Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.260
Filtrar
1.
Sci Rep ; 14(1): 10696, 2024 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-38730068

RESUMO

COVID-19, caused by SARS-CoV-2, affects neuronal cells, causing several symptoms such as memory loss, anosmia and brain inflammation. Curcuminoids (Me08 e Me23) and curcumin (CUR) are derived from Curcuma Longa extract (EXT). Many therapeutic actions have been linked to these compounds, including antiviral action. Given the severe implications of COVID-19, especially within the central nervous system, our study aims to shed light on the therapeutic potential of curcuminoids against SARS-CoV-2 infection, particularly in neuronal cells. Here, we investigated the effects of CUR, EXT, Me08 and Me23 in human neuroblastoma SH-SY5Y. We observed that Me23 significantly decreased the expression of plasma membrane-associated transmembrane protease serine 2 (TMPRSS2) and TMPRSS11D, consequently mitigating the elevated ROS levels induced by SARS-CoV-2. Furthermore, Me23 exhibited antioxidative properties by increasing NRF2 gene expression and restoring NQO1 activity following SARS-CoV-2 infection. Both Me08 and Me23 effectively reduced SARS-CoV-2 replication in SH-SY5Y cells overexpressing ACE2 (SH-ACE2). Additionally, all of these compounds demonstrated the ability to decrease proinflammatory cytokines such as IL-6, TNF-α, and IL-17, while Me08 specifically reduced INF-γ levels. Our findings suggest that curcuminoid Me23 could serve as a potential agent for mitigating the impact of COVID-19, particularly within the context of central nervous system involvement.


Assuntos
Anti-Inflamatórios , Antioxidantes , Antivirais , Tratamento Farmacológico da COVID-19 , Curcumina , SARS-CoV-2 , Humanos , Curcumina/farmacologia , Curcumina/análogos & derivados , Antioxidantes/farmacologia , Antivirais/farmacologia , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/fisiologia , Anti-Inflamatórios/farmacologia , Linhagem Celular Tumoral , Curcuma/química , Serina Endopeptidases/metabolismo , COVID-19/virologia , COVID-19/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Extratos Vegetais/farmacologia , Citocinas/metabolismo , NAD(P)H Desidrogenase (Quinona)/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/virologia
2.
Anticancer Res ; 44(5): 1915-1924, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38677747

RESUMO

BACKGROUND/AIM: NAD(P)H dehydrogenase [quinone] 1 (NQO1), an antioxidant enzyme, confers resistance to anticancer agents. NQO1 C609T is a single-nucleotide polymorphism associated with reduced protein expression in the non-neoplastic esophageal squamous epithelium (ESE). This study aimed to investigate immunohistochemical NQO1 expression in non-neoplastic ESE and to elucidate its prognostic significance in patients with esophageal squamous cell carcinoma (ESCC) undergoing neoadjuvant therapy followed by esophagectomy. MATERIALS AND METHODS: NQO1 expression in non-neoplastic ESE was determined in surgical specimens from 83 patients with ESCC using immunohistochemistry. The association between NQO1 expression and clinicopathological factors, and the prognostic significance of NQO1 expression for relapse-free survival (RFS) were statistically evaluated. RESULTS: Patients with complete loss or weak NQO1 expression and patients with moderate or strong NQO1 expression were classified into the NQO1-negative (n=29) and NQO1-positive (n=54) groups, respectively. The downstaging of T classification status after neoadjuvant therapy was significantly more frequent in the NQO1-negative group than in the NQO1-positive group (59% vs. 33%; p=0.036). The NQO1-negative group had significantly more favorable RFS than the NQO1-positive group (p=0.035). Multivariate survival analysis demonstrated that NQO1 negative expression had a favorable prognostic impact on RFS (HR=0.332; 95%CI=0.136-0.812; p=0.016). CONCLUSION: Immunohistochemical evaluation of NQO1 expression in non-neoplastic ESE has clinical utility for predicting patient prognosis after neoadjuvant therapy followed by esophagectomy and might be helpful for selecting candidates for adjuvant therapy to treat ESCC.


Assuntos
Carcinoma de Células Escamosas , Neoplasias Esofágicas , NAD(P)H Desidrogenase (Quinona) , Humanos , NAD(P)H Desidrogenase (Quinona)/genética , NAD(P)H Desidrogenase (Quinona)/metabolismo , Neoplasias Esofágicas/patologia , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/mortalidade , Feminino , Masculino , Pessoa de Meia-Idade , Prognóstico , Idoso , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/genética , Esofagectomia , Terapia Neoadjuvante , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/genética , Carcinoma de Células Escamosas do Esôfago/patologia , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/metabolismo , Adulto , Imuno-Histoquímica , Intervalo Livre de Doença , Idoso de 80 Anos ou mais
3.
Eur J Pharmacol ; 973: 176511, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38604545

RESUMO

Lung cancer is one of the most lethal cancers with high incidence worldwide. The prevention of lung cancer is of great significance to reducing the social harm caused by this disease. An in-depth understanding of the molecular changes underlying precancerous lesions is essential for the targeted chemoprevention against lung cancer. Here, we discovered an increased NQO1 level over time within pulmonary premalignant lesions in both the KrasG12D-driven and nicotine-derived nitrosamine ketone (NNK)-induced mouse models of lung cancer, as well as in KrasG12D-driven and NNK-induced malignant transformed human bronchial epithelial cells (BEAS-2B and 16HBE). This suggests a potential correlation between the NQO1 expression and lung carcinogenesis. Based on this finding, we utilized ß-Lapachone (ß-Lap), an NQO1 bioactivatable drug, to suppress lung tumorigenesis. In this study, the efficacy and safety of low-dose ß-Lap were demonstrated in preventing lung tumorigenesis in vivo. In conclusion, our study suggests that long-term consumption of low-dose ß-Lap could potentially be an effective therapeutic strategy for the prevention of lung premalignant lesions. However, further studies and clinical trials are necessary to validate our findings, determine the safety of long-term ß-Lap usage in humans, and promote the use of ß-Lap in high-risk populations.


Assuntos
Neoplasias Pulmonares , NAD(P)H Desidrogenase (Quinona) , Naftoquinonas , Animais , Naftoquinonas/farmacologia , Naftoquinonas/uso terapêutico , NAD(P)H Desidrogenase (Quinona)/metabolismo , Neoplasias Pulmonares/prevenção & controle , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/induzido quimicamente , Neoplasias Pulmonares/metabolismo , Humanos , Camundongos , Carcinogênese/efeitos dos fármacos , Transformação Celular Neoplásica/efeitos dos fármacos , Transformação Celular Neoplásica/induzido quimicamente , Transformação Celular Neoplásica/metabolismo , Feminino , Linhagem Celular
4.
Gene ; 919: 148510, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38679184

RESUMO

BACKGROUND: Genetic background of healthy or pathological styles of aging and human lifespan is determined by joint gene interactions. Lucky combinations of antioxidant gene polymorphisms can result in a highly adaptive phenotype, providing a successful way to interact with external triggers. Our purpose was to identify the polygenic markers of survival and longevity in the antioxidant genes among elderly people with physiological and pathological aging. METHODS: In a 20-year follow-up study of 2350 individuals aged 18-114 years residing in the Volga-Ural region of Russia, sex-adjusted association analyses of MTHFR rs1801133, MSRA rs10098474, PON1 rs662, PON2 rs7493, SOD1 rs2070424, NQO1 rs1131341 and CAT rs1001179 polymorphic loci with longevity were carried out. Survival analysis was subsequently performed using the established single genes and gene-gene combinations as cofactors. RESULTS: The PON1 rs662*G allele was defined as the main longevity marker in women (OR = 1.44, p = 3E-04 in the log-additive model; HR = 0.77, p = 1.9E-04 in the Cox-survival model). The polymorphisms in the MTHFR, MSRA, PON2, SOD1, and CAT genes had an additive effect on longevity. A strong protective effect of combined MTHFR rs1801133*C, MSRA rs10098474*T, PON1 rs662*G, and PON2 rs7493*C alleles against mortality was obtained in women (HR = 0.81, p = 5E-03). The PON1 rs662*A allele had a meaningful impact on mortality for both long-lived men with cerebrovascular accidents (HR = 1.76, p = 0.027 for the PON1 rs662*AG genotype) and women with cardiovascular diseases (HR = 1.43, p = 0.002 for PON1 rs662*AA genotype). The MTHFR rs1801133*TT (HR = 1.91, p = 0.036), CAT rs1001179*TT (HR = 2.83, p = 0.031) and SOD1 rs2070424*AG (HR = 1.58, p = 0.018) genotypes were associated with the cancer mortality. CONCLUSION: In our longitudinal 20-year study, we found the combinations of functional polymorphisms in antioxidant genes involved in longevity and survival in certain clinical phenotypes in the advanced age.


Assuntos
Arildialquilfosfatase , Longevidade , Metilenotetra-Hidrofolato Redutase (NADPH2) , NAD(P)H Desidrogenase (Quinona) , Polimorfismo de Nucleotídeo Único , Superóxido Dismutase-1 , Humanos , Feminino , Masculino , Arildialquilfosfatase/genética , Longevidade/genética , NAD(P)H Desidrogenase (Quinona)/genética , Seguimentos , Adulto , Metilenotetra-Hidrofolato Redutase (NADPH2)/genética , Pessoa de Meia-Idade , Adolescente , Idoso , Superóxido Dismutase-1/genética , Catalase/genética , Idoso de 80 Anos ou mais , Federação Russa , Adulto Jovem , Antioxidantes/metabolismo
5.
Talanta ; 274: 126018, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38593645

RESUMO

Colorectum cancer has become one of the most fatal cancer diseases, in which NAD(P)H: quinone oxidoreductase 1 (NQO1) plays a role in intracellular free radical reduction and detoxification and has been linked to colorectum cancer and chemotherapy resistance. Therefore, rational design of optical probe for NQO1 detection is urgent for the early diagnosis of colorectum cancer. Herein, we have developed a novel two-photon fluorescent probe, WHFD, which is capable of selectively detecting of intracellular NQO1 with two-photon (TP) absorption (800 nm) and near-infrared emission (620 nm). Combination with a substantial Stokes shift (175 nm) and biocompatibility, we have assessed its suitability for in vivo imaging of endogenous NQO1 activities from HepG2 tumor-bearing live animals with high tissue penetration up to 300 µm. Particularly, we for the first time used the probe to image NQO1 activities from human colorectum cancer samples by using TP microscopy, and proving our probe possesses reliable diagnostic performance to directly in situ imaging of cancer biomarker and can clearly distinguish the boundary between human colorectum cancer tissue and their surrounding normal tissue, which shows great potential for the intraoperative navigation.


Assuntos
Neoplasias Colorretais , Corantes Fluorescentes , NAD(P)H Desidrogenase (Quinona) , Fótons , NAD(P)H Desidrogenase (Quinona)/metabolismo , NAD(P)H Desidrogenase (Quinona)/análise , Humanos , Corantes Fluorescentes/química , Corantes Fluorescentes/síntese química , Neoplasias Colorretais/diagnóstico por imagem , Neoplasias Colorretais/patologia , Animais , Células Hep G2 , Imagem Óptica , Raios Infravermelhos , Camundongos , Camundongos Nus
6.
Toxicon ; 243: 107709, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38615996

RESUMO

Deoxynivalenol is a widespread feed contaminant that leads to vomit, which results in serious symptom such as increased intestinal permeability and even intestinal mucosal necrosis. Recent studies have reported the role of quercetin in alleviating deoxynivalenol-induced intestinal injury; however, the mechanisms and targets remain unclear. Thus, we aimed to identify the mechanisms of action by using a combination of network pharmacology and molecular docking. We identified 151 quercetin targets, 235 deoxynivalenol targets and 47 porcine intestinal injury targets by searching compound database and PubMed database, among which there were two common targets. The PPI network showed that the key proteins involved are NQO1 and PPAR-γ. The PPI network showed that the key proteins involved were NQO1 and PPARG. GO analysis found that genes were enriched primarily in response to oxidative stress. The PPI network showed that the key proteins involved are NQO1 and PPAR-γ. The genes are enriched primarily in response to oxidative stress. KEGG analysis showed enrichment of the HIF, reactive oxygen species and other signaling pathways. The molecular docking results indicated key binding activity between NQO1-quercetin and PPAR-γ-quercetin. By using network pharmacology, we have revealed the potential molecular mechanisms by which quercetin alleviates deoxynivalenol-induced porcine intestinal injury, which lays the foundation for the development of drugs to treat deoxynivalenol-induced intestinal injury in pigs.


Assuntos
Simulação de Acoplamento Molecular , Farmacologia em Rede , PPAR gama , Quercetina , Tricotecenos , Quercetina/farmacologia , Animais , Tricotecenos/toxicidade , Suínos , PPAR gama/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Intestinos/efeitos dos fármacos , NAD(P)H Desidrogenase (Quinona)/metabolismo , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo
7.
Redox Rep ; 29(1): 2332038, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38563333

RESUMO

OBJECTIVES: Gentamicin is one of the most common ototoxic drugs that can lower patients' quality of life. Oxidative stress is a key factors inducing sensory hair cell death during gentamicin administration. So far, there are no effective drugs to prevent or treat gentamicin- induced hearing loss. A recent study found cystic fibrosis transmembrane conductance regulator (CFTR) as a new target to modulate cellular oxidative balance. The objective of this study was to estimate the effect of the CFTR activator ivacaftor on gentamicin-induced ototoxicity and determine its mechanism. METHODS: The hair cell count was analyzed by Myosin 7a staining. Apoptosis was analyzed by TUNEL Apoptosis Kit. Cellular reactive oxygen species (ROS) level was detected by DCFH-DA probes. The Nrf2 related proteins expression levels were analyzed by western blot. RESULTS: An in vitro cochlear explant model showed that gentamicin caused ROS accumulation in sensory hair cells and induced apoptosis, and this effect was alleviated by pretreatment with ivacaftor. Western blotting showed that ivacaftor administration markedly increased the protein expression of nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase-1 (HO1), and NAD(P)H:quinone oxidoreductase 1 (NQO1). The protective effect of ivacaftor was abolished by the Nrf2 inhibitor ML385. DISCUSSION: Our results indicate the protective role of the CFTR-Nrf2-HO1/NQO1 pathway in gentamicin-induced ototoxicity. Ivacaftor may be repositioned or repurposed towards aminoglycosides-induced hearing loss.


Assuntos
Aminofenóis , Perda Auditiva , Ototoxicidade , Quinolonas , Humanos , Gentamicinas/toxicidade , Espécies Reativas de Oxigênio/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/farmacologia , Heme Oxigenase-1/metabolismo , Heme Oxigenase-1/farmacologia , Qualidade de Vida , Estresse Oxidativo , Apoptose , NAD(P)H Desidrogenase (Quinona)/metabolismo , NAD(P)H Desidrogenase (Quinona)/farmacologia
8.
Redox Biol ; 72: 103130, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38522110

RESUMO

Redox-responsive hydropersulfide prodrugs are designed to enable a more controllable and efficient hydropersulfide (RSSH) supply and to thoroughly explore their biological and therapeutic applications in oxidative damage. To obtain novel activation patterns triggered by redox signaling, we focused on NAD(P)H: quinone acceptor oxidoreductase 1 (NQO1), a canonical antioxidant enzyme, and designed NQO1-activated RSSH prodrugs. We also performed a head-to-head comparison of two mainstream structural scaffolds with solid quantitative analysis of prodrugs, RSSH, and metabolic by-products by LC-MS/MS, confirming that the perthiocarbamate scaffold was more effective in intracellular prodrug uptake and RSSH production. The prodrug was highly potent in oxidative stress management against cisplatin-induced nephrotoxicity. Strikingly, this prodrug possessed potential feedback activation properties by which the delivered RSSH can further escalate the prodrug activation via NQO1 upregulation. Our strategy pushed RSSH prodrugs one step further in the pursuit of efficient release in biological matrices and improved druggability against oxidative stress.


Assuntos
NAD(P)H Desidrogenase (Quinona) , Oxirredução , Estresse Oxidativo , Pró-Fármacos , Sulfetos , Pró-Fármacos/farmacologia , Pró-Fármacos/química , Estresse Oxidativo/efeitos dos fármacos , NAD(P)H Desidrogenase (Quinona)/metabolismo , Oxirredução/efeitos dos fármacos , Sulfetos/química , Sulfetos/farmacologia , Humanos , Animais , Espectrometria de Massas em Tandem , Cisplatino/farmacologia , Antioxidantes/farmacologia , Antioxidantes/química , Camundongos
9.
Ann Anat ; 254: 152260, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38521364

RESUMO

BACKGROUND: Oxidative stress plays a crucial role in the pathogenesis of many skeletal diseases by inducing osteocyte death. The transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) is a master regulator of various antioxidant gene expressions through antioxidant response element (ARE) against cellular oxidative stress and can be induced by various stimulants, including the phytochemicals methysticin (MET) and L-sulforaphane (SFN). This study aimed to establish an osteocyte in vitro model to investigate the pharmacological effects of MET and SFN on the Nrf2/ARE pathway. METHODS: MLO-Y4 murine osteocytes and the stably transduced MLO-Y4-SIN-lenti-ARE reporter gene cell line were used. MET and SFN were used as Nrf2 inducers. The cytotoxicity of MET, SFN, and hydrogen peroxide (H2O2) was evaluated using the CytoTox-Glo™ Assay. Time- and dose-dependent ARE induction was examined by Monoluciferase Assay. The mRNA and protein expressions of Nrf2 target markers, such as heme-oxygenase 1 (Ho-1), NADPH quinone dehydrogenase 1 (Nqo1), and thioredoxin reductase 1 (Txnrd1), were detected by RT-qPCR, Western Blot, and immunofluorescence staining, respectively. Osteogenesis markers, osteopontin, and osteocalcin were compared with and without treatment by immunofluorescence staining. RESULTS: The experimental data showed that MET and SFN induced ARE activity in a time- and dose-dependent manner and increased the mRNA and protein expression of antioxidant markers compared to vehicle-treated controls. The protein expression of osteopontin and osteocalcin in the samples treated with SFN were significantly higher than without treatment, and the number of cell death treated with SFN was significantly lower than without treatment under H2O2-induced stress conditions. CONCLUSIONS: Nrf2 inducers MET and SFN increased the mRNA expression of antioxidant genes through the Nrf2/ARE pathway in osteocytes. Notably, SFN increased the protein expression of osteocyte-associated osteogenic markers and suppressed cell death under H2O2-induced stress condition. Thus, Nrf2 stimulators can exert stress-relieving and osteogenic effects on osteocytes.


Assuntos
Elementos de Resposta Antioxidante , Isotiocianatos , Fator 2 Relacionado a NF-E2 , Osteócitos , Transdução de Sinais , Sulfóxidos , Animais , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/genética , Camundongos , Osteócitos/efeitos dos fármacos , Osteócitos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Isotiocianatos/farmacologia , Sulfóxidos/farmacologia , Elementos de Resposta Antioxidante/efeitos dos fármacos , Linhagem Celular , Estresse Oxidativo/efeitos dos fármacos , Peróxido de Hidrogênio/farmacologia , Antioxidantes/farmacologia , Osteopontina/metabolismo , Osteopontina/genética , NAD(P)H Desidrogenase (Quinona)/metabolismo , NAD(P)H Desidrogenase (Quinona)/genética , Heme Oxigenase-1/metabolismo , Heme Oxigenase-1/genética , Tiorredoxina Redutase 1/metabolismo
10.
Protein Sci ; 33(4): e4957, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38501509

RESUMO

The human NQO1 (hNQO1) is a flavin adenine nucleotide (FAD)-dependent oxidoreductase that catalyzes the two-electron reduction of quinones to hydroquinones, being essential for the antioxidant defense system, stabilization of tumor suppressors, and activation of quinone-based chemotherapeutics. Moreover, it is overexpressed in several tumors, which makes it an attractive cancer drug target. To decipher new structural insights into the flavin reductive half-reaction of the catalytic mechanism of hNQO1, we have carried serial crystallography experiments at new ID29 beamline of the ESRF to determine, to the best of our knowledge, the first structure of the hNQO1 in complex with NADH. We have also performed molecular dynamics simulations of free hNQO1 and in complex with NADH. This is the first structural evidence that the hNQO1 functional cooperativity is driven by structural communication between the active sites through long-range propagation of cooperative effects across the hNQO1 structure. Both structural results and MD simulations have supported that the binding of NADH significantly decreases protein dynamics and stabilizes hNQO1 especially at the dimer core and interface. Altogether, these results pave the way for future time-resolved studies, both at x-ray free-electron lasers and synchrotrons, of the dynamics of hNQO1 upon binding to NADH as well as during the FAD cofactor reductive half-reaction. This knowledge will allow us to reveal unprecedented structural information of the relevance of the dynamics during the catalytic function of hNQO1.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Cristalografia , Temperatura , NAD , Antineoplásicos/química , Flavinas , Cristalografia por Raios X , NAD(P)H Desidrogenase (Quinona)
11.
Biomed Pharmacother ; 174: 116439, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38518601

RESUMO

Triple-negative breast cancer (TNBC) is characterised by its aggressiveness and resistance to chemotherapy, demanding the development of effective strategies against its unique characteristics. Derived from lapacho tree bark, ß-lapachone (ß-LP) selectively targets cancer cells with elevated levels of the detoxifying enzyme NQO1. Hydroxytyrosol (HT) is a phenolic compound derived from olive trees with important anticancer properties that include the inhibition of cancer stem cells (CSCs) and metastatic features in TNBC, as well as relevant antioxidant activities by mechanisms such as the induction of NQO1. We aimed to study whether these compounds could have synergistic anticancer activity in TNBC cells and the possible role of NQO1. For this pourpose, we assessed the impact of ß-LP (0.5 or 1.5 µM) and HT (50 and 100 µM) on five TNBC cell lines. We demonstrated that the combination of ß-LP and HT exhibits anti-proliferative, pro-apoptotic, and cell cycle arrest effects in several TNBC cells, including docetaxel-resistant TNBC cells. Additionally, it effectively inhibits the self-renewal and clonogenicity of CSCs, modifying their aggressive phenotype. However, the notable impact of the ß-LP-HT combination does not appear to be solely associated with the levels of the NQO1 protein and ROS. RNA-Seq analysis revealed that the combination's anticancer activity is linked to a strong induction of endoplasmic reticulum stress and apoptosis through the unfolded protein response. In conclusion, in this study, we demonstrated how the combination of ß-LP and HT could offer an affordable, safe, and effective approach against TNBC.


Assuntos
Apoptose , Proliferação de Células , NAD(P)H Desidrogenase (Quinona) , Naftoquinonas , Álcool Feniletílico , Álcool Feniletílico/análogos & derivados , Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/metabolismo , Naftoquinonas/farmacologia , Linhagem Celular Tumoral , Álcool Feniletílico/farmacologia , Apoptose/efeitos dos fármacos , NAD(P)H Desidrogenase (Quinona)/metabolismo , NAD(P)H Desidrogenase (Quinona)/genética , Proliferação de Células/efeitos dos fármacos , Feminino , Sinergismo Farmacológico , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos
12.
Spectrochim Acta A Mol Biomol Spectrosc ; 311: 123898, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38340443

RESUMO

NAD(P)H:quinone oxidoreductase 1 (NQO1) is a potential biomarker for breast cancer (BC) diagnosis and prognosis. However, existing fluorescent probes for NQO1 detection have limitations such as short emission wavelength, weak fluorescence response, or large background interference. Here, we developed two novel near-infrared (NIR) fluorescent probes, DCl-Q and DCl2-Q, that selectively detect NQO1 activity in BC cells and tissues. They consist of a trimethyl-locked quinone as the recognition group and a donor-π-acceptor structure with halogen atoms as the reporter group. They exhibit strong fluorescence emission at around 660 nm upon binding to NQO1. We demonstrated that they can distinguish BC cells with different NQO1 expression levels and image endogenous NQO1 in tumor-bearing mice. Our probes provide a convenient and highly sensitive tool for BC diagnosis and prognosis based on NQO1 detection.


Assuntos
NAD(P)H Desidrogenase (Quinona) , Neoplasias , Animais , Camundongos , NAD(P)H Desidrogenase (Quinona)/química , Corantes Fluorescentes/química , Fluorescência , Quinonas
13.
Methods Mol Biol ; 2755: 63-74, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38319569

RESUMO

Sensitive activity stains for enzymes selectively expressed in human cancers offer valuable tools for imaging with wide applications in experimental, diagnostic, and therapeutic settings. The scant expression of the antioxidant enzyme NQO1 in normal tissues and its great abundance in malignant counterparts due to the increased redox stress and hypoxia is one such example. Previously, we described a potent nontoxic probe that remains nonfluorescent but releases an intense fluorogenic compound after intracellular cleavage by NQO1 catalysis. This infrared probe with a 644 nm emission has excellent tissue penetrating ability and low background absorption. Described here are methods (fluorescence microscopy, flow cytometry, and in vivo animal imaging) to rapidly image NQO1 activity in hypoxic and non-hypoxic cancer cells and tumors developed in live mouse xenograft models. The specificity of the dye for NQO1 in all three procedures was verified, and the methods should be useful for both in vitro and in vivo studies.


Assuntos
Neoplasias , Humanos , Animais , Camundongos , Xenoenxertos , Camundongos Nus , Transplante Heterólogo , Neoplasias/diagnóstico por imagem , Microscopia de Fluorescência , Modelos Animais de Doenças , Hipóxia , NAD(P)H Desidrogenase (Quinona)
14.
Org Lett ; 26(6): 1233-1237, 2024 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-38308850

RESUMO

The berberine bridge enzyme (BBE)-like flavoproteins have attracted continuous attention for their capability to catalyze various oxidative reactions. Here we demonstrate that MitR, a secreted BBE-like enzyme, functions as a special drug-binding efflux protein evolved from quinone reductase. Moreover, this protein provides self-resistance to its hosts toward the DNA-alkylating agent mitomycin C with a distinctive strategy, featured by independently performing drug binding and efflux.


Assuntos
Mitomicina , NAD(P)H Desidrogenase (Quinona) , Mitomicina/farmacologia , Mitomicina/metabolismo , NAD(P)H Desidrogenase (Quinona)/metabolismo , Oxirredutases/metabolismo , Oxirredutases N-Desmetilantes/metabolismo
15.
J Transl Med ; 22(1): 4, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38167027

RESUMO

NAD(P)H Quinone Dehydrogenase 1 (NQO1) plays a pivotal role in the regulation of neuronal function and synaptic plasticity, cellular adaptation to oxidative stress, neuroinflammatory and degenerative processes, and tumorigenesis in the central nervous system (CNS). Impairment of the NQO1 activity in the CNS can result in abnormal neurotransmitter release and clearance, increased oxidative stress, and aggravated cellular injury/death. Furthermore, it can cause disturbances in neural circuit function and synaptic neurotransmission. The abnormalities of NQO1 enzyme activity have been linked to the pathophysiological mechanisms of multiple neurological disorders, including Parkinson's disease, Alzheimer's disease, epilepsy, multiple sclerosis, cerebrovascular disease, traumatic brain injury, and brain malignancy. NQO1 contributes to various dimensions of tumorigenesis and treatment response in various brain tumors. The precise mechanisms through which abnormalities in NQO1 function contribute to these neurological disorders continue to be a subject of ongoing research. Building upon the existing knowledge, the present study reviews current investigations describing the role of NQO1 dysregulations in various neurological disorders. This study emphasizes the potential of NQO1 as a biomarker in diagnostic and prognostic approaches, as well as its suitability as a target for drug development strategies in neurological disorders.


Assuntos
Doença de Alzheimer , Encefalopatias , Neoplasias Encefálicas , NAD(P)H Desidrogenase (Quinona) , Humanos , Carcinogênese , NAD(P)H Desidrogenase (Quinona)/genética , NAD(P)H Desidrogenase (Quinona)/metabolismo , Neurônios/patologia , Estresse Oxidativo , Encefalopatias/metabolismo
16.
Cell Rep Med ; 5(2): 101383, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38272025

RESUMO

Idebenone, the only approved treatment for Leber hereditary optic neuropathy (LHON), promotes recovery of visual function in up to 50% of patients, but we can neither predict nor understand the non-responders. Idebenone is reduced by the cytosolic NAD(P)H oxidoreductase I (NQO1) and directly shuttles electrons to respiratory complex III, bypassing complex I affected in LHON. We show here that two polymorphic variants drastically reduce NQO1 protein levels when homozygous or compound heterozygous. This hampers idebenone reduction. In its oxidized form, idebenone inhibits complex I, decreasing respiratory function in cells. By retrospectively analyzing a large cohort of idebenone-treated LHON patients, classified by their response to therapy, we show that patients with homozygous or compound heterozygous NQO1 variants have the poorest therapy response, particularly if carrying the m.3460G>A/MT-ND1 LHON mutation. These results suggest consideration of patient NQO1 genotype and mitochondrial DNA mutation in the context of idebenone therapy.


Assuntos
Atrofia Óptica Hereditária de Leber , Ubiquinona/análogos & derivados , Humanos , Atrofia Óptica Hereditária de Leber/tratamento farmacológico , Atrofia Óptica Hereditária de Leber/genética , Atrofia Óptica Hereditária de Leber/metabolismo , Antioxidantes/uso terapêutico , Antioxidantes/farmacologia , Estudos Retrospectivos , Ubiquinona/farmacologia , Ubiquinona/uso terapêutico , Ubiquinona/metabolismo , Complexo I de Transporte de Elétrons/genética , NAD(P)H Desidrogenase (Quinona)/genética , NAD(P)H Desidrogenase (Quinona)/metabolismo
17.
Curr Med Sci ; 44(1): 168-179, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38217831

RESUMO

OBJECTIVE: Hepatocellular carcinoma (HCC) is the third leading cause of cancer-associated death worldwide. As a first-line drug for advanced HCC treatment, lenvatinib faces a significant hurdle due to the development of both intrinsic and acquired resistance among patients, and the underlying mechanism remains largely unknown. The present study aims to identify the pivotal gene responsible for lenvatinib resistance in HCC, explore the potential molecular mechanism, and propose combinatorial therapeutic targets for HCC management. METHODS: Cell viability and colony formation assays were conducted to evaluate the sensitivity of cells to lenvatinib and dicoumarol. RNA-Seq was used to determine the differences in transcriptome between parental cells and lenvatinib-resistant (LR) cells. The upregulated genes were analyzed by GO and KEGG analyses. Then, qPCR and Western blotting were employed to determine the relative gene expression levels. Afterwards, the intracellular reactive oxygen species (ROS) and apoptosis were detected by flow cytometry. RESULTS: PLC-LR and Hep3B-LR were established. There was a total of 116 significantly upregulated genes common to both LR cell lines. The GO and KEGG analyses indicated that these genes were involved in oxidoreductase and dehydrogenase activities, and reactive oxygen species pathways. Notably, NAD(P)H:quinone oxidoreductase 1 (NQO1) was highly expressed in LR cells, and was involved in the lenvatinib resistance. The high expression of NQO1 decreased the production of ROS induced by lenvatinib, and subsequently suppressed the apoptosis. The combination of lenvatinib and NQO1 inhibitor, dicoumarol, reversed the resistance of LR cells. CONCLUSION: The high NQO1 expression in HCC cells impedes the lenvatinib-induced apoptosis by regulating the ROS levels, thereby promoting lenvatinib resistance in HCC cells.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Compostos de Fenilureia , Quinolinas , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Dicumarol/farmacologia , Dicumarol/uso terapêutico , Linhagem Celular Tumoral , NAD(P)H Desidrogenase (Quinona)/metabolismo , Apoptose
18.
Ecotoxicol Environ Saf ; 269: 115742, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38039849

RESUMO

The purpose of this study was to explore the protective effect of SeMet on renal injury induced by AFB1 in rabbits and its molecular mechanism. Forty rabbits of 35 days old were randomly divided into control group, AFB1 group (0.3 mg AFB1/kg b.w), 0.2 mg/kg Se + AFB1 group (0.3 mg AFB1/kg b.w + 0.2 mg SeMet/kg feed) and 0.4 mg/kg Se + AFB1 group (0.3 mg AFB1/kg b.w + 0.4 mg SeMet/kg feed). The SeMet treatment group was fed different doses of SeMet diets every day for 21 days. On the 17-21 day, the AFB1 treatment group, the 0.2 mg/kg Se + AFB1 group and the 0.4 mg/kg Se + AFB1 group were administered 0.3 mg AFB1 /kg b.w by gavage (dissolved in 0.5 ml olive oil) respectively. The results showed that AFB1 poisoning resulted in the changes of renal structure, the increase of renal coefficient and serum biochemical indexes, the ascent of ROS and MDA levels, the descent of antioxidant enzyme activity, and the significant down-regulation of Nrf2, HO-1 and NQO1. Besides, AFB1 poisoning increased the number of renal apoptotic cells, rised the levels of PTEN, Bax, Caspase-3 and Caspase-9, and decreased the levels of PI3K, AKT, p-AKT and Bcl-2. In summary, SeMet was added to alleviate the oxidative stress injury and apoptosis of kidney induced by AFB1, and the effect of 0.2 mg/kg Se + AFB1 is better than 0.4 mg/kg Se + AFB1.


Assuntos
Rim , Estresse Oxidativo , Selenometionina , Animais , Coelhos , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Apoptose/efeitos dos fármacos , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Rim/patologia , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Selenometionina/farmacologia , Aflatoxina B1/toxicidade , NAD(P)H Desidrogenase (Quinona)/efeitos dos fármacos , NAD(P)H Desidrogenase (Quinona)/metabolismo
19.
Biochem Biophys Res Commun ; 690: 149096, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37988924

RESUMO

Electron-driven process helps the living organism in the generations of energy, biomass production and detoxification of synthetic compounds. Soluble quinone oxidoreductases (QORs) mediate the transfer of an electron from NADPH to various quinone and other compounds, helping in the detoxification of quinones. QORs play a crucial role in cellular metabolism and are thus potential targets for drug development. Here we report the crystal structure of the NADPH-dependent QOR from Leishmania donovani (LdQOR) at 2.05 Å. The enzyme exists as a homo-dimer, with each protomer consisting of two domains, responsible for binding NADPH cofactor and the substrate. Interestingly, the human QOR exists as a tetramer. Comparative analysis of the oligomeric interfaces of LdQOR with HsQOR shows no significant differences in the protomer/dimer assembly. The tetrameric interface of HsQOR is stabilized by salt bridges formed between Arg 169 and Glu 271 which is non-existent in LdQOR, with an Alanine replacing the glutamate. This distinct feature is conserved across other dimeric QORs, indicating the importance of this interaction for tetramer association. Among the homologs, the sequences of the loop region involved in the stabilization and binding of the adenine ring of the NADPH shows significant differences except for an Arginine & glycine residues. In dimer QORs, this Arginine acts as a gate to the co-factor, while the NADPH binding mode in the human homolog is distinct, stabilized by His 200 and Asn 229, which are not conserved in LdQOR. These distinct features have the potential to be utilized for therapeutic interventions.


Assuntos
NAD(P)H Desidrogenase (Quinona) , Quinona Redutases , Humanos , NADP/metabolismo , Subunidades Proteicas , NAD(P)H Desidrogenase (Quinona)/metabolismo , Quinona Redutases/química , Quinona Redutases/metabolismo , Quinonas , Arginina , Sítios de Ligação , Cristalografia por Raios X
20.
Angew Chem Int Ed Engl ; 63(12): e202316730, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38153885

RESUMO

Degraders hold the promise to efficiently inactivate previously intractable disease-relevant targets. Unlike traditional inhibitors, degraders act substoichiometrically and rely on the hijacked proteolysis machinery, which can also act as an entry point for resistance. To fully harness the potential of targeted protein degradation, it is crucial to comprehend resistance mechanisms and formulate effective strategies to overcome them. We conducted a chemical screening to identify synthetic lethal vulnerabilities of cancer cells that exhibit widespread resistance to degraders. Comparative profiling followed by tailored optimization delivered the small molecule RBS-10, which shows preferential cytotoxicity against cells pan-resistant to degraders. Multiomics deconvolution of the mechanism of action revealed that RBS-10 acts as a prodrug bioactivated by the oxidoreductase enzyme NQO1, which is highly overexpressed in our resistance models. Collectively, our work informs on NQO1 as an actionable vulnerability to overcome resistance to degraders and as a biomarker to selectively exploit bioactivatable prodrugs in cancer.


Assuntos
Neoplasias , Pró-Fármacos , Humanos , Pró-Fármacos/farmacologia , Proteólise , NAD(P)H Desidrogenase (Quinona)/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA