologia , Hipotálamo/efeitos dos fármacos , Melaninas/farmacologia , Fibras Nervosas/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Hormônios Hipofisários/farmacologia , Núcleos da Rafe/efeitos dos fármacos , Receptores do Hormônio Hipofisário/metabolismo , Animais , Gatos , Hipotálamo/metabolismo , Hipotálamo/fisiologia , Fibras Nervosas/metabolismo , Fibras Nervosas/fisiologia , Neurônios/metabolismo , Neurônios/fisiologia , Núcleos da Rafe/metabolismo , Núcleos da Rafe/fisiologia , Ratos , Ratos Wistar
15.
Q J Nucl Med Mol Imaging ; 64(2): 203-210, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29916219

RESUMO

BACKGROUND: More than 50% of patients with major depressive episode (MDE) fail to respond to initial treatment with first line pharmacological therapy. Altered receptor and serotonin transporter function are considered to be associated with mental disorders. Our investigation aimed on the density of the HT1A receptor in mesiotemporal cortex (MTC) and raphe measured by F18-Mefway in patients with MDD. METHODS: Patients with untreated clinically suspected major depressive episode were recruited from June 2012 to May 2014. 49 patients were included into the study: 36 patients (73%) were identified as responders, whereas 13 (27%) were non-responders. Gender distribution was 26 men (56%) and 23 women (44%). For treatment, only a standard medication of a selective serotonin reuptake inhibitor (SSRI) with escitalopram in a range of 10-20 mg/day was permitted. Responders were defined by improvement of the MADRS>50%. Visually MTC had the highest uptake of F18-Mefway among all brain regions, an asymmetry could not be observed in any patient. An elliptical region was drawn over the amygdala and hippocampus area and a small circular region was drawn over the raphe nuclei. All data were calculated related to (unspecific) cerebellar uptake. RESULTS: The quotient of the right MTC was 5.00 [4.33; 5.50] in all patients, in responders 5.00 [4.00; 5.75] and in non-responders 5.00 [4.50; 5.50] (P=0.56). The quotient of the left MTC presented with a median level of 4.50 [4.50; 5.50] in all persons. The responders had 4.50 [4.50; 5.75] which was not statistically significant to the data of the non-responders with 5.00 [4.50; 5.50] at P=0.64. The raphe had a median quotient of 2.50 [2.00; 3.00] in all and the cohort of responders, whereas non-responders had 2.50 [2.00; 2.50] (P=0.61). Also the absolute values of SUV in the three brain regions were not statistically different between the cohorts. Additionally, we did not find any sex-related differences in our patient group. CONCLUSIONS: Serotonin 1A receptor density can be assessed efficiently by F18-Mefway and PET-CT in patients with MDE. The method can be estimated as a possible tool for clinical and academic investigation, marked tracer uptake can constantly be observed at MTC and the raphe. Anyhow, under conditions of real life in patient care, it is not possible to distinguish patients with a good prognosis who will respond to standard SSRI therapy from non-responders who would benefit from a different therapeutic approach starting earlier.


Assuntos
Transtorno Depressivo Maior/diagnóstico por imagem , Radioisótopos de Flúor , Piperazinas , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Piridinas , Núcleos da Rafe/metabolismo , Receptor 5-HT1A de Serotonina/metabolismo , Lobo Temporal/metabolismo , Adulto , Transtorno Depressivo Maior/tratamento farmacológico , Transtorno Depressivo Maior/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Núcleos da Rafe/diagnóstico por imagem , Núcleos da Rafe/efeitos dos fármacos , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Inibidores Seletivos de Recaptação de Serotonina/uso terapêutico , Lobo Temporal/diagnóstico por imagem , Lobo Temporal/efeitos dos fármacos , Resultado do Tratamento
16.
Int J Mol Sci ; 20(21)2019 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-31717815

RESUMO

Previously, we found that 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced Parkinson's disease (PD) model mice (PD mice) showed facilitation of hippocampal memory extinction via reduced cyclic adenosine monophosphate (cAMP)/cAMP-dependent response element-binding protein (CREB) signaling, which may cause cognitive impairment in PD. Serotonergic neurons in the median raphe nucleus (MnRN) project to the hippocampus, and functional abnormalities have been reported. In the present study, we investigated the effects of the serotonin 5-HT4 receptor (5-HT4R) agonists prucalopride and velusetrag on the facilitation of memory extinction observed in PD mice. Both 5-HT4R agonists restored facilitation of contextual fear extinction in PD mice by stimulating the cAMP/CREB pathway in the dentate gyrus of the hippocampus. A retrograde fluorogold-tracer study showed that γ-aminobutyric acid-ergic (GABAergic) neurons in the reticular part of the substantia nigra (SNr), but not dopaminergic (DAergic) neurons in the substantia nigra pars compacta (SNpc), projected to serotonergic neurons in the MnRN, which are known to project their nerve terminals to the hippocampus. It is possible that the degeneration of the SNpc DAergic neurons in PD mice affects the SNr GABAergic neurons, and thereafter, the serotonergic neurons in the MnRN, resulting in hippocampal dysfunction. These findings suggest that 5HT4R agonists could be potentially useful as therapeutic drugs for treating cognitive deficits in PD.


Assuntos
Hipocampo/metabolismo , Doença de Parkinson/metabolismo , Neurônios Serotoninérgicos/efeitos dos fármacos , Agonistas do Receptor 5-HT4 de Serotonina/uso terapêutico , Animais , Proteína de Ligação a CREB/genética , Proteína de Ligação a CREB/metabolismo , AMP Cíclico/metabolismo , Modelos Animais de Doenças , Dopamina/metabolismo , Neurônios Dopaminérgicos/metabolismo , Medo/efeitos dos fármacos , Hipocampo/citologia , Hipocampo/efeitos dos fármacos , Masculino , Memória/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/psicologia , Núcleos da Rafe/efeitos dos fármacos , Receptores 5-HT4 de Serotonina/metabolismo , Neurônios Serotoninérgicos/citologia , Neurônios Serotoninérgicos/metabolismo , Substância Negra/metabolismo
17.
Behav Brain Res ; 373: 112086, 2019 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-31319134

RESUMO

Previous studies have highlighted interactions between serotonergic systems and adverse early life experience as important gene x environment determinants of risk of stress-related psychiatric disorders. Evidence suggests that mice deficient in Tph2, the rate-limiting enzyme for brain serotonin synthesis, display disruptions in behavioral phenotypes relevant to stress-related psychiatric disorders. The aim of this study was to determine how maternal separation in wild-type, heterozygous, and Tph2 knockout mice affects mRNA expression of serotonin-related genes. Serotonergic genes studied included Tph2, the high-affinity, low-capacity, sodium-dependent serotonin transporter (Slc6a4), the serotonin type 1a receptor (Htr1a), and the corticosterone-sensitive, low-affinity, high-capacity sodium-independent serotonin transporter, organic cation transporter 3 (Slc22a3). Furthermore, we studied corticotropin-releasing hormone receptors 1 (Crhr1) and 2 (Crhr2), which play important roles in controlling serotonergic neuronal activity. For this study, offspring of Tph2 heterozygous dams were exposed to daily maternal separation for the first two weeks of life. Adult, male wild-type, heterozygous, and homozygous offspring were subsequently used for molecular analysis. Maternal separation differentially altered serotonergic gene expression in a genotype- and topographically-specific manner. For example, maternal separation increased Slc6a4 mRNA expression in the dorsal part of the dorsal raphe nucleus in Tph2 heterozygous mice, but not in wild-type or knockout mice. Overall, these data are consistent with the hypothesis that gene x environment interactions, including serotonergic genes and adverse early life experience, play an important role in vulnerability to stress-related psychiatric disorders.


Assuntos
Núcleos da Rafe/fisiopatologia , Estresse Psicológico/metabolismo , Triptofano Hidroxilase/metabolismo , Animais , Corticosterona/metabolismo , Núcleo Dorsal da Rafe/efeitos dos fármacos , Feminino , Masculino , Privação Materna , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas de Transporte de Cátions Orgânicos/metabolismo , Núcleos da Rafe/efeitos dos fármacos , Receptor 5-HT1A de Serotonina/metabolismo , Receptores de Hormônio Liberador da Corticotropina/metabolismo , Neurônios Serotoninérgicos/metabolismo , Serotonina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Serotonina/genética , Triptofano Hidroxilase/genética , Triptofano Hidroxilase/fisiologia
18.
Naunyn Schmiedebergs Arch Pharmacol ; 392(11): 1455-1464, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31289857

RESUMO

The serotonergic 5-HT1A receptor is known to be involved in both impulsivity and anxiety-related behavior. Although anxiety and impulsivity are different constructs, it has been shown that anxiogenesis can result in impulsiveness. It is therefore important to determine if the 5-HT1A receptor is involved in the commission of impulsive actions independent of its effects on anxiety. The 5-HT1A agonist 8-OH-DPAT (0.0125-0.1 mg/kg subcutaneous) increased impulsive action at low doses, but decreased it at higher doses, on the novel paced variable consecutive number with discriminative stimulus task (VCN). Neither the 5-HT1A antagonist WAY 100,635 (0.2-1.2 mg/kg subcutaneous), nor the noradrenergic antagonist and pharmacological stressor yohimbine (1-2 mg/kg intraperitoneal) altered measures of impulsivity. Stress induced by yohimbine was sufficient to produce anxiety-like behavior in the elevated zero maze, confirming that the VCN task is a selective assay of impulsive action that is not affected by anxiety. We hypothesize that the biphasic effect of 8-OH-DPAT is due to actions on presynaptic raphe 5-HT1A autoreceptors, and also postsynaptic 5-HT1A receptors. These results suggest that this receptor mediates impulsive action and that this is not secondary to its role in anxiety.


Assuntos
8-Hidroxi-2-(di-n-propilamino)tetralina/farmacologia , Ansiedade/metabolismo , Comportamento Animal/efeitos dos fármacos , Comportamento Impulsivo/efeitos dos fármacos , Receptor 5-HT1A de Serotonina/metabolismo , Agonistas do Receptor 5-HT1 de Serotonina/farmacologia , Animais , Ansiedade/psicologia , Autorreceptores/efeitos dos fármacos , Autorreceptores/metabolismo , Discriminação Psicológica/efeitos dos fármacos , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Masculino , Piperazinas/farmacologia , Piridinas/farmacologia , Núcleos da Rafe/efeitos dos fármacos , Núcleos da Rafe/metabolismo , Ratos Sprague-Dawley , Ioimbina/farmacologia
19.
Neuropeptides ; 74: 70-81, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30642579

RESUMO

Melanin-concentrating hormone (MCH) is a neuropeptide present in neurons located in the hypothalamus that densely innervate serotonergic cells in the dorsal raphe nucleus (DRN). MCH administration into the DRN induces a depressive-like effect through a serotonergic mechanism. To further understand the interaction between MCH and serotonin, we used primary cultured serotonergic neurons to evaluate the effect of MCH on serotonergic release and metabolism by HPLC-ED measurement of serotonin (5-HT) and 5-hydroxyindolacetic acid (5-HIAA) levels. We confirmed the presence of serotonergic neurons in the E14 rat rhombencephalon by immunohistochemistry and showed for the first time evidence of MCHergic fibers reaching the area. Cultures obtained from rhombencephalic tissue presented 2.2 ±â€¯0.7% of serotonergic and 48.9 ±â€¯5.4% of GABAergic neurons. Despite the low concentration of serotonergic neurons, we were able to measure basal cellular and extracellular levels of 5-HT and 5-HIAA without the addition of any serotonergic-enhancer drug. As expected, 5-HT release was calcium-dependent and induced by depolarization. 5-HT extracellular levels were significantly increased by incubation with serotonin reuptake inhibitors (citalopram and nortriptyline) and a monoamine-oxidase inhibitor (clorgyline), and were not significantly modified by a 5-HT1A autoreceptor agonist (8-OHDPAT). Even though serotonergic cells responded as expected to these pharmacological treatments, MCH did not induce significant modifications of 5-HT and 5-HIAA extracellular levels in the cultures. Despite this unexpected result, we consider that assessment of 5-HT and 5-HIAA levels in primary serotonergic cultures may be an adequate approach to study the effect of other drugs and modulators on serotonin release, uptake and turnover.


Assuntos
Hormônios Hipotalâmicos/metabolismo , Hipotálamo/metabolismo , Melaninas/metabolismo , Neurônios/metabolismo , Hormônios Hipofisários/metabolismo , Núcleos da Rafe/metabolismo , Serotonina/metabolismo , Animais , Neurônios GABAérgicos/citologia , Hormônios Hipotalâmicos/administração & dosagem , Hipotálamo/citologia , Melaninas/administração & dosagem , Vias Neurais/citologia , Vias Neurais/metabolismo , Neurônios/citologia , Neurônios/efeitos dos fármacos , Hormônios Hipofisários/administração & dosagem , Cultura Primária de Células , Núcleos da Rafe/citologia , Núcleos da Rafe/efeitos dos fármacos , Ratos Sprague-Dawley , Receptor 5-HT1A de Serotonina/metabolismo
20.
Behav Brain Res ; 357-358: 57-64, 2019 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-29567265

RESUMO

Severe food restriction (FR), as observed in disorders like anorexia nervosa, has been associated to the reduction of estrogen levels, which in turn could lead to anxiety development. Estrogen receptors, mainly ERß type, are commonly found in the dorsal raphe nucleus (DRN) neurons, an important nucleus related to anxiety modulation and the primary source of serotonin (5-HT) in the brain. Taking together, these findings suggest an involvement of estrogen in anxiety modulation during food restriction, possibly mediated by ERß activation in serotonergic DRN neurons. Thus, the present study investigated the relationship between food restriction and anxiety-like behavior, and the involvement of DRN and ERß on the modulation of anxiety-like behaviors in animals subjected to FR. For that, female Fischer rats were grouped in control group, with free access to food, or a FR group, which received 40% of control intake during 14 days. Animals were randomly treated with 17ß-estradiol (E2), DPN (ERß selective agonist), or their respective vehicles, PBS and DMSO. Behavioral tests were performed on Elevated T-Maze (ETM) and Open Field (OF). Our results suggest that FR probably reduced the estrogen levels, since the remained in the non-ovulatory cycle phases, and their uterine weight was lower when compared to control group. The FR rats showed increased inhibitory avoidance latency in theETM indicating that FR is associated with the development of an anxiety-like state. The injections of both E2 and DPN into DRN of FR animals had an anxiolytic effect. Those data suggest thatanxiety-like behavior induced by FR could be mediated by a reduction of ERß activation in the DRN neurons, probably due to decreased estrogen levels.


Assuntos
Ansiedade/etiologia , Receptor beta de Estrogênio/metabolismo , Privação de Alimentos , Núcleos da Rafe/metabolismo , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/patologia , Animais , Ansiedade/tratamento farmacológico , Modelos Animais de Doenças , Estradiol/farmacologia , Ciclo Estral/efeitos dos fármacos , Feminino , Locomoção/efeitos dos fármacos , Locomoção/fisiologia , Aprendizagem em Labirinto/efeitos dos fármacos , Microinjeções , NAD/farmacologia , Núcleos da Rafe/efeitos dos fármacos , Ratos , Ratos Endogâmicos F344 , Útero/efeitos dos fármacos , Útero/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA