Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Invest Surg ; 37(1): 2389379, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39164010

RESUMO

OBJECTIVE: This investigation was to determine the relationship between changes in the expression levels of miR-134 and the E2F transcription factor 6 (E2F6) in mediating control of apoptosis in N-methyl-D-aspartate (NMDA)-induced glaucomatous mice. METHODS: Morphological and structural changes were quantitatively analyzed along with apoptosis in the retinal ganglion cell (RGC) layer, internal plexiform layer and RGCs. Glaucomatous RGCs were transfected, and cell viability and apoptosis were examined. The targeting relationship between miR-134 and E2F6 was analyzed, as well as their expression pattern. RESULTS: Intravitreal injection of NMDA induced a significant reduction in the number of RGCs and thinning of IPL thickness. miR-134 was highly expressed and E2F6 was lowly expressed in glaucoma mice. Suppression of miR-134 or E2F6 overexpression inhibited apoptosis in the glaucomatous RGCs and instead their proliferative activity. MiR-134 targeted inhibition of E2F6 expression. Suppressing rises in E2F6 expression reduced the interfering effect of miR-134 on glaucomatous RGC development. CONCLUSION: Depleting miR134 expression increases, in turn, E2F6 expression levels and in turn reduces glaucomatous RGC apoptosis expression.


Assuntos
Apoptose , Fator de Transcrição E2F6 , Glaucoma , MicroRNAs , N-Metilaspartato , Células Ganglionares da Retina , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Apoptose/efeitos dos fármacos , Apoptose/genética , Células Ganglionares da Retina/patologia , Células Ganglionares da Retina/metabolismo , Células Ganglionares da Retina/efeitos dos fármacos , Glaucoma/genética , Glaucoma/patologia , Glaucoma/metabolismo , Glaucoma/induzido quimicamente , N-Metilaspartato/toxicidade , Camundongos , Fator de Transcrição E2F6/genética , Fator de Transcrição E2F6/metabolismo , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Masculino , Injeções Intravítreas , Sobrevivência Celular/efeitos dos fármacos
2.
Neuroscience ; 553: 145-159, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-38992567

RESUMO

Glutamate excitotoxicity is involved in retinal ganglion cell (RGC) death in various retinal degenerative diseases, including ischemia-reperfusion injury and glaucoma. Excitotoxic RGC death is caused by both direct damage to RGCs and indirect damage through neuroinflammation of retinal glial cells. Omidenepag (OMD), a novel E prostanoid receptor 2 (EP2) agonist, is a recently approved intraocular pressure-lowering drug. The second messenger of EP2 is cyclic adenosine monophosphate (cAMP), which activates protein kinase A (PKA) and exchange protein directly activated by cAMP (Epac). In this study, we investigated the neuroprotective effects of OMD on excitotoxic RGC death by focusing on differences in cAMP downstream signaling from the perspective of glia-neuron interactions. We established a glutamate excitotoxicity model in vitro and NMDA intravitreal injection model in vivo. In vitro, rat primary RGCs were used in an RGC survival rate assay. MG5 cells (mouse microglial cell line) and A1 cells (astrocyte cell line) were used for immunocytochemistry and Western blotting to evaluate the expressions of COX-1/2, PKA, Epac1/2, pCREB, cleaved caspase-3, inflammatory cytokines, and neurotrophic factors. Mouse retinal specimens underwent hematoxylin and eosin staining, flat-mounted retina examination, and immunohistochemistry. OMD significantly suppressed excitotoxic RGC death, cleaved caspase-3 expression, and activated glia both in vitro and in vivo. Moreover, it inhibited Epac1 and inflammatory cytokine expression and promoted COX-2, pCREB, and neurotrophic factor expression. OMD may have neuroprotective effects through inhibition of the Epac pathway and promotion of the COX-2-EP2-cAMP-PKA pathway by modulating glia-neuron interaction.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico , AMP Cíclico , Ciclo-Oxigenase 2 , Neuroglia , Fármacos Neuroprotetores , Células Ganglionares da Retina , Animais , Células Ganglionares da Retina/efeitos dos fármacos , Células Ganglionares da Retina/metabolismo , Fármacos Neuroprotetores/farmacologia , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Ciclo-Oxigenase 2/metabolismo , AMP Cíclico/metabolismo , Camundongos , Neuroglia/efeitos dos fármacos , Neuroglia/metabolismo , Receptores de Prostaglandina E Subtipo EP2/metabolismo , Receptores de Prostaglandina E Subtipo EP2/antagonistas & inibidores , Receptores de Prostaglandina E Subtipo EP2/agonistas , Morte Celular/efeitos dos fármacos , Morte Celular/fisiologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Ratos Sprague-Dawley , Ratos , Ácido Glutâmico/metabolismo , Ácido Glutâmico/toxicidade , Camundongos Endogâmicos C57BL , Masculino , N-Metilaspartato/farmacologia , N-Metilaspartato/toxicidade , Neurônios/efeitos dos fármacos , Neurônios/metabolismo
3.
Cells ; 13(12)2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38920637

RESUMO

Excessive levels of glutamate activity could potentially damage and kill neurons. Glutamate excitotoxicity is thought to play a critical role in many CNS and retinal diseases. Accordingly, glutamate excitotoxicity has been used as a model to study neuronal diseases. Immune proteins, such as major histocompatibility complex (MHC) class I molecules and their receptors, play important roles in many neuronal diseases, while T-cell receptors (TCR) are the primary receptors of MHCI. We previously showed that a critical component of TCR, CD3ζ, is expressed by mouse retinal ganglion cells (RGCs). The mutation of CD3ζ or MHCI molecules compromises the development of RGC structure and function. In this study, we investigated whether CD3ζ-mediated molecular signaling regulates RGC death in glutamate excitotoxicity. We show that mutation of CD3ζ significantly increased RGC survival in NMDA-induced excitotoxicity. In addition, we found that several downstream molecules of TCR, including Src (proto-oncogene tyrosine-protein kinase) family kinases (SFKs) and spleen tyrosine kinase (Syk), are expressed by RGCs. Selective inhibition of an SFK member, Hck, or Syk members, Syk or Zap70, significantly increased RGC survival in NMDA-induced excitotoxicity. These results provide direct evidence to reveal the underlying molecular mechanisms that control RGC death under disease conditions.


Assuntos
Complexo CD3 , Ácido Glutâmico , Células Ganglionares da Retina , Transdução de Sinais , Células Ganglionares da Retina/metabolismo , Células Ganglionares da Retina/efeitos dos fármacos , Células Ganglionares da Retina/patologia , Animais , Ácido Glutâmico/metabolismo , Transdução de Sinais/efeitos dos fármacos , Complexo CD3/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , N-Metilaspartato/toxicidade , Sobrevivência Celular/efeitos dos fármacos , Retina/metabolismo , Retina/patologia , Quinases da Família src/metabolismo , Quinase Syk/metabolismo
4.
Oxid Med Cell Longev ; 2024: 3530499, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38855429

RESUMO

The endocannabinoid system is found throughout the central nervous system, and its cannabinoids receptor 1 is critical in preventing neurotoxicity caused by N-methyl-D-aspartate receptor activation (NMDARs). The activity of NMDARs places demands on endogenous cannabinoids to regulate their calcium currents. Endocannabinoids keep NMDAR activity within safe limits, protecting neural cells from excitotoxicity. Cannabinoids are remembered to deliver this outcome by repressing presynaptic glutamate discharge or obstructing postsynaptic NMDAR-managed flagging pathways. The endocannabinoid system must exert a negative influence proportional to the strength of NMDAR signaling for such control to be effective. The goal of this paper is to draw the attention towards the neuroprotective mechanism of constituents of Cannabis sativa against NMDA-induced excitotoxic result. Phytochemical investigation of the cannabis flowers led to the isolation of nine secondary metabolites. A spiro-compound, Cannabispirenone A, which on treatment of the cells prior to NMDA exposure significantly increases cell survival while decreasing ROS production, lipid peroxidation, and intracellular calcium. Our findings showed that this compound showed neuroprotection against NMDA-induced excitotoxic insult, has antioxidative properties, and increased cannabinoid receptor 1 expression, which may be involved in the signaling pathway for this neuroprotection.


Assuntos
N-Metilaspartato , Fármacos Neuroprotetores , Fármacos Neuroprotetores/farmacologia , Animais , N-Metilaspartato/toxicidade , Camundongos , Diferenciação Celular/efeitos dos fármacos , Cálcio/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Cannabis/química
5.
Exp Neurol ; 376: 114759, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38519010

RESUMO

Malformations of cortical development (MCDs) are caused by abnormal neuronal migration processes during the fetal period and are a major cause of intractable epilepsy in infancy. However, the timing of hyperexcitability or epileptogenesis in MCDs remains unclear. To identify the early developmental changes in the brain of the MCD rat model, which exhibits increased seizure susceptibility during infancy (P12-15), we analyzed the pathological changes in the brains of MCD model rats during the neonatal period and tested NMDA-induced seizure susceptibility. Pregnant rats were injected with two doses of methylazoxymethanol acetate (MAM, 15 mg/kg, i.p.) to induce MCD, while controls were administered normal saline. The cortical development of the offspring was measured by performing magnetic resonance imaging (MRI) on postnatal days (P) 1, 5, and 8. At P8, some rats were sacrificed for immunofluorescence, Golgi staining, and Western analysis. In another set of rats, the number and latency to onset of spasms were monitored for 90 min after the NMDA (5 mg/kg i.p.) injection at P8. In MCD rats, in vivo MR imaging showed smaller brain volume and thinner cortex from day 1 after birth (p < 0.001). Golgi staining and immunofluorescence revealed abnormal neuronal migration, with a reduced number of neuronal cell populations and less dendritic arborization at P8. Furthermore, MCD rats exhibited a significant reduction in the expression of NMDA receptors and AMPAR4, along with an increase in AMPAR3 expression (p < 0.05). Although there was no difference in the latency to seizure onset between MCD rats and controls, the MCD rats survived significantly longer than the controls. These results provide insights into the early developmental changes in the cortex of a MCD rat model and suggest that delayed and abnormal neuronal development in the immature brain is associated with a blunted response to NMDA-induced excitotoxic injury. These developmental changes may be involved in the sudden onset of epilepsy in patients with MCD or prenatal brain injury.


Assuntos
Movimento Celular , Modelos Animais de Doenças , Malformações do Desenvolvimento Cortical , N-Metilaspartato , Neurônios , Ratos Sprague-Dawley , Animais , Ratos , N-Metilaspartato/toxicidade , Feminino , Gravidez , Movimento Celular/efeitos dos fármacos , Neurônios/patologia , Neurônios/efeitos dos fármacos , Malformações do Desenvolvimento Cortical/induzido quimicamente , Malformações do Desenvolvimento Cortical/patologia , Animais Recém-Nascidos , Acetato de Metilazoximetanol/toxicidade , Acetato de Metilazoximetanol/análogos & derivados , Córtex Cerebral/patologia , Córtex Cerebral/efeitos dos fármacos , Masculino , Imageamento por Ressonância Magnética
6.
Eur J Pharmacol ; 970: 176510, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38493917

RESUMO

Activation of adenosine monophosphate (AMP)-activated protein kinase (AMPK) pathway protects against N-methyl-D-aspartic acid (NMDA)-induced excitotoxic retinal injury. AMPK activation enhances fatty acid metabolism and ketone body synthesis. Ketone bodies are transported into neurons by monocarboxylate transporters (MCTs) and exert neuroprotective effects. In this study, we examined the distribution and expression levels of MCT1 and MCT2 in the retina and analyzed the effects of pharmacological inhibition of MCTs on the protective effects of metformin and 5-aminoimidazole-4-carboxamide (AICAR), activators of AMPK, against NMDA-induced retinal injury in rats. MCT1 was expressed in the blood vessels, processes of astrocytes and Müller cells, and inner segments of photoreceptors in the rat retina, whereas MCT2 was expressed in neuronal cells in the ganglion cell layer (GCL) and in astrocyte processes. The expression levels of MCT2, but not MCT1, decreased one day after intravitreal injection of NMDA (200 nmol). Intravitreal injection of NMDA decreased the number of cells in the GCL compared to the vehicle seven days after injection. Simultaneous injection of metformin (20 nmol) or AICAR (50 nmol) with NMDA attenuated NMDA-induced cell loss in the GCL, and these protective effects were attenuated by AR-C155858 (1 pmol), an inhibitor of MCTs. AR-C155858 alone had no significant effect on the retinal structure. These results suggest that AMPK-activating compounds protect against NMDA-induced excitotoxic retinal injury via mechanisms involving MCTs in rats. NMDA-induced neurotoxicity may be associated with retinal neurodegenerative changes in glaucoma and diabetic retinopathy. Therefore, AMPK-activating compounds may be effective in managing these retinal diseases.


Assuntos
Metformina , Doenças Retinianas , Tiofenos , Uracila/análogos & derivados , Ratos , Animais , Proteínas Quinases Ativadas por AMP/metabolismo , N-Metilaspartato/toxicidade , Ratos Sprague-Dawley , Retina/metabolismo , Doenças Retinianas/induzido quimicamente , Doenças Retinianas/prevenção & controle , Doenças Retinianas/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Metformina/efeitos adversos
7.
Acta Neuropathol Commun ; 12(1): 19, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38303097

RESUMO

Excitotoxicity from the impairment of glutamate uptake constitutes an important mechanism in neurodegenerative diseases such as Alzheimer's, multiple sclerosis, and Parkinson's disease. Within the eye, excitotoxicity is thought to play a critical role in retinal ganglion cell death in glaucoma, diabetic retinopathy, retinal ischemia, and optic nerve injury, yet how excitotoxic injury impacts different retinal layers is not well understood. Here, we investigated the longitudinal effects of N-methyl-D-aspartate (NMDA)-induced excitotoxic retinal injury in a rat model using deep learning-assisted retinal layer thickness estimation. Before and after unilateral intravitreal NMDA injection in nine adult Long Evans rats, spectral-domain optical coherence tomography (OCT) was used to acquire volumetric retinal images in both eyes over 4 weeks. Ten retinal layers were automatically segmented from the OCT data using our deep learning-based algorithm. Retinal degeneration was evaluated using layer-specific retinal thickness changes at each time point (before, and at 3, 7, and 28 days after NMDA injection). Within the inner retina, our OCT results showed that retinal thinning occurred first in the inner plexiform layer at 3 days after NMDA injection, followed by the inner nuclear layer at 7 days post-injury. In contrast, the retinal nerve fiber layer exhibited an initial thickening 3 days after NMDA injection, followed by normalization and thinning up to 4 weeks post-injury. Our results demonstrated the pathological cascades of NMDA-induced neurotoxicity across different layers of the retina. The early inner plexiform layer thinning suggests early dendritic shrinkage, whereas the initial retinal nerve fiber layer thickening before subsequent normalization and thinning indicates early inflammation before axonal loss and cell death. These findings implicate the inner plexiform layer as an early imaging biomarker of excitotoxic retinal degeneration, whereas caution is warranted when interpreting the ganglion cell complex combining retinal nerve fiber layer, ganglion cell layer, and inner plexiform layer thicknesses in conventional OCT measures. Deep learning-assisted retinal layer segmentation and longitudinal OCT monitoring can help evaluate the different phases of retinal layer damage upon excitotoxicity.


Assuntos
Aprendizado Profundo , Degeneração Retiniana , Ratos , Animais , Degeneração Retiniana/induzido quimicamente , Degeneração Retiniana/diagnóstico por imagem , Degeneração Retiniana/patologia , Tomografia de Coerência Óptica/métodos , N-Metilaspartato/toxicidade , Ratos Long-Evans , Retina/patologia , Células Ganglionares da Retina/patologia , Fibras Nervosas/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA