Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 435
Filtrar
1.
Chembiochem ; 25(3): e202300650, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-37994193

RESUMO

The vast majority of known enzymes exist as oligomers, which often gives them high catalytic performance but at the same time imposes constraints on structural conformations and environmental conditions. An example of an enzyme with a complex architecture is the P450 BM3 monooxygenase CYP102A1 from Bacillus megaterium. Only active as a dimer, it is highly sensitive to dilution or common immobilization techniques. In this study, we engineered a thermostable P450BM3 chimera consisting of the heme domain of a CYP102A1 variant and the reductase domain of the homologous CYP102A3. The dimerization of the hybrid was even weaker compared to the corresponding CYP102A1 variant. To create a stable dimer, we covalently coupled the C-termini of two monomers of the chimera via SpyTag003/SpyCatcher003 interaction. As a result, purification, thermostability, pH stability, and catalytic activity were improved. Via a bioorthogonal two-step affinity purification, we obtained high purity (94 %) of the dimer-stabilized variant being robust against heme depletion. Long-term stability was increased with a half-life of over 2 months at 20 °C and 80-90 % residual activity after 2 months at 5 °C. Most catalytic features were retained with even an enhancement of the overall activity by ~2-fold compared to the P450BM3 chimera without SpyTag003/SpyCatcher003.


Assuntos
Bacillus megaterium , Sistema Enzimático do Citocromo P-450 , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/química , Catálise , Heme , NADPH-Ferri-Hemoproteína Redutase/genética , NADPH-Ferri-Hemoproteína Redutase/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/química
2.
Proc Natl Acad Sci U S A ; 120(50): e2317372120, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38060561

RESUMO

Powerfully oxidizing enzymes need protective mechanisms to prevent self-destruction. The flavocytochrome P450 BM3 from Priestia megaterium (P450BM3) is a self-sufficient monooxygenase that hydroxylates fatty acid substrates using O2 and NADPH as co-substrates. Hydroxylation of long-chain fatty acids (≥C14) is well coupled to O2 and NADPH consumption, but shorter chains (≤C12) are more poorly coupled. Hydroxylation of p-nitrophenoxydodecanoic acid by P450BM3 produces a spectrophotometrically detectable product wherein the coupling of NADPH consumption to product formation is just 10%. Moreover, the rate of NADPH consumption is 1.8 times that of O2 consumption, indicating that an oxidase uncoupling pathway is operative. Measurements of the total number of enzyme turnovers before inactivation (TTN) indicate that higher NADPH concentrations increase TTN. At lower NADPH levels, added ascorbate increases TTN, while a W96H mutation leads to a decrease. The W96 residue is about 7 Å from the P450BM3 heme and serves as a gateway residue in a tryptophan/tyrosine (W/Y) hole transport chain from the heme to a surface tyrosine residue. The data indicate that two oxidase pathways protect the enzyme from damage by intercepting the powerfully oxidizing enzyme intermediate (Compound I) and returning it to its resting state. At high NADPH concentrations, reducing equivalents from the flavoprotein are delivered to Compound I by the usual reductase pathway. When NADPH is not abundant, however, oxidizing equivalents from Compound I can traverse a W/Y chain, arriving at the enzyme surface where they are scavenged by reductants. Ubiquitous tryptophan/tyrosine chains in highly oxidizing enzymes likely perform similar protective functions.


Assuntos
NADPH-Ferri-Hemoproteína Redutase , Triptofano , Oxirredução , Triptofano/metabolismo , NADP/metabolismo , NADPH-Ferri-Hemoproteína Redutase/genética , NADPH-Ferri-Hemoproteína Redutase/química , NADPH-Ferri-Hemoproteína Redutase/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Ácidos Graxos/metabolismo , Heme/metabolismo , Tirosina/metabolismo , Proteínas de Bactérias/metabolismo
3.
J Biol Chem ; 299(9): 105112, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37517692

RESUMO

NADPH-cytochrome P450 reductase delivers electrons required by heme oxygenase, squalene monooxygenase, fatty acid desaturase, and 48 human cytochrome P450 enzymes. While conformational changes supporting reductase intramolecular electron transfer are well defined, intermolecular interactions with these targets are poorly understood, in part because of their transient association. Herein the reductase FMN domain responsible for interacting with targets was fused to the N-terminus of three drug-metabolizing and two steroidogenic cytochrome P450 enzymes to increase the probability of interaction. These artificial fusion enzymes were profiled for their ability to bind their respective substrates and inhibitors and to perform catalysis supported by cumene hydroperoxide. Comparisons with the isolated P450 enzymes revealed that even the oxidized FMN domain causes substantial and diverse effects on P450 function. The FMN domain could increase, decrease, or not affect total ligand binding and/or dissociation constants depending on both P450 enzyme and ligand. As examples, FMN domain fusion has no effect on inhibitor ketoconazole binding to CYP17A1 but substantially altered CYP21A2 binding of the same compound. FMN domain fusion to CYP21A2 resulted in differential effects dependent on whether the ligand was 17α-hydroxyprogesterone versus ketoconazole. Similar enzyme-specific effects were observed on steady-state kinetics. These observations are most consistent with FMN domain interacting with the proximal P450 surface to allosterically impact P450 ligand binding and metabolism separate from electron delivery. The variety of effects on different P450 enzymes and on the same P450 with different ligands suggests intricate and differential allosteric communication between the P450 active site and its proximal reductase-binding surface.


Assuntos
Sistema Enzimático do Citocromo P-450 , NADPH-Ferri-Hemoproteína Redutase , Humanos , Mononucleotídeo de Flavina/metabolismo , Cetoconazol , Ligantes , NADPH-Ferri-Hemoproteína Redutase/química , Oxirredução , Esteroide 21-Hidroxilase/metabolismo , Domínios Proteicos , Sistema Enzimático do Citocromo P-450/efeitos dos fármacos , Sistema Enzimático do Citocromo P-450/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Peróxido de Hidrogênio/farmacologia
4.
Biomolecules ; 13(7)2023 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-37509119

RESUMO

A unique cytochrome P450 (CYP) oxidoreductase (CPR) sustains activities of human microsomal CYPs. Its function requires toggling between a closed conformation enabling electron transfers from NADPH to FAD and then FMN cofactors and open conformations forming complexes and transferring electrons to CYPs. We previously demonstrated that distinct features of the hinge region linking the FAD and FMN domain (FD) modulate conformer poses and their interactions with CYPs. Specific FD residues contribute in a CYP isoform-dependent manner to the recognition and electron transfer mechanisms that are additionally modulated by the structure of CYP-bound substrate. To obtain insights into the underlying mechanisms, we analyzed how hinge region and FD mutations influence CYP1A2-mediated caffeine metabolism. Activities, metabolite profiles, regiospecificity and coupling efficiencies were evaluated in regard to the structural features and molecular dynamics of complexes bearing alternate substrate poses at the CYP active site. Studies reveal that FD variants not only modulate CYP activities but surprisingly the regiospecificity of reactions. Computational approaches evidenced that the considered mutations are generally in close contact with residues at the FD-CYP interface, exhibiting induced fits during complexation and modified dynamics depending on caffeine presence and orientation. It was concluded that dynamic coupling between FD mutations, the complex interface and CYP active site exist consistently with the observed regiospecific alterations.


Assuntos
Cafeína , Citocromo P-450 CYP1A2 , Humanos , Citocromo P-450 CYP1A2/genética , Citocromo P-450 CYP1A2/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Transporte de Elétrons , Mutação , NADPH-Ferri-Hemoproteína Redutase/genética , NADPH-Ferri-Hemoproteína Redutase/química , NADPH-Ferri-Hemoproteína Redutase/metabolismo
5.
Biotechnol Bioeng ; 120(8): 2230-2241, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37424513

RESUMO

Regio- and stereo-selective hydroxylation of bile acids is a valuable reaction but often lacks suitable catalysts. In the research, semi-rational design in protein engineering techniques had been applied on cytochrome P450 monooxygenase CYP102A1 (P450 BM3) from Bacillus megaterium, and a mutation library had been set up for the 1ß-hydroxylation of lithocholic acid (LCA) to produce 1ß-OH-LCA. After four rounds of mutagenesis, a key residue at W72 was identified to regulate the regio- and stereo-selectivity at C1 of LCA. A quadruple variant (G87A/W72T/A74L/L181M) was identified to reach 99.4% selectivity of 1ß-hydroxylation and substrate conversion of 68.1% resulting in a 21.5-fold higher level of 1ß-OH-LCA production than the template LG-23. Molecular docking indicated that introducing hydrogen bonds at W72 was responsible for enhancing selectivity and catalytic activity, which gave some insights into the structure-based understanding of Csp3 -H activation by the developed P450 BM3 mutants.


Assuntos
Bacillus megaterium , Ácido Litocólico , Simulação de Acoplamento Molecular , Hidroxilação , Ácido Litocólico/metabolismo , NADPH-Ferri-Hemoproteína Redutase/química , Proteínas de Bactérias/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Bacillus megaterium/genética
6.
J Biol Chem ; 299(8): 105050, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37451479

RESUMO

Cytochrome P450 CYP102A1 is a prototypic biocatalyst that has great potential in chemical synthesis, drug discovery, and biotechnology. CYP102A1 variants engineered by directed evolution and/or rational design are capable of catalyzing the oxidation of a wide range of organic compounds. However, it is difficult to foresee the outcome of engineering CYP102A1 for a compound of interest. Here, we introduce UniDesign as a computational framework for enzyme design and engineering. We tested UniDesign by redesigning CYP102A1 for stereoselective metabolism of omeprazole (OMP), a proton pump inhibitor, starting from an active but nonstereoselective triple mutant (TM: A82F/F87V/L188Q). To shift stereoselectivity toward (R)-OMP, we computationally scanned three active site positions (75, 264, and 328) for mutations that would stabilize the binding of the transition state of (R)-OMP while destabilizing that of (S)-OMP and picked three variants, namely UD1 (TM/L75I), UD2 (TM/A264G), and UD3 (TM/A328V), for experimentation, based on computed energy scores and models. UD1, UD2, and UD3 exhibit high turnover rates of 55 ± 4.7, 84 ± 4.8, and 79 ± 5.7 min-1, respectively, for (R)-OMP hydroxylation, whereas the corresponding rates for (S)-OMP are only 2.2 ± 0.19, 6.0 ± 0.68, and 14 ± 2.8 min-1, yielding an enantiomeric excess value of 92, 87, and 70%, respectively. These results suggest the critical roles of L75I, A264G, and A328V in steering OMP in the optimal orientation for stereoselective oxidation and demonstrate the utility of UniDesign for engineering CYP102A1 to produce drug metabolites of interest. The results are discussed in the context of protein structures.


Assuntos
Proteínas de Bactérias , Sistema Enzimático do Citocromo P-450 , NADPH-Ferri-Hemoproteína Redutase , Omeprazol , Proteínas de Bactérias/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Hidroxilação , NADPH-Ferri-Hemoproteína Redutase/química , Omeprazol/metabolismo , Oxirredução , Engenharia de Proteínas
7.
J Inorg Biochem ; 245: 112235, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37167731

RESUMO

Cytochrome P450 enzymes (CYPs) have attracted much promise as biocatalysts in a push for cleaner and more environmentally friendly catalytic systems. However, changing the substrate specificity of CYPs, such as CYP102A1, can be a challenging task, requiring laborious mutagenesis. An alternative approach is the use of decoy molecules that "trick" the enzyme into becoming active by impersonating the native substrate. Whilst the decoy molecule system has been extensively developed for CYP102A1, its general applicability for other CYP102-family enzymes has yet to be shown. Herein, we demonstrate that decoy molecules can "trick" CYP102A5 and A7 into becoming active and hydroxylating non-native substrates. Furthermore, significant differences in decoy molecule selectivity as well as decoy molecule binding were observed. The X-ray crystal structure of the CYP102A5 haem domain was solved at 2.8 Å, delivering insight into a potential substate-binding site that differs significantly from CYP102A1.


Assuntos
Proteínas de Bactérias , Sistema Enzimático do Citocromo P-450 , Proteínas de Bactérias/química , Sistema Enzimático do Citocromo P-450/metabolismo , Sítios de Ligação , Especificidade por Substrato , NADPH-Ferri-Hemoproteína Redutase/química
8.
Mar Drugs ; 21(2)2023 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-36827140

RESUMO

The use of marine enzymes as catalysts for biotechnological applications is a topical subject. Marine enzymes usually display better operational properties than their animal, plant or bacterial counterparts, enlarging the range of possible biotechnological applications. Due to the fact that cytochrome P450 enzymes can degrade many different toxic environmental compounds, these enzymes have emerged as valuable tools in bioremediation processes. The present work describes the isolation, purification and biochemical characterization of a liver NADPH-dependent cytochrome P450 reductase (CPR) from the marine fish Liza klunzingeri (LkCPR). Experimental results revealed that LkCPR is a monomer of approximately 75 kDa that is active in a wide range of pH values (6-9) and temperatures (40-60 °C), showing the highest catalytic activity at pH 8 and 50 °C. The activation energy of the enzyme reaction was 16.3 kcal mol-1 K-1. The KM values for cytochrome C and NADPH were 8.83 µM and 7.26 µM, and the kcat values were 206.79 s-1 and 202.93 s-1, respectively. LkCPR displayed a specific activity versus cytochrome C of 402.07 µmol min-1 mg1, the highest activity value described for a CPR up to date (3.2-4.7 times higher than the most active reported CPRs) and showed the highest thermostability described for a CPR. Taking into account all these remarkable catalytic features, LkCPR offers great potential to be used as a suitable biocatalyst.


Assuntos
Citocromos c , NADPH-Ferri-Hemoproteína Redutase , Animais , NADP , NADPH-Ferri-Hemoproteína Redutase/química , NADPH-Ferri-Hemoproteína Redutase/metabolismo , Fígado/metabolismo , Sistema Enzimático do Citocromo P-450
9.
FEBS Lett ; 597(1): 59-64, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36250256

RESUMO

Flavocytochrome P450 from Bacillus megaterium (P450BM3 ) is a natural fusion protein containing reductase and heme domains. In the presence of NADPH and dioxygen the enzyme catalyses the hydroxylation of long-chain fatty acids. Analysis of the P450BM3 structure reveals chains of closely spaced tryptophan and tyrosine residues that might serve as pathways for high-potential oxidizing equivalents to escape from the heme active site when substrate oxidation is not possible. Our investigations of the total number of enzyme turnovers before deactivation have revealed that replacement of selected tryptophan and tyrosine residues with redox inactive groups leads to a twofold reduction in enzyme survival time. Tryptophan-96 is critical for prolonging enzyme activity, suggesting a key protective role for this residue.


Assuntos
Bacillus megaterium , Triptofano , Triptofano/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Oxirredução , Heme/metabolismo , Tirosina/metabolismo , NADPH-Ferri-Hemoproteína Redutase/química , Proteínas de Bactérias/metabolismo , Bacillus megaterium/genética , Bacillus megaterium/metabolismo
10.
Bioelectrochemistry ; 149: 108277, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36198256

RESUMO

The electrochemically driven cytochrome P450 reactions have great promise as drug sensing device, new drug searching tool and bioreactor with broad synthetic application. In the present work, we proposed approaches for the increasing the efficiency of cytochrome P450 3A4 electrocatalysis, based on fine regulation and reproduction of nature hemeprotein catalytic cycle and electron transfer pathways on electrode. To analyze the comparative electrochemical and electrocatalytic activity, cytochrome P450 3A4 was immobilized on electrodes modified with a membrane-like synthetic surfactant, didodecyldimethylammonium bromide (DDAB). We used riboflavin, FMN and FAD as low molecular models of NADPH-dependent cytochrome P450 reductase for the improving and enhancement properties of catalytically responsible cytochrome P450 3A4-electrode. The efficiencies of electrocatalysis of erythromycin N-demethylation as well-known cytochrome P450 3A4 substrate in the case of riboflavin, FAD and FMN as electron transfer mediators were 135 ± 6, 171 ± 15 and 203 ± 10 %, respectively (in comparison with 100 ± 18 % erythromycin N-demethylation in the case of cytochrome P450 3A4-electrode as catalyst). Molecular modeling of cytochrome P450 3A4 complexes with riboflavin, FMN and FAD confirms possibility of binding isoalloxazine ring of riboflavin to the protein on the proximal side of hemeprotein, which is the place for binding of redox partners of the cytochrome P450.


Assuntos
Mononucleotídeo de Flavina , Flavina-Adenina Dinucleotídeo , NADPH-Ferri-Hemoproteína Redutase/química , Sistema Enzimático do Citocromo P-450/metabolismo , Eritromicina
11.
Methods Enzymol ; 676: 133-158, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36280348

RESUMO

Lignin is a complex heterogenous polymer derived from oxidative radical polymerization of three monolignols, i.e., p-coumaryl alcohol, coniferyl alcohol and sinapyl alcohol. These lignin monomeric precursors structurally differ in their methoxy groups of the benzene rings. In phenylpropanoid-monolignol biosynthetic pathway, the endoplasmic reticulum (ER)-resident cytochrome P450 monooxygenases, cinnamate 4-hydroxylase, coumaroyl ester 3'-hydroxylase and ferulate 5-hydroxylase, establish the key structural characteristics of monolignols. The catalysis of cytochrome P450 monooxygenase requires reducing power, which is supplied by the ER electron transfer chains, composed of cytochrome P450 oxidoreductase (CPR), cytochrome b5 reductase (CBR) and/or cytochrome b5 protein (CB5), from cofactor NADPH or NADH. While NADPH-dependent CPR serves as the typical electron donor for most P450 enzymes, in some cases, the CBR-CB5 or CPR-CB5 electron transfer system also transfers electrons to the terminal P450 enzymes. There are tremendous studies focusing on the discovery and characterization of cytochrome P450 monooxygenases. However, very limited attention has been paid to the versatility and the roles of electron transfer components in the P450 catalytic system. Due to the membrane-residence property of both P450 enzymes and electron transfer components, it is challenging to establish an effective experimental system to evaluate the functional association of P450s with their redox partners. This chapter describes a yeast cell biocatalytic system and the related experimental procedures for comparatively assessing the functional relationship of monolignol biosynthetic P450 enzymes and different redox partners in their catalysis.


Assuntos
Citocromo-B(5) Redutase , Lignina , Citocromo-B(5) Redutase/metabolismo , Lignina/metabolismo , NADP , Transcinamato 4-Mono-Oxigenase/metabolismo , Citocromos b/metabolismo , Benzeno , NAD/metabolismo , NADPH-Ferri-Hemoproteína Redutase/química , Sistema Enzimático do Citocromo P-450/metabolismo , Oxirredução , Ésteres
12.
BMC Biotechnol ; 22(1): 20, 2022 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-35831844

RESUMO

BACKGROUND: Unlike most other P450 cytochrome monooxygenases, CYP102A1 from Bacillus megaterium (BM3) is both soluble and fused to its redox partner forming a single polypeptide chain. Like other monooxygenases, it can catalyze the insertion of oxygen unto the carbon-hydrogen bond which can result in a wide variety of commercially relevant products for pharmaceutical and fine chemical industries. However, the instability of the enzyme holds back the implementation of a BM3-based biocatalytic industrial processes due to the important enzyme cost it would prompt. RESULTS: In this work, we sought to enhance BM3's total specific product output by using experimental evolution, an approach not yet reported to improve this enzyme. By exploiting B. megaterium's own oleic acid metabolism, we pressed the evolution of a new variant of BM3, harbouring 34 new amino acid substitutions. The resulting variant, dubbed DE, increased the conversion of the substrate 10-pNCA to its product p-nitrophenolate 1.23 and 1.76-fold when using respectively NADPH or NADH as a cofactor, compared to wild type BM3. CONCLUSIONS: This new DE variant, showed increased organic cosolvent tolerance, increased product output and increased versatility in the use of either nicotinamide cofactors NADPH and NADH. Experimental evolution can be used to evolve or to create libraries of evolved BM3 variants with increased productivity and cosolvent tolerance. Such libraries could in turn be used in bioinformatics to further evolve BM3 more precisely. The experimental evolution results also supports the hypothesis which surmises that one of the roles of BM3 in Bacillus megaterium is to protect it from exogenous unsaturated fatty acids by breaking them down.


Assuntos
Bacillus megaterium , Bacillus megaterium/genética , Bacillus megaterium/metabolismo , Proteínas de Bactérias/metabolismo , Sistema Enzimático do Citocromo P-450/química , NAD/metabolismo , NADP/química , NADP/metabolismo , NADPH-Ferri-Hemoproteína Redutase/química , NADPH-Ferri-Hemoproteína Redutase/genética , Ácido Oleico , Oxirredução
13.
Chembiochem ; 23(12): e202200065, 2022 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-35333425

RESUMO

Multi-enzyme cascades enable the production of valuable chemical compounds, and fusion of the enzymes that catalyze these reactions can improve the reaction outcome. In this work, P450 BM3 from Bacillus megaterium and an alcohol dehydrogenase from Sphingomonas yanoikuyae were fused to bifunctional constructs to enable cofactor regeneration and improve the in vitro two-step oxidation of (+)-valencene to (+)-nootkatone. An up to 1.5-fold increased activity of P450 BM3 was achieved with the fusion constructs compared to the individual enzyme. Conversion of (+)-valencene coupled to cofactor regeneration and performed in the presence of the solubilizing agent cyclodextrin resulted in up to 1080 mg L-1 (+)-nootkatone produced by the fusion constructs as opposed to 620 mg L-1 produced by a mixture of the separate enzymes. Thus, a two-step (+)-valencene oxidation was considerably improved through the simple method of enzyme fusion.


Assuntos
Álcool Desidrogenase , Bacillus megaterium , Álcool Desidrogenase/genética , Bacillus megaterium/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sistema Enzimático do Citocromo P-450/química , Sistema Enzimático do Citocromo P-450/genética , NADPH-Ferri-Hemoproteína Redutase/química , NADPH-Ferri-Hemoproteína Redutase/genética , Sesquiterpenos Policíclicos
14.
Molecules ; 27(4)2022 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-35209175

RESUMO

The three-dimensional structure of monomers and homodimers of CYP102A1/WT (wild-type) proteins and their A83F and A83I mutant forms was predicted using the AlphaFold2 (AF2) and AlphaFold Multimer (AFMultimer) programs, which were compared with the rate constants of hydroxylation reactions of these enzyme forms to determine the efficiency of intra- and interprotein electron transport in the CYP102A1 hydroxylase system. The electron transfer rate constants (ket), which determine the rate of indole hydroxylation by the CYP102A1 system, were calculated based on the distances (R) between donor-acceptor prosthetic groups (PG) FAD→FMN→HEME of these proteins using factor ß, which describes an exponential decay from R the speed of electron transport (ET) according to the tunnelling mechanism. It was shown that the structure of monomers in the homodimer, calculated using the AlpfaFold Multimer program, is in good agreement with the experimental structures of globular domains (HEME-, FMN-, and FAD-domains) in CYP102A1/WT obtained by X-ray structural analysis, and the structure of isolated monomers predicted in AF2 does not coincide with the structure of monomers in the homodimer, although a high level of similarity in individual domains remains. The structures of monomers and homodimers of A83F and A83I mutants were also calculated, and their structures were compared with the wild-type protein. Significant differences in the structure of all isolated monomers with respect to the structures of monomers in homodimers were also found for them, and at the same time, insignificant differences were revealed for all homodimers. Comparative analysis for CYP102A1/WT between the calculated intra- and interprotein distances FAD→FMN→HEME and the rate constants of hydroxylation in these proteins showed that the distance between prosthetic groups both in the monomer and in the dimer allows the implementation of electron transfer between PGs, which is consistent with experimental literature data about kcat. For the mutant form of monomer A83I, an increase in the distance between PGs was obtained, which can restrict electron transportation compared to WT; however, for the dimer of this protein, a decrease in the distance between PGs was observed compared to the WT form, which can lead to an increase in the electron transfer rate constant and, accordingly, kcat. For the monomer and homodimer of the A83F mutant, the calculations showed an increase in the distance between the PGs compared to the WT form, which should have led to a decrease in the electron transfer rate, but at the same time, for the homodimer, the approach of the aromatic group F262 with heme can speed up transportation for this form and, accordingly, the rate of hydroxylation.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Sistema Enzimático do Citocromo P-450/química , Sistema Enzimático do Citocromo P-450/metabolismo , Transporte de Elétrons , Modelos Moleculares , NADPH-Ferri-Hemoproteína Redutase/química , NADPH-Ferri-Hemoproteína Redutase/metabolismo , Conformação Proteica , Multimerização Proteica , Proteínas de Bactérias/genética , Sistema Enzimático do Citocromo P-450/genética , NADPH-Ferri-Hemoproteína Redutase/genética , Mutação Puntual , Ligação Proteica , Relação Estrutura-Atividade
15.
J Phys Chem B ; 126(8): 1691-1699, 2022 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-35171619

RESUMO

Cytochrome P450 reductase (CPR) is a NADPH-dependent membrane-bound oxidoreductase found in the endoplasmic reticulum (ER) and is the main redox partner for most cytochrome P450 enzymes. Presented are the measured thermodynamic driving forces responsible for how strongly CPR partitions into a biomimetic ER with the same lipid composition of a natural ER. Using temperature-dependent fluorescence correlation spectroscopy and fluorescence single-protein tracking, the standard state free energies, enthalpies, and entropies of the CPR insertion process were all measured. The results of this study demonstrate that the thermodynamic driving forces are dependent on the redox states of CPR. In particular, the partitioning of CPRox into a biomimetic ER is an exothermic process with a small positive change in entropy, while CPRred partitioning is endothermic with a large positive change in entropy. Both resulted in negative free energies and strong association to the biomimetic ER, but the KP of CPRox insertion is measurably smaller than that of CPRred. Using this new information and known results from literature sources, we also present a phenomenological model that accounts for membrane-protein interactions, protein orientation relative to the membrane, and protein conformation as a function of the redox state.


Assuntos
Reanimação Cardiopulmonar , NADPH-Ferri-Hemoproteína Redutase , Biomimética , Sistema Enzimático do Citocromo P-450/química , Retículo Endoplasmático/química , Retículo Endoplasmático/metabolismo , NADPH-Ferri-Hemoproteína Redutase/análise , NADPH-Ferri-Hemoproteína Redutase/química , NADPH-Ferri-Hemoproteína Redutase/metabolismo , Oxirredução , Termodinâmica
16.
J Biol Chem ; 298(4): 101761, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35202651

RESUMO

Plant NADPH-dependent cytochrome P450 reductase (CPR) is a multidomain enzyme that donates electrons for hydroxylation reactions catalyzed by class II cytochrome P450 monooxygenases involved in the synthesis of many primary and secondary metabolites. These P450 enzymes include trans-cinnamate-4-hydroxylase, p-coumarate-3'-hydroxylase, and ferulate-5-hydroxylase involved in monolignol biosynthesis. Because of its role in monolignol biosynthesis, alterations in CPR activity could change the composition and overall output of lignin. Therefore, to understand the structure and function of three CPR subunits from sorghum, recombinant subunits SbCPR2a, SbCPR2b, and SbCPR2c were subjected to X-ray crystallography and kinetic assays. Steady-state kinetic analyses demonstrated that all three CPR subunits supported the oxidation reactions catalyzed by SbC4H1 (CYP73A33) and SbC3'H (CYP98A1). Furthermore, comparing the SbCPR2b structure with the well-investigated CPRs from mammals enabled us to identify critical residues of functional importance and suggested that the plant flavin mononucleotide-binding domain might be more flexible than mammalian homologs. In addition, the elucidated structure of SbCPR2b included the first observation of NADP+ in a native CPR. Overall, we conclude that the connecting domain of SbCPR2, especially its hinge region, could serve as a target to alter biomass composition in bioenergy and forage sorghums through protein engineering.


Assuntos
NADPH-Ferri-Hemoproteína Redutase , Proteínas de Plantas , Sorghum , Animais , Lignina/metabolismo , Mamíferos/metabolismo , NADPH-Ferri-Hemoproteína Redutase/química , NADPH-Ferri-Hemoproteína Redutase/genética , NADPH-Ferri-Hemoproteína Redutase/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Sorghum/química , Sorghum/enzimologia , Sorghum/genética
17.
Angew Chem Int Ed Engl ; 61(7): e202111612, 2022 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-34704327

RESUMO

We report an OmpF loop deletion mutant, which improves the cellular uptake of external additives into an Escherichia coli whole-cell biocatalyst. Through co-expression of the OmpF mutant with wild-type P450BM3 in the presence of decoy molecules, the yield of the whole-cell biotransformation of benzene could be considerably improved. Notably, with the decoy molecule C7AM-Pip-Phe the yield duodecupled from 5.7 % to 70 %, with 80 % phenol selectivity. The benzylic hydroxylation of alkyl- and cycloalkylbenzenes was also examined, and with the aid of decoy molecules, propylbenzene and tetralin were converted to 1-hydroxylated products with 78 % yield and 94 % (R) ee for propylbenzene and 92 % yield and 94 % (S) ee for tetralin. Our results suggest that both the decoy molecule and substrate traverse the artificial OmpF channel, synergistically boosting whole-cell bioconversions.


Assuntos
Proteínas de Bactérias/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , NADPH-Ferri-Hemoproteína Redutase/metabolismo , Porinas/metabolismo , Proteínas de Bactérias/química , Biocatálise , Sistema Enzimático do Citocromo P-450/química , Modelos Moleculares , Estrutura Molecular , NADPH-Ferri-Hemoproteína Redutase/química , Porinas/química
18.
Int J Mol Sci ; 22(19)2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34638963

RESUMO

Cytochrome P450 reductase (CYPOR) provides electrons to all human microsomal cytochrome P450s (cyt P450s). The length and sequence of the "140s" FMN binding loop of CYPOR has been shown to be a key determinant of its redox potential and activity with cyt P450s. Shortening the "140s loop" by deleting glycine-141(ΔGly141) and by engineering a second mutant that mimics flavo-cytochrome P450 BM3 (ΔGly141/Glu142Asn) resulted in mutants that formed an unstable anionic semiquinone. In an attempt to understand the molecular basis of the inability of these mutants to support activity with cyt P450, we expressed, purified, and determined their ability to reduce ferric P450. Our results showed that the ΔGly141 mutant with a very mobile loop only reduced ~7% of cyt P450 with a rate similar to that of the wild type. On the other hand, the more stable loop in the ΔGly141/Glu142Asn mutant allowed for ~55% of the cyt P450 to be reduced ~60% faster than the wild type. Our results reveal that the poor activity of the ΔGly141 mutant is primarily accounted for by its markedly diminished ability to reduce ferric cyt P450. In contrast, the poor activity of the ΔGly141/Glu142Asn mutant is presumably a consequence of the altered structure and mobility of the "140s loop".


Assuntos
Hidrocarboneto de Aril Hidroxilases/metabolismo , Transporte de Elétrons/genética , Elétrons , Mononucleotídeo de Flavina/metabolismo , NADPH-Ferri-Hemoproteína Redutase/química , NADPH-Ferri-Hemoproteína Redutase/metabolismo , Sequência de Aminoácidos , Animais , Família 2 do Citocromo P450/metabolismo , Citocromo-B(5) Redutase/metabolismo , Citocromos b5/metabolismo , Glicina/genética , Cinética , Microssomos/metabolismo , Mutagênese Sítio-Dirigida/métodos , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , NADPH-Ferri-Hemoproteína Redutase/genética , Oxirredução , Ligação Proteica , Conformação Proteica , Coelhos
19.
Biochemistry ; 60(28): 2259-2271, 2021 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-34196520

RESUMO

Cytochrome P450 3A4 (CYP3A4) is the most important drug-metabolizing enzyme in humans and has been associated with harmful drug interactions. The activity of CYP3A4 is known to be modulated by several compounds and by the electron transfer partner, cytochrome P450 reductase (CPR). The underlying mechanism of these effects, however, is poorly understood. We have used hydrogen-deuterium exchange mass spectrometry to investigate the impact of binding of CPR and of three different substrates (7-benzyloxy-4-trifluoromethyl-coumarin, testosterone, and progesterone) on the conformational dynamics of CYP3A4. Here, we report that interaction of CYP3A4 with substrates or with the oxidized or reduced forms of CPR leads to a global rigidification of the CYP3A4 structure. This was evident from the suppression of deuterium exchange in several regions of CYP3A4, including regions known to be involved in protein-protein interactions (helix C) and substrate binding and specificity (helices B' and E, and loop K/ß1). Furthermore, the bimodal isotopic distributions observed for some CYP3A4-derived peptides were drastically impacted upon binding to CPR and/or substrates, suggesting the existence of stable CYP3A4 conformational populations that are perturbed by ligand/CPR binding. The results have implications for understanding the mechanisms of ligand binding, allostery, and catalysis in CYP enzymes.


Assuntos
Citocromo P-450 CYP3A/metabolismo , NADPH-Ferri-Hemoproteína Redutase/metabolismo , Animais , Citocromo P-450 CYP3A/química , Humanos , Modelos Moleculares , NADPH-Ferri-Hemoproteína Redutase/química , Ligação Proteica , Conformação Proteica , Mapas de Interação de Proteínas , Ratos , Especificidade por Substrato
20.
Chem Commun (Camb) ; 57(39): 4819-4822, 2021 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-33982687

RESUMO

Cytochrome-P450-reductase transfers electrons to cytochrome-P450 through its flavin mononucleotide binding domain (FBD). Despite the importance of membrane-anchoring for FBD function, studies have focused on its soluble domain lacking the transmembrane-domain. Here we demonstrate that the reconstitution of FBD in nanodiscs enables high-resolution NMR measurements and renders a stable conformation.


Assuntos
Mononucleotídeo de Flavina/química , NADPH-Ferri-Hemoproteína Redutase/química , Ressonância Magnética Nuclear Biomolecular , Sítios de Ligação , Transporte de Elétrons , Mononucleotídeo de Flavina/metabolismo , Modelos Moleculares , NADPH-Ferri-Hemoproteína Redutase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA