Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.273
Filtrar
1.
Int J Mol Sci ; 25(15)2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39125661

RESUMO

The versatility of cytochrome P450 reductase (CPR) in transferring electrons to P450s from other closely related species has been extensively exploited, e.g., by using An. gambiae CPR (AgCPR), as a homologous surrogate, to validate the role of An. funestus P450s in insecticide resistance. However, genomic variation between the AgCPR and An. funestus CPR (AfCPR) suggests that the full metabolism spectrum of An. funestus P450s might be missed when using AgCPR. To test this hypothesis, we expressed AgCPR and AfCPR side-by-side with CYP6P9a and CYP6P9b and functionally validated their role in the detoxification of insecticides from five different classes. Major variations were observed within the FAD- and NADP-binding domains of AgCPR and AfCPR, e.g., the coordinates of the second FAD stacking residue AfCPR-Y456 differ from that of AgCPR-His456. While no significant differences were observed in the cytochrome c reductase activities, when co-expressed with their endogenous AfCPR, the P450s significantly metabolized higher amounts of permethrin and deltamethrin, with CYP6P9b-AfCPR membrane metabolizing α-cypermethrin as well. Only the CYP6P9a-AfCPR membrane significantly metabolized DDT (producing dicofol), bendiocarb, clothianidin, and chlorfenapyr (bioactivation into tralopyril). This demonstrates the broad substrate specificity of An. funestus CYP6P9a/-b, capturing their role in conferring cross-resistance towards unrelated insecticide classes, which can complicate resistance management.


Assuntos
Anopheles , Resistência a Inseticidas , Inseticidas , NADPH-Ferri-Hemoproteína Redutase , Piretrinas , Anopheles/genética , Anopheles/efeitos dos fármacos , Anopheles/enzimologia , Anopheles/metabolismo , Animais , Resistência a Inseticidas/genética , NADPH-Ferri-Hemoproteína Redutase/metabolismo , NADPH-Ferri-Hemoproteína Redutase/genética , Inseticidas/farmacologia , Inseticidas/metabolismo , Piretrinas/farmacologia , Piretrinas/metabolismo , Oxirredução , Proteínas de Insetos/metabolismo , Proteínas de Insetos/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Especificidade por Substrato , Nitrilas/metabolismo , Nitrilas/farmacologia , Permetrina/farmacologia
2.
PLoS Pathog ; 20(7): e1012382, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38991025

RESUMO

Liposomal amphotericin B is an important frontline drug for the treatment of visceral leishmaniasis, a neglected disease of poverty. The mechanism of action of amphotericin B (AmB) is thought to involve interaction with ergosterol and other ergostane sterols, resulting in disruption of the integrity and key functions of the plasma membrane. Emergence of clinically refractory isolates of Leishmania donovani and L. infantum is an ongoing issue and knowledge of potential resistance mechanisms can help to alleviate this problem. Here we report the characterisation of four independently selected L. donovani clones that are resistant to AmB. Whole genome sequencing revealed that in three of the moderately resistant clones, resistance was due solely to the deletion of a gene encoding C24-sterol methyltransferase (SMT1). The fourth, hyper-resistant resistant clone (>60-fold) was found to have a 24 bp deletion in both alleles of a gene encoding a putative cytochrome P450 reductase (P450R1). Metabolic profiling indicated these parasites were virtually devoid of ergosterol (0.2% versus 18% of total sterols in wild-type) and had a marked accumulation of 14-methylfecosterol (75% versus 0.1% of total sterols in wild-type) and other 14-alpha methylcholestanes. These are substrates for sterol 14-alpha demethylase (CYP51) suggesting that this enzyme may be a bona fide P450R specifically involved in electron transfer from NADPH to CYP51 during catalysis. Deletion of P450R1 in wild-type cells phenocopied the metabolic changes observed in our AmB hyper-resistant clone as well as in CYP51 nulls. Likewise, addition of a wild type P450R1 gene restored sterol profiles to wild type. Our studies indicate that P450R1 is essential for L. donovani amastigote viability, thus loss of this gene is unlikely to be a driver of clinical resistance. Nevertheless, investigating the mechanisms underpinning AmB resistance in these cells provided insights that refine our understanding of the L. donovani sterol biosynthetic pathway.


Assuntos
Resistência a Medicamentos , Leishmania donovani , Leishmaniose Visceral , Esterol 14-Desmetilase , Leishmania donovani/enzimologia , Esterol 14-Desmetilase/metabolismo , Esterol 14-Desmetilase/genética , Leishmaniose Visceral/parasitologia , Leishmaniose Visceral/tratamento farmacológico , Anfotericina B/farmacologia , Proteínas de Protozoários/metabolismo , Proteínas de Protozoários/genética , NADPH-Ferri-Hemoproteína Redutase/metabolismo , NADPH-Ferri-Hemoproteína Redutase/genética , Antiprotozoários/farmacologia , Humanos , Ergosterol/metabolismo
3.
J Inorg Biochem ; 259: 112667, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39032346

RESUMO

The diflavin NADPH-cytochrome P450 reductase (CYPOR) plays a critical role in human cytochrome P450 (CYP) activity by sequentially delivering two electrons from NADPH to CYP enzymes during catalysis. Although electron transfer to forty-eight human CYP enzymes by the FMN hydroquinone of CYPOR is well-known, the role of the linker between the NH2-terminus membrane-binding domain (MBD) and FMN domain in supporting the activity of P450 enzymes remains poorly understood. Here we demonstrate that a linker with at least eight residues is required to form a functional CYPOR-CYP2B4 complex. The linker has been shortened in two amino-acid increments from Phe44 to Ile57 using site directed mutagenesis. The ability of the deletion mutants to support cytochrome P450 2B4 (CYP2B4) catalysis and reduce ferric CYP2B4 was determined using an in vitro assay and stopped-flow spectrophotometry. Steady-state enzyme kinetics showed that shortening the linker by 8-14 amino acids inhibited (63-99%) the ability of CYPOR to support CYP2B4 activity and significantly increased the Km of CYPOR for CYP2B4. In addition, the reductase mutants decreased the rate of reduction of ferric CYP2B4 (46-95%) compared to wildtype when the linker was shortened by 8-14 residues. These results indicate that a linker with a minimum length of eight residues is necessary to enable the FMN domain of reductase to interact with CYP2B4 to form a catalytically competent complex. Our study provides evidence that the length of the MBD-FMN domain linker is a major determinant of the ability of CYPOR to support CYP catalysis and drug metabolism by P450 enzymes. PREAMBLE: This manuscript is dedicated in memory of Dr. James R. Kincaid who was the doctoral advisor to Dr. Freeborn Rwere and a longtime collaborator and friend of Dr. Lucy Waskell. Dr. James R. Kincaid was a distinguished professor of chemistry specializing in resonance Raman (rR) studies of heme proteins. He inspired Dr. Rwere (a Zimbabwean native) and three other Zimbabweans (Dr. Remigio Usai, Dr. Daniel Kaluka and Ms. Munyaradzi E. Manyumwa) to use lasers to document subtle changes occurring at heme active site of globin proteins (myoglobin and hemoglobin) and cytochrome P450 enzymes. Dr. Rwere appreciate his contributions to the development of talented Black scientists from Africa.


Assuntos
Hidrocarboneto de Aril Hidroxilases , Família 2 do Citocromo P450 , Mononucleotídeo de Flavina , NADPH-Ferri-Hemoproteína Redutase , NADPH-Ferri-Hemoproteína Redutase/metabolismo , NADPH-Ferri-Hemoproteína Redutase/química , NADPH-Ferri-Hemoproteína Redutase/genética , Mononucleotídeo de Flavina/metabolismo , Mononucleotídeo de Flavina/química , Família 2 do Citocromo P450/metabolismo , Família 2 do Citocromo P450/genética , Família 2 do Citocromo P450/química , Hidrocarboneto de Aril Hidroxilases/química , Hidrocarboneto de Aril Hidroxilases/metabolismo , Hidrocarboneto de Aril Hidroxilases/genética , Humanos , Mutagênese Sítio-Dirigida , Domínios Proteicos , Cinética , Animais
4.
J Phys Chem B ; 128(29): 7148-7159, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-38991231

RESUMO

NADPH-cytochrome P450 reductase (CPR) plays a vital role as a redox partner for mammalian cytochrome P450 enzymes (P450s), facilitating the transfer of two electrons from NADPH to the P450 heme center in a sequential manner. Previous experimental studies revealed substantial domain movements of CPR, transitioning between closed and open states during the electron transfer (ET) cycle. These transitions are essential and are influenced by the binding of NADPH or the release of NADP+. However, the intricate molecular mechanisms governing the CPR-mediated ET cycle have largely remained elusive. This study employed molecular dynamics (MD) simulation techniques to explore the dissociation of NADP+ from CPR, a crucial step preceding the initial ET from CPR to a P450. Alongside the binding structure of NADP+ observed in a crystal structure (pose I), our MD simulations identified an alternative binding structure (pose II). Although pose II exhibits slightly lower stability than pose I, it can be formed through an approximate 210° counterclockwise rotation of the adenine group, with a free energy barrier of only 2.76 kcal/mol. The simulation results further suggest that NADP+ dissociation involves a tentative formation of pose II from pose I before complete dissociation, and that the binding of NADP+ to CPR is primarily governed by nonbonded interactions within the adenosine binding pocket.


Assuntos
NADPH-Ferri-Hemoproteína Redutase , NADP , Simulação de Dinâmica Molecular , NADP/metabolismo , NADP/química , NADPH-Ferri-Hemoproteína Redutase/química , NADPH-Ferri-Hemoproteína Redutase/metabolismo , Termodinâmica
5.
Acta Trop ; 257: 107329, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39033969

RESUMO

In Triatoma infestans it was observed pyrethroid resistance attributed in part to an elevated oxidative metabolism mediated by cytochromes P450. The nicotinamide adenine dinucleotide phosphate (NADPH) cytochrome P450 reductase (CPR) plays a crucial role in catalysing the electron transfer from NADPH to all cytochrome P450s. The daily variations in the expression of CPR gene and a P450 gene (CYP4EM7), both associated with insecticide resistance, suggested that their expressions would be under the endogenous clock control. To clarify the involvement of the clock in orchestration of the daily fluctuations in CPR and CYP4M7 genes expression, it was proposed to investigate the effect of silencing the clock gene period (per) by RNA interference (RNAi). The results obtained allowed to establish that the silencing of per gene was influenced by intake schemes used in the interference protocols. The silencing of per gene in T. infestans reduced its expression at all the time points analysed and abolished the characteristic rhythm in the transcriptional expression of per mRNA. The effect of the per gene silencing in the expression profiles at the transcriptional level of CPR and CYP4EM7 genes showed the loss of rhythmicity and demonstrated the biological clock involvement in the regulation of t heir expression.


Assuntos
Ritmo Circadiano , Resistência a Inseticidas , Interferência de RNA , Triatoma , Animais , Triatoma/genética , Triatoma/efeitos dos fármacos , Resistência a Inseticidas/genética , Ritmo Circadiano/genética , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Sistema Enzimático do Citocromo P-450/genética , NADPH-Ferri-Hemoproteína Redutase/genética , NADPH-Ferri-Hemoproteína Redutase/metabolismo , Vetores de Doenças
6.
J Inorg Biochem ; 259: 112660, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39002177

RESUMO

Resonance Raman spectroscopy has been performed on a set of cytochrome P450 BM3 heme domains in which mutation of the highly conserved Phe393 induces significant variation in heme iron reduction potential. In previous work [Chen, Z., Ost, T.W.B., and Schelvis, J.P.M. (2004) Biochemistry 43, 1798-1808], a correlation between heme vinyl conformation and the heme iron reduction potential indicated a steric control by the protein over the distribution of electron density in the reduced heme cofactor. The current study aims to monitor changes in electron density on the ferrous heme cofactor following CO binding. In addition, ferric-NO complexes have been studied to investigate potential changes to the proximal Cys400 thiolate. We find that binding of CO to the ferrous heme domains results in a reorientation of the vinyl groups to a largely out-of-plane conformation, the extent of which correlates with the size of the residue at position 393. We conclude that FeII dπ back bonding to the CO ligand largely takes away the need for conjugation of the vinyl groups with the porphyrin ring to accommodate FeII dπ back bonding to the porphyrin ligand. The ferrous-CO and ferric-NO data are consistent with a small decrease in σ-electron donation from the proximal Cys400 thiolate in the F393A mutant and, to a lesser extent, the F393H mutant, potentially due to a small increase in hydrogen bonding to the proximal ligand. Phe393 seems strategically placed to preserve robust σ-electron donation to the heme iron and to fine-tune its electron density by limiting vinyl group rotation.


Assuntos
Sistema Enzimático do Citocromo P-450 , Heme , Heme/química , Heme/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/química , Monóxido de Carbono/metabolismo , Monóxido de Carbono/química , Análise Espectral Raman , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , NADPH-Ferri-Hemoproteína Redutase/genética , NADPH-Ferri-Hemoproteína Redutase/metabolismo , NADPH-Ferri-Hemoproteína Redutase/química , Ligação Proteica , Mutação , Óxido Nítrico/metabolismo , Óxido Nítrico/química
7.
Int J Biol Macromol ; 273(Pt 1): 132793, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38830492

RESUMO

Recombinant cytochrome P450 monooxygenases possess significant potential as biocatalysts, and efforts to improve heme content, electron coupling efficiency, and catalytic activity and stability are ongoing. Domain swapping between heme and reductase domains, whether natural or engineered, has thus received increasing attention. Here, we successfully achieved split intein-mediated reconstitution (IMR) of the heme and reductase domains of P450 BM3 both in vitro and in vivo. Intriguingly, the reconstituted enzymes displayed promising properties for practical use. IMR BM3 exhibited a higher heme content (>50 %) and a greater tendency for oligomerization compared to the wild-type enzyme. Moreover, these reconstituted enzymes exhibited a distinct increase in activity ranging from 165 % to 430 % even under the same heme concentrations. The reproducibility of our results strongly suggests that the proposed reconstitution approach could pave a new path for enhancing the catalytic efficiency of related enzymes.


Assuntos
Sistema Enzimático do Citocromo P-450 , Heme , Inteínas , NADPH-Ferri-Hemoproteína Redutase , Sistema Enzimático do Citocromo P-450/química , Sistema Enzimático do Citocromo P-450/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Heme/química , Heme/metabolismo , NADPH-Ferri-Hemoproteína Redutase/química , NADPH-Ferri-Hemoproteína Redutase/genética , NADPH-Ferri-Hemoproteína Redutase/metabolismo , Domínios Proteicos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
8.
J Agric Food Chem ; 72(11): 5849-5859, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38468401

RESUMO

Daidzein is a major isoflavone compound with an immense pharmaceutical value. This study applied a novel P450 CYP82D26 which can biosynthesize daidzein from (2S)-naringenin. However, the recombinant P450 systems often suffer from low coupling efficiency, leading to an electron transfer efficiency decrease and harmful reactive oxygen species release, thereby compromising their stability and catalytic efficiency. To address these challenges, the SH3-GBD-PDZ (SGP) protein scaffold was applied to assemble a multienzyme system comprising CYP82D26, P450 reductase, and NADP+-dependent aldehyde reductase in desired stoichiometric ratios. Results showed that the coupling efficiency of the P450 system was significantly increased, primarily attributed to the channeling effect of NADPH resulting from the proximity of tethered enzymes and the electrostatic interactions between NADPH and SGP. Assembling this SGP-scaffolded assembly system in Escherichia coli yielded a titer of 240.5 mg/L daidzein with an 86% (2S)-naringenin conversion rate, which showed a 9-fold increase over the free enzymes of the P450 system. These results underscore the potential application of the SGP-scaffolded multienzyme system in enhancing the coupling and catalytic efficiency of the P450 system.


Assuntos
Flavanonas , Isoflavonas , NADPH-Ferri-Hemoproteína Redutase , NADP/metabolismo , NADPH-Ferri-Hemoproteína Redutase/metabolismo , Proteínas , Isoflavonas/metabolismo
9.
Antimicrob Agents Chemother ; 68(4): e0120423, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38411047

RESUMO

Primaquine (PQ) is the main drug used to eliminate dormant liver stages and prevent relapses in Plasmodium vivax malaria. It also has an effect on the gametocytes of Plasmodium falciparum; however, it is unclear to what extent PQ affects P. vivax gametocytes. PQ metabolism involves multiple enzymes, including the highly polymorphic CYP2D6 and the cytochrome P450 reductase (CPR). Since genetic variability can impact drug metabolism, we conducted an evaluation of the effect of CYP2D6 and CPR variants on PQ gametocytocidal activity in 100 subjects with P. vivax malaria. To determine gametocyte density, we measured the levels of pvs25 transcripts in samples taken before treatment (D0) and 72 hours after treatment (D3). Generalized estimating equations (GEEs) were used to examine the effects of enzyme variants on gametocyte densities, adjusting for potential confounding factors. Linear regression models were adjusted to explore the predictors of PQ blood levels measured on D3. Individuals with the CPR mutation showed a smaller decrease in gametocyte transcript levels on D3 compared to those without the mutation (P = 0.02, by GEE). Consistent with this, higher PQ blood levels on D3 were associated with a lower reduction in pvs25 transcripts. Based on our findings, the CPR variant plays a role in the persistence of gametocyte density in P. vivax malaria. Conceptually, our work points to pharmacogenetics as a non-negligible factor to define potential host reservoirs with the propensity to contribute to transmission in the first days of CQ-PQ treatment, particularly in settings and seasons of high Anopheles human-biting rates.


Assuntos
Antimaláricos , Artemisininas , Malária Falciparum , Malária Vivax , Malária , Humanos , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Malária Vivax/tratamento farmacológico , Malária Falciparum/tratamento farmacológico , NADPH-Ferri-Hemoproteína Redutase , Cloroquina/farmacologia , Citocromo P-450 CYP2D6/genética , Artemisininas/farmacologia , Primaquina/farmacologia , Primaquina/uso terapêutico , Malária/tratamento farmacológico , Plasmodium falciparum , Plasmodium vivax/genética
10.
Chemistry ; 30(19): e202304307, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38277424

RESUMO

The flavoprotein Cytochrome P450 reductase (CPR) is the unique electron pathway from NADPH to Cytochrome P450 (CYPs). The conformational dynamics of human CPR in solution, which involves transitions from a "locked/closed" to an "unlocked/open" state, is crucial for electron transfer. To date, however, the factors guiding these changes remain unknown. By Site-Directed Spin Labelling coupled to Electron Paramagnetic Resonance spectroscopy, we have incorporated a non-canonical amino acid onto the flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD) domains of soluble human CPR, and labelled it with a specific nitroxide spin probe. Taking advantage of the endogenous FMN cofactor, we successfully measured for the first time, the distance distribution by DEER between the semiquinone state FMNH• and the nitroxide. The DEER data revealed a salt concentration-dependent distance distribution, evidence of an "open" CPR conformation at high salt concentrations exceeding previous reports. We also conducted molecular dynamics simulations which unveiled a diverse ensemble of conformations for the "open" semiquinone state of the CPR at high salt concentration. This study unravels the conformational landscape of the one electron reduced state of CPR, which had never been studied before.


Assuntos
Aminoácidos , NADPH-Ferri-Hemoproteína Redutase , Óxidos de Nitrogênio , Humanos , Oxirredução , NADPH-Ferri-Hemoproteína Redutase/metabolismo , Aminoácidos/metabolismo , Marcadores de Spin , Espectroscopia de Ressonância de Spin Eletrônica , Transporte de Elétrons , NADP/química , Flavinas/química , Compostos Orgânicos , Mononucleotídeo de Flavina/química , Flavina-Adenina Dinucleotídeo/química , Cinética
11.
Chembiochem ; 25(3): e202300650, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-37994193

RESUMO

The vast majority of known enzymes exist as oligomers, which often gives them high catalytic performance but at the same time imposes constraints on structural conformations and environmental conditions. An example of an enzyme with a complex architecture is the P450 BM3 monooxygenase CYP102A1 from Bacillus megaterium. Only active as a dimer, it is highly sensitive to dilution or common immobilization techniques. In this study, we engineered a thermostable P450BM3 chimera consisting of the heme domain of a CYP102A1 variant and the reductase domain of the homologous CYP102A3. The dimerization of the hybrid was even weaker compared to the corresponding CYP102A1 variant. To create a stable dimer, we covalently coupled the C-termini of two monomers of the chimera via SpyTag003/SpyCatcher003 interaction. As a result, purification, thermostability, pH stability, and catalytic activity were improved. Via a bioorthogonal two-step affinity purification, we obtained high purity (94 %) of the dimer-stabilized variant being robust against heme depletion. Long-term stability was increased with a half-life of over 2 months at 20 °C and 80-90 % residual activity after 2 months at 5 °C. Most catalytic features were retained with even an enhancement of the overall activity by ~2-fold compared to the P450BM3 chimera without SpyTag003/SpyCatcher003.


Assuntos
Bacillus megaterium , Sistema Enzimático do Citocromo P-450 , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/química , Catálise , Heme , NADPH-Ferri-Hemoproteína Redutase/genética , NADPH-Ferri-Hemoproteína Redutase/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/química
12.
J Microbiol Biotechnol ; 34(3): 725-734, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38044690

RESUMO

CYP102A1 from Bacillus megaterium is an important enzyme in biotechnology, because engineered CYP102A1 enzymes can react with diverse substrates and produce human cytochrome P450-like metabolites. Therefore, CYP102A1 can be applied to drug metabolite production. Terpinen-4-ol is a cyclic monoterpene and the primary component of essential tea tree oil. Terpinen-4-ol was known for therapeutic effects, including antibacterial, antifungal, antiviral, and anti-inflammatory. Because terpenes are natural compounds, examining novel terpenes and investigating the therapeutic effects of terpenes represent responses to social demands for eco-friendly compounds. In this study, we investigated the catalytic activity of engineered CYP102A1 on terpinen-4-ol. Among CYP102A1 mutants tested here, the R47L/F81I/F87V/E143G/L188Q/N213S/E267V mutant showed the highest activity to terpinen-4-ol. Two major metabolites of terpinen-4-ol were generated by engineered CYP102A1. Characterization of major metabolites was confirmed by liquid chromatography-mass spectrometry (LC-MS), gas chromatography-MS, and nuclear magnetic resonance spectroscopy (NMR). Based on the LC-MS results, the difference in mass-to-charge ratio of an ion (m/z) between terpinen-4-ol and its major metabolites was 16. One major metabolite was defined as 1,4-dihydroxy-p-menth-2-ene by NMR. Given these results, we speculate that another major metabolite is also a mono-hydroxylated product. Taken together, we suggest that CYP102A1 can be applied to make novel terpene derivatives.


Assuntos
Sistema Enzimático do Citocromo P-450 , Terpenos , Humanos , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Terpenos/química , Monoterpenos , NADPH-Ferri-Hemoproteína Redutase/genética , NADPH-Ferri-Hemoproteína Redutase/metabolismo
13.
Proc Natl Acad Sci U S A ; 120(50): e2317372120, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38060561

RESUMO

Powerfully oxidizing enzymes need protective mechanisms to prevent self-destruction. The flavocytochrome P450 BM3 from Priestia megaterium (P450BM3) is a self-sufficient monooxygenase that hydroxylates fatty acid substrates using O2 and NADPH as co-substrates. Hydroxylation of long-chain fatty acids (≥C14) is well coupled to O2 and NADPH consumption, but shorter chains (≤C12) are more poorly coupled. Hydroxylation of p-nitrophenoxydodecanoic acid by P450BM3 produces a spectrophotometrically detectable product wherein the coupling of NADPH consumption to product formation is just 10%. Moreover, the rate of NADPH consumption is 1.8 times that of O2 consumption, indicating that an oxidase uncoupling pathway is operative. Measurements of the total number of enzyme turnovers before inactivation (TTN) indicate that higher NADPH concentrations increase TTN. At lower NADPH levels, added ascorbate increases TTN, while a W96H mutation leads to a decrease. The W96 residue is about 7 Å from the P450BM3 heme and serves as a gateway residue in a tryptophan/tyrosine (W/Y) hole transport chain from the heme to a surface tyrosine residue. The data indicate that two oxidase pathways protect the enzyme from damage by intercepting the powerfully oxidizing enzyme intermediate (Compound I) and returning it to its resting state. At high NADPH concentrations, reducing equivalents from the flavoprotein are delivered to Compound I by the usual reductase pathway. When NADPH is not abundant, however, oxidizing equivalents from Compound I can traverse a W/Y chain, arriving at the enzyme surface where they are scavenged by reductants. Ubiquitous tryptophan/tyrosine chains in highly oxidizing enzymes likely perform similar protective functions.


Assuntos
NADPH-Ferri-Hemoproteína Redutase , Triptofano , Oxirredução , Triptofano/metabolismo , NADP/metabolismo , NADPH-Ferri-Hemoproteína Redutase/genética , NADPH-Ferri-Hemoproteína Redutase/química , NADPH-Ferri-Hemoproteína Redutase/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Ácidos Graxos/metabolismo , Heme/metabolismo , Tirosina/metabolismo , Proteínas de Bactérias/metabolismo
14.
Biomolecules ; 13(12)2023 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-38136599

RESUMO

Cytochrome P450 oxidoreductase (POR) is an essential redox partner for steroid and drug-metabolizing cytochromes P450 located in the endoplasmic reticulum. Mutations in POR lead to metabolic disorders, including congenital adrenal hyperplasia, and affect the metabolism of steroids, drugs, and xenobiotics. In this study, we examined approximately 450 missense variants of the POR gene listed in the Genome Aggregation Database (gnomAD) using eleven different in silico prediction tools. We found that 64 novel variants were consistently predicted to be disease-causing by most tools. To validate our findings, we conducted a population analysis and selected two variations in POR for further investigation. The human POR wild type and the R268W and L577P variants were expressed in bacteria and subjected to enzyme kinetic assays using a model substrate. We also examined the activities of several cytochrome P450 proteins in the presence of POR (WT or variants) by combining P450 and reductase proteins in liposomes. We observed a decrease in enzymatic activities (ranging from 35% to 85%) of key drug-metabolizing enzymes, supported by POR variants R288W and L577P compared to WT-POR. These results validate our approach of curating a vast amount of data from genome projects and provide an updated and reliable reference for diagnosing POR deficiency.


Assuntos
Sistema Enzimático do Citocromo P-450 , NADPH-Ferri-Hemoproteína Redutase , Humanos , NADPH-Ferri-Hemoproteína Redutase/genética , NADPH-Ferri-Hemoproteína Redutase/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Mutação , Mutação de Sentido Incorreto , Oxirredução , Esteroides
15.
Antimicrob Agents Chemother ; 67(11): e0091823, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37815358

RESUMO

Azole antifungals remain the "gold standard" therapy for invasive aspergillosis. The world-wide emergence of isolates resistant to this drug class, however, developed into a steadily increasing threat to human health over the past years. In Aspergillus fumigatus, major mechanisms of resistance involve increased expression of cyp51A encoding one of two isoenzymes targeted by azoles. Yet, the level of resistance caused by cyp51A upregulation, driven by either clinically relevant tandem repeat mutations within its promoter or the use of high expressing heterologous promoters, is limited. Cytochrome P450 enzymes such as Cyp51A rely on redox partners that provide electrons for their activity. A. fumigatus harbors several genes encoding putative candidate proteins including two paralogous cytochrome P450 reductases, CprA and CprB, and the cytochrome b 5 CybE. In this work, we investigated the contribution of each cprA, cprB, and cybE overexpression to cyp51A-mediated resistance to different medical and agricultural azoles. Using the bidirectional promoter PxylP, we conditionally expressed these genes in combination with cyp51A, revealing cprA as the main limiting factor. Similar to this approach, we overexpressed cprA in an azole-resistant background strain carrying a cyp51A allele with TR34 in its promoter, which led to a further increase in its resistance. Employing sterol measurements, we demonstrate an enhanced eburicol turnover during upregulation of either cprA or cyp51A, which was even more pronounced during their simultaneous overexpression. In summary, our work suggests that mutations leading to increased Cyp51A activity through increased electron supply could be key factors that elevate azole resistance.


Assuntos
Aspergillus fumigatus , Azóis , Humanos , Azóis/farmacologia , Azóis/metabolismo , NADPH-Ferri-Hemoproteína Redutase/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Farmacorresistência Fúngica , Antifúngicos/farmacologia , Antifúngicos/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Testes de Sensibilidade Microbiana
16.
Biochemistry (Mosc) ; 88(9): 1347-1355, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37770401

RESUMO

Cytochrome CYP102A1 (P450 BM3) of Priestia megaterium (bas. Bacillus megaterium) has several unique functional features and thus provides an ideal object for directed evolution and other synthetic applications. Previously, the CYP102A1-LG23 mutant with 14 mutations in the heme part was obtained that hydroxylates several androstanes at C7ß with the formation of products with the anti-inflammatory and neuroprotective activities. In this study, synthetic cyp102A1-LG23 gene encoding the P450 BM3 mutant was expressed as a component of either monocistronic operon or bicistronic operon containing the gdh (glucose dehydrogenase, GDH) or zwf2 (glucose 6-phosphate dehydrogenase, G6PD) gene in Mycolicibacterium smegmatis BD cells. The recombinant bacteria were able hydroxylate androst-4-ene-3,17-dione (AD) into 7ß-OH-AD. Their biocatalytic activity was increased twice by increasing the solubility of CYP102A1-LG23 protein in the cells and supplementing the cells with the additional cofactor regeneration system by introducing GDH and G6PD. The maximum 7ß-OH-AD yield (37.68 mol%) was achieved by co-expression of cyp102A1-LG23 and gdh genes in M. smegmatis. These results demonstrate the possibility of using synthetic genes to obtain recombinant enzymes and expand our understanding of the processes involved in steroid hydroxylation by bacterial cytochromes. The data obtained can be used to develop new approaches for microbiological production of 7ß-hydroxylated steroids in genetically modified Mycolicibacterium species.


Assuntos
Genes Sintéticos , NADPH-Ferri-Hemoproteína Redutase , NADPH-Ferri-Hemoproteína Redutase/genética , NADPH-Ferri-Hemoproteína Redutase/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Bactérias/metabolismo
17.
Pestic Biochem Physiol ; 194: 105467, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37532343

RESUMO

Nicotinamide adenine dinucleotide phosphate (NADPH)-cytochrome P450 reductase (CPR), a crucial electron-transfer partner of P450 systems, is required for various biological reactions catalyzed by P450 monooxygenase. Our previous study indicated that enhanced P450 enzyme detoxification and CYP6ER1 overexpression contributed to sulfoxaflor resistance in Nilaparvata lugens. However, the association between CPR, sulfoxaflor resistance, and neonicotinoid cross-resistance in N. lugens remains unclear. In this study, the sulfoxaflor-resistant (SFX-SEL) (RR = 254.04-fold), resistance-decline (DESEL) (RR = 18.99-fold), and susceptible unselected (UNSEL) strains of N. lugens with the same genetic background were established. Real-time quantitative polymerase chain reaction (RT-qPCR) revealed that the N. lugens CPR (NlCPR) expression level in the SFX-SEL strain was 6.85-fold and 6.07-fold higher than in UNSEL and DESEL strains, respectively. NlCPR expression was significantly higher in the abdomens of UNSEL, DESEL, and SFX-SEL fourth-instar nymphs than in other tissues (thoraxes, heads, and legs). Additionally, sulfoxaflor stress significantly increased NlCPR mRNA levels in the UNSEL, SFX-SEL and DESEL strains. NlCPR silencing by RNA interference (RNAi) dramatically increased the susceptibility of the UNSEL, DESEL, and SFX-SEL strains to sulfoxaflor, but the recovery of SFX-SEL was more obvious. Furthermore, NlCPR silencing led to a significant recovery in susceptibility to nitenpyram, dinotefuran, clothianidin, and thiamethoxam across all strains (UNSEL, DESEL, and SFX-SEL), with the greatest degree of recovery in the sulfoxaflor-resistant strain (SFX-SEL). Our findings suggest that NlCPR overexpression contributes to sulfoxaflor resistance and neonicotinoid cross-resistance in N. lugens. This will aid in elucidating the significance of CPR in the evolution of P450-mediated metabolic resistance in N. lugens.


Assuntos
Hemípteros , Inseticidas , Animais , Inseticidas/farmacologia , NADPH-Ferri-Hemoproteína Redutase/genética , Neonicotinoides/farmacologia , Sistema Enzimático do Citocromo P-450/metabolismo , Hemípteros/metabolismo , Nitrocompostos/farmacologia , Resistência a Inseticidas/genética
18.
Biotechnol Bioeng ; 120(8): 2230-2241, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37424513

RESUMO

Regio- and stereo-selective hydroxylation of bile acids is a valuable reaction but often lacks suitable catalysts. In the research, semi-rational design in protein engineering techniques had been applied on cytochrome P450 monooxygenase CYP102A1 (P450 BM3) from Bacillus megaterium, and a mutation library had been set up for the 1ß-hydroxylation of lithocholic acid (LCA) to produce 1ß-OH-LCA. After four rounds of mutagenesis, a key residue at W72 was identified to regulate the regio- and stereo-selectivity at C1 of LCA. A quadruple variant (G87A/W72T/A74L/L181M) was identified to reach 99.4% selectivity of 1ß-hydroxylation and substrate conversion of 68.1% resulting in a 21.5-fold higher level of 1ß-OH-LCA production than the template LG-23. Molecular docking indicated that introducing hydrogen bonds at W72 was responsible for enhancing selectivity and catalytic activity, which gave some insights into the structure-based understanding of Csp3 -H activation by the developed P450 BM3 mutants.


Assuntos
Bacillus megaterium , Ácido Litocólico , Simulação de Acoplamento Molecular , Hidroxilação , Ácido Litocólico/metabolismo , NADPH-Ferri-Hemoproteína Redutase/química , Proteínas de Bactérias/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Bacillus megaterium/genética
19.
Appl Microbiol Biotechnol ; 107(18): 5727-5737, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37477695

RESUMO

Cytochrome P450 monooxygenases CYP120As are the unique non-membrane P450s, which are extensively involved in retinoid biodegradation. As the O-functionalized 1,3,3-trimethylcyclohex-1-ene moiety exists in many bioactive compounds which could only be catalyzed by Class II P450s, exploration of the catalytic repertoire of CYP120As is therefore highly attractive. However, up to date, only one bacteriogenic candidate (CYP120A1) was demonstrated for the hydroxylation of C16 and C17 of retinoic acid, by utilizing the integral membrane protein cytochrome P450 reductase redox partner for the electron transfer. Herein, we provided an efficient prokaryotic functional expression system of CYP120As in E. coli by expression of the CYP120A1 coupled with several reductase partners. Fusion redox partners to the C-terminal of the heme-domain are also working on other CYP120A members. Among them, the fusion protein of CYP120A29 and FAD/FMN reductase from Bacillus megaterium P450BM3 (CYP101A2) showed the highest expression level. Based on the available translational fusion systems, the regioselectivity and the substrate scope of the CYP120As have also been explored. This work represents a good starting point for further expanding the catalytic potential of CYP120 family. KEY POINTS: • Characterization of CYP120As in E. coli is firstly achieved by constructing fusion proteins. • The feasibility of three P450 reductase domains to CYP120As was evaluated. • Hydroxylated products of retinoic acid by six CYP120As were sorted and analyzed.


Assuntos
Proteínas de Bactérias , Escherichia coli , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Bactérias/metabolismo , Oxirredução , Transporte de Elétrons , NADPH-Ferri-Hemoproteína Redutase/genética , NADPH-Ferri-Hemoproteína Redutase/metabolismo , Tretinoína/metabolismo
20.
Molecules ; 28(14)2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37513226

RESUMO

Wild-type cytochrome P450 CYP102A1 from Bacillus megaterium is a highly efficient monooxygenase for the oxidation of long-chain fatty acids. The unique features of CYP102A1, such as high catalytic activity, expression yield, regio- and stereoselectivity, and self-sufficiency in electron transfer as a fusion protein, afford the requirements for an ideal biocatalyst. In the past three decades, remarkable progress has been made in engineering CYP102A1 for applications in drug discovery, biosynthesis, and biotechnology. The repertoire of engineered CYP102A1 variants has grown tremendously, whereas the substrate repertoire is avalanched to encompass alkanes, alkenes, aromatics, organic solvents, pharmaceuticals, drugs, and many more. In this article, we highlight the major advances in the past five years in our understanding of the structure and function of CYP102A1 and the methodologies used to engineer CYP102A1 for novel applications. The objective is to provide a succinct review of the latest developments with reference to the body of CYP102A1-related literature.


Assuntos
Bacillus megaterium , NADPH-Ferri-Hemoproteína Redutase , NADPH-Ferri-Hemoproteína Redutase/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Oxirredução , Transporte de Elétrons , Proteínas de Bactérias/química , Bacillus megaterium/genética , Bacillus megaterium/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA