Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 575: 90-95, 2021 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-34461441

RESUMO

tRNATyr of Nanoarchaeum equitans has a remarkable feature with an extra guanosine residue at the 5'-terminus. However, the N. equitans tRNATyr mutant without extra guanosine at the 5'-end was tyrosylated by tyrosyl-tRNA synthase (TyrRS). We solved the crystal structure of N. equitans TyrRS at 2.80 Å resolution. By comparing the present solved structure with the complex structures TyrRS with tRNATyr of Thermus thermophilus and Methanocaldococcus jannaschii, an arginine substitution mutant of N. equitans TyrRS at Ile200 (I200R), which is the putative closest candidate to the 5'-phosphate of C1 of N. equitans tRNATyr, was prepared. The I200R mutant tyrosylated not only wild-type tRNATyr but also the tRNA without the G-1 residue. Further tyrosylation analysis revealed that the second base of the anticodon (U35), discriminator base (A73), and C1:G72 base pair are strong recognition sites.


Assuntos
Proteínas Arqueais/química , Cristalografia por Raios X/métodos , Guanosina/química , Nanoarchaeota/enzimologia , RNA de Transferência de Tirosina/química , Tirosina-tRNA Ligase/química , Aminoacilação , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Modelos Moleculares , Elementos Estruturais de Proteínas , RNA de Transferência de Tirosina/genética , RNA de Transferência de Tirosina/metabolismo , Tirosina-tRNA Ligase/genética , Tirosina-tRNA Ligase/metabolismo
2.
Proteins ; 89(2): 232-241, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32935885

RESUMO

Signal peptides help newly synthesized proteins reach the cell membrane or be secreted. As part of a biological process key to immune response and surveillance in humans, and associated with diseases, for example, Alzheimer, remnant signal peptides and other transmembrane segments are proteolyzed by the intramembrane aspartyl protease (IAP) enzyme family. Here, we identified IAP orthologs throughout the tree of life. In addition to eukaryotes, IAPs are encoded in metabolically diverse archaea from a wide range of environments. We found three distinct clades of archaeal IAPs: (a) Euryarchaeota (eg, halophilic Halobacteriales, methanogenic Methanosarcinales and Methanomicrobiales, marine Poseidoniales, acidophilic Thermoplasmatales, hyperthermophilic Archaeoglobus spp.), (b) DPANN, and (c) Bathyarchaeota, Crenarchaeota, and Asgard. IAPs were also present in bacterial genomes from uncultivated members of Candidate Phylum Radiation, perhaps due to horizontal gene transfer from DPANN archaeal lineages. Sequence analysis of the catalytic motif YD…GXGD (where X is any amino acid) in IAPs from archaea and bacteria reveals WD in Lokiarchaeota and many residue types in the X position. Gene neighborhood analysis in halophilic archaea shows IAP genes near corrinoid transporters (btuCDF genes). In marine Euryarchaeota, a putative BtuF-like domain is found in N-terminus of the IAP gene, suggesting a role for these IAPs in metal ion cofactor or other nutrient scavenging. Interestingly, eukaryotic IAP family members appear to have evolved either from Euryarchaeota or from Asgard archaea. Taken together, our phylogenetic and bioinformatics analysis should prompt experiments to probe the biological roles of IAPs in prokaryotic secretomes.


Assuntos
Ácido Aspártico Proteases/genética , Bactérias/genética , Crenarchaeota/genética , Euryarchaeota/genética , Nanoarchaeota/genética , Presenilinas/genética , Sequência de Aminoácidos , Ácido Aspártico Proteases/química , Ácido Aspártico Proteases/metabolismo , Bactérias/classificação , Bactérias/enzimologia , Evolução Biológica , Domínio Catalítico , Biologia Computacional/métodos , Sequência Conservada , Crenarchaeota/classificação , Crenarchaeota/enzimologia , Euryarchaeota/classificação , Euryarchaeota/enzimologia , Expressão Gênica , Humanos , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Nanoarchaeota/classificação , Nanoarchaeota/enzimologia , Filogenia , Presenilinas/química , Presenilinas/metabolismo , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Sinais Direcionadores de Proteínas/genética , Alinhamento de Sequência , Análise de Sequência de Proteína , Homologia de Sequência de Aminoácidos
3.
J Mol Evol ; 88(6): 501-509, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32382786

RESUMO

Nanoarchaeum equitans is a species of hyperthermophilic archaea with the smallest genome size. Its alanyl-tRNA synthetase genes are split into AlaRS-α and AlaRS-ß, encoding the respective subunits. In the current report, we surveyed N. equitans AlaRS-dependent alanylation of RNA minihelices, composed only of the acceptor stem and the T-arm of tRNAAla. Combination of AlaRS-α and AlaRS-ß showed a strong alanylation activity specific to a single G3:U70 base pair, known to mark a specific tRNA for charging with alanine. However, AlaRS-α alone had a weak but appreciable alanylation activity that was independent of the G3:U70 base pair. The shorter 16-mer RNA tetraloop substrate mimicking only the first four base pairs of the acceptor stem of tRNAAla, but with C3:G70 base pair, was also successfully aminoacylated by AlaRS-α. The end of the acceptor stem, including CCA-3' terminus and the discriminator A73, was able to function as a minimal structure for the recognition by the enzyme. Our findings imply that aminoacylation by N. equitans AlaRS-α may represent a vestige of a primitive aminoacylation system, before the appearance of the G3:U70 pair as an identity element for alanine.


Assuntos
Alanina-tRNA Ligase , Aminoacil-tRNA Sintetases , Nanoarchaeota , Alanina-tRNA Ligase/genética , Alanina-tRNA Ligase/metabolismo , Aminoacil-tRNA Sintetases/genética , Aminoacil-tRNA Sintetases/metabolismo , Aminoacilação , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Nanoarchaeota/enzimologia , Nanoarchaeota/genética , Conformação de Ácido Nucleico , RNA
4.
Biochimie ; 164: 37-44, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31212038

RESUMO

Circular RNAs (circRNAs) differ structurally from other types of RNAs and are resistant against exoribonucleases. Although they have been detected in all domains of life, it remains unclear how circularization affects or changes functions of these ubiquitous nucleic acid circles. The biogenesis of circRNAs has been mostly described as a backsplicing event, but in archaea, where RNA splicing is a rare phenomenon, a second pathway for circRNA formation was described in the cases of rRNAs processing, tRNA intron excision, and Box C/D RNAs formation. At least in some archaeal species, circRNAs are formed by a ligation step catalyzed by an atypic homodimeric RNA ligase belonging to Rnl3 family. In this review, we describe archaeal circRNA transcriptomes obtained using high throughput sequencing technologies on Sulfolobus solfataricus, Pyrococcus abyssi and Nanoarchaeum equitans cells. We will discuss the distribution of circular RNAs among the different RNA categories and present the Rnl3 ligase family implicated in the circularization activity. Special focus is given for the description of phylogenetic distributions, protein structures, and substrate specificities of archaeal RNA ligases.


Assuntos
Nanoarchaeota , Pyrococcus abyssi , RNA Ligase (ATP) , RNA Arqueal , RNA Circular , Sulfolobus solfataricus , Nanoarchaeota/enzimologia , Nanoarchaeota/genética , Pyrococcus abyssi/enzimologia , Pyrococcus abyssi/genética , RNA Ligase (ATP)/classificação , RNA Ligase (ATP)/fisiologia , RNA Arqueal/classificação , RNA Arqueal/metabolismo , RNA Circular/classificação , RNA Circular/metabolismo , Análise de Sequência de RNA , Sulfolobus solfataricus/enzimologia , Sulfolobus solfataricus/genética
5.
Biochem Biophys Res Commun ; 511(2): 228-233, 2019 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-30771900

RESUMO

This study reports the X-ray crystallographic structure of the glycyl-tRNA synthetase (GlyRS) of Nanoarchaeum equitans - a hyperthermophilic archaeal species. This is the first archaeal GlyRS crystal structure elucidated. The GlyRS comprises an N-terminal catalytic domain and a C-terminal anticodon-binding domain with a long ß-sheet inserted between these domains. An unmodified transcript of the wild-type N. equitans tRNAGly was successfully glycylated using GlyRS. Substitution of the discriminator base A73 of tRNAGly with any other nucleotide caused a significant decrease in glycylation activity. Mutational analysis of the second base-pair C2G71 of the acceptor stem of tRNAGly elucidated the importance of the base-pair, especially G71, as an identity element for recognition by GlyRS. Glycylation assays using tRNAGly G71 substitution mutants and a GlyRS mutant where Arg223 is mutated to alanine strengthen the possibility that the carbonyl oxygen at position 6 of G71 would hydrogen-bond with the guanidine nitrogen of Arg223 in N. equitans GlyRS.


Assuntos
Proteínas Arqueais/química , Glicina-tRNA Ligase/química , Nanoarchaeota/enzimologia , Sequência de Aminoácidos , Proteínas Arqueais/metabolismo , Cristalografia por Raios X , Glicina-tRNA Ligase/metabolismo , Modelos Moleculares , Nanoarchaeota/química , Nanoarchaeota/metabolismo , Conformação Proteica , RNA de Transferência/química , RNA de Transferência/metabolismo , Alinhamento de Sequência
6.
Biochemistry ; 57(36): 5271-5281, 2018 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-29939726

RESUMO

Superoxide reductases (SORs) are enzymes that detoxify the superoxide anion through its reduction to hydrogen peroxide and exist in both prokaryotes and eukaryotes. The substrate is transformed at an iron catalytic center, pentacoordinated in the ferrous state by four histidines and one cysteine. SORs have a highly conserved motif, (E)(K)HxP-, in which the glutamate is associated with a redox-driven structural change, completing the octahedral coordination of the iron in the ferric state, whereas the lysine may be responsible for stabilization and donation of a proton to catalytic intermediates. We aimed to understand at the structural level the role of these two residues, by determining the X-ray structures of the SORs from the hyperthermophilic archaea Ignicoccus hospitalis and Nanoarchaeum equitans that lack the quasi-conserved lysine and glutamate, respectively, but have catalytic rate constants similar to those of the canonical enzymes, as we previously demonstrated. Furthermore, we have determined the crystal structure of the E23A mutant of I. hospitalis SOR, which mimics several enzymes that lack both residues. The structures revealed distinct structural arrangements of the catalytic center that simulate several catalytic cycle intermediates, namely, the reduced and the oxidized forms, and the glutamate-free and deprotonated ferric forms. Moreover, the structure of the I. hospitalis SOR provides evidence for the presence of an alternative lysine close to the iron center in the reduced state that may be a functional substitute for the "canonical" lysine.


Assuntos
Proteínas Arqueais/química , Desulfurococcaceae/enzimologia , Nanoarchaeota/enzimologia , Oxirredutases/química , Superóxidos/química , Sequência de Aminoácidos , Proteínas Arqueais/metabolismo , Catálise , Crioprotetores , Cristalização , Cristalografia por Raios X , Oxirredução , Oxirredutases/metabolismo , Conformação Proteica , Homologia de Sequência , Superóxidos/metabolismo
7.
Methods Mol Biol ; 1703: 153-159, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29177740

RESUMO

Hemicatenane is a structure that forms when two DNA duplexes are physically linked through a single-stranded crossover. It is proposed to be an intermediate resulting from double Holliday junction (dHJ) dissolution, repair of replication stalled forks and late stage replication. Our previous study has shown that hemicatenane can be synthesized and dissolved in vitro by hyperthermophilic type IA topoisomerases. Here we present the protocol of hemicatenane synthesis and its structure detection by 2D agarose gel electrophoresis. The generated product can be used as a substrate to study the biochemical mechanism of hemicatenane processing reactions.


Assuntos
Catenanos/síntese química , DNA Topoisomerases Tipo I/metabolismo , Nanoarchaeota/enzimologia , Proteínas Arqueais/metabolismo , Catenanos/metabolismo , Replicação do DNA , Eletroforese em Gel Bidimensional , Conformação de Ácido Nucleico
8.
PLoS One ; 12(9): e0184162, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28863186

RESUMO

DNA polymerases are present in all organisms and are important enzymes that synthesise DNA molecules. They are used in various fields of science, predominantly as essential components for in vitro DNA syntheses, known as PCR. Modern diagnostics, molecular biology and genetic engineering need DNA polymerases which demonstrate improved performance. This study was aimed at obtaining a new NeqSSB-TaqS fusion DNA polymerase from the Taq DNA Stoffel domain and a single-stranded DNA binding-like protein of Nanoarchaeum equitans in order to significantly improve the properties of DNA polymerase. The DNA coding sequence of Taq Stoffel DNA polymerase and the nonspecific DNA-binding protein of Nanoarchaeum equitans (NeqSSB-like protein) were fused. A novel recombinant gene was obtained which was cloned into the pET-30 Ek/LIC vector and introduced into E. coli for expression. The recombinant enzyme was purified and its enzymatic properties including DNA polymerase activity, PCR amplification rate, thermostability, processivity and resistance to inhibitors, were tested. The yield of the target protein reached approximately 18 mg/l after 24 h of the IPTG induction. The specific activity of the polymerase was 2200 U/mg. The recombinant NeqSSB-TaqS exhibited a much higher extension rate (1000 bp template in 20 s), processivity (19 nt), thermostability (half-life 35 min at 95°C) and higher tolerance to PCR inhibitors (0.3-1.25% of whole blood, 0.84-13.5 µg of lactoferrin and 4.7-150 ng of heparin) than Taq Stoffel DNA polymerase. Furthermore, our studies show that NeqSSB-TaqS DNA polymerase has a high level of flexibility in relation to Mg2+ ions (from 1 to 5 mM) and KCl or (NH4)2SO4 salts (more than 60 mM and 40 mM, respectively). Using NeqSSB-TaqS DNA polymerase instead of the Taq DNA polymerase could be a better choice in many PCR applications.


Assuntos
DNA de Cadeia Simples , Proteínas de Ligação a DNA/metabolismo , Nanoarchaeota/enzimologia , Taq Polimerase/metabolismo , Proteínas de Ligação a DNA/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Engenharia Genética , Nanoarchaeota/genética , Plasmídeos/metabolismo , Reação em Cadeia da Polimerase , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
9.
Nucleic Acids Res ; 45(4): 2007-2015, 2017 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-28204608

RESUMO

In all free-living organisms a late-stage checkpoint in the biogenesis of the small ribosomal subunit involves rRNA modification by an RsmA/Dim1 methyltransferase. The hyperthermophilic archaeon Nanoarchaeum equitans, whose existence is confined to the surface of a second archaeon, Ignicoccus hospitalis, lacks an RsmA/Dim1 homolog. We demonstrate here that the I. hospitalis host possesses the homolog Igni_1059, which dimethylates the N6-positions of two invariant adenosines within helix 45 of 16S rRNA in a manner identical to other RsmA/Dim1 enzymes. However, Igni_1059 is not transferred from I. hospitalis to N. equitans across their fused cell membrane structures and the corresponding nucleotides in N. equitans 16S rRNA remain unmethylated. An alternative mechanism for ribosomal subunit maturation in N. equitans is suggested by sRNA interactions that span the redundant RsmA/Dim1 site to introduce 2΄-O-ribose methylations within helices 44 and 45 of the rRNA.


Assuntos
Adenosina/metabolismo , Metiltransferases/metabolismo , Nanoarchaeota/genética , RNA Ribossômico 16S/metabolismo , Desulfurococcaceae/enzimologia , Desulfurococcaceae/genética , Escherichia coli/genética , Metilação , Metiltransferases/genética , Nanoarchaeota/enzimologia , RNA Ribossômico 16S/química , Subunidades Ribossômicas Menores de Arqueas/metabolismo
10.
Extremophiles ; 20(4): 503-14, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27290727

RESUMO

Biosynthesis of L-tyrosine (L-Tyr) and L-phenylalanine (L-Phe) is directed by the interplay of three enzymes. Chorismate mutase (CM) catalyzes the rearrangement of chorismate to prephenate, which can be either converted to hydroxyphenylpyruvate by prephenate dehydrogenase (PD) or to phenylpyruvate by prephenate dehydratase (PDT). This work reports the first characterization of a trifunctional PD-CM-PDT from the smallest hyperthermophilic archaeon Nanoarchaeum equitans and a bifunctional CM-PD from its host, the crenarchaeon Ignicoccus hospitalis. Hexa-histidine tagged proteins were expressed in Escherichia coli and purified by affinity chromatography. Specific activities determined for the trifunctional enzyme were 21, 80, and 30 U/mg for CM, PD, and PDT, respectively, and 47 and 21 U/mg for bifunctional CM and PD, respectively. Unlike most PDs, these two archaeal enzymes were insensitive to regulation by L-Tyr and preferred NADP(+) to NAD(+) as a cofactor. Both the enzymes were highly thermally stable and exhibited maximal activity at 90 °C. N. equitans PDT was feedback inhibited by L-Phe (Ki = 0.8 µM) in a non-competitive fashion consistent with L-Phe's combination at a site separate from that of prephenate. Our results suggest that PD from the unique symbiotic archaeal pair encompass a distinct subfamily of prephenate dehydrogenases with regard to their regulation and co-substrate specificity.


Assuntos
Proteínas Arqueais/metabolismo , Corismato Mutase/metabolismo , Desulfurococcaceae/enzimologia , Nanoarchaeota/enzimologia , Prefenato Desidratase/metabolismo , Prefenato Desidrogenase/metabolismo , Aminoácidos Aromáticos/biossíntese , Proteínas Arqueais/química , Proteínas Arqueais/genética , Corismato Mutase/química , Corismato Mutase/genética , Desulfurococcaceae/fisiologia , Estabilidade Enzimática , Temperatura Alta , Nanoarchaeota/fisiologia , Nitrosaminas/metabolismo , Prefenato Desidratase/química , Prefenato Desidratase/genética , Prefenato Desidrogenase/química , Prefenato Desidrogenase/genética , Especificidade por Substrato , Simbiose
11.
Enzyme Microb Technol ; 82: 197-204, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26672468

RESUMO

We previously reported that Neq A523R DNA polymerase is more efficient in PCR than wild-type Neq DNA polymerase, and amplifies products more rapidly. Neq A523R DNA polymerase also amplifies templates more rapidly than Pfu DNA polymerase, but has a lower fidelity than Pfu DNA polymerase. To improve product yield and the fidelity of amplification simultaneously, we constructed and characterized the double mutant Neq A523R/N540R. The yield of PCR products was greater for Neq A523R/N540R DNA polymerase than wild-type and other mutant DNA polymerases, and the Neq double mutant catalyzed amplification of a 12-kb PCR product from a lambda template with an extension time of 3 min. The PCR error rate of Neq A523R/N540R DNA polymerase (6.3×10(-5)) was roughly similar to that of Pfu DNA polymerase (4.8×10(-5)), but much lower than those of wild-type Neq DNA polymerase (57.2×10(-5)), Neq A523R DNA polymerase (13.1×10(-5)), and Neq N540R DNA polymerase (37.7×10(-5)). These results indicated that A523R and N540R mutations of Neq DNA polymerase had synergistic effects on its fidelity.


Assuntos
Proteínas Arqueais/genética , DNA Polimerase Dirigida por DNA/genética , Nanoarchaeota/enzimologia , Sequência de Aminoácidos , Substituição de Aminoácidos , Genes Bacterianos , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Mutação de Sentido Incorreto , Nanoarchaeota/genética , Fases de Leitura Aberta , Reação em Cadeia da Polimerase/métodos , Conformação Proteica , Engenharia de Proteínas , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
12.
J Biol Chem ; 290(45): 27280-27296, 2015 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-26370083

RESUMO

ATP synthesis is a critical and universal life process carried out by ATP synthases. Whereas eukaryotic and prokaryotic ATP synthases are well characterized, archaeal ATP synthases are relatively poorly understood. The hyperthermophilic archaeal parasite, Nanoarcheaum equitans, lacks several subunits of the ATP synthase and is suspected to be energetically dependent on its host, Ignicoccus hospitalis. This suggests that this ATP synthase might be a rudimentary machine. Here, we report the crystal structures and biophysical studies of the regulatory subunit, NeqB, the apo-NeqAB, and NeqAB in complex with nucleotides, ADP, and adenylyl-imidodiphosphate (non-hydrolysable analog of ATP). NeqB is ∼20 amino acids shorter at its C terminus than its homologs, but this does not impede its binding with NeqA to form the complex. The heterodimeric NeqAB complex assumes a closed, rigid conformation irrespective of nucleotide binding; this differs from its homologs, which require conformational changes for catalytic activity. Thus, although N. equitans possesses an ATP synthase core A3B3 hexameric complex, it might not function as a bona fide ATP synthase.


Assuntos
Complexos de ATP Sintetase/química , Proteínas Arqueais/química , Nanoarchaeota/enzimologia , Complexos de ATP Sintetase/genética , Complexos de ATP Sintetase/metabolismo , Sequência de Aminoácidos , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Domínio Catalítico , Cristalografia por Raios X , Ativação Enzimática , Ligação de Hidrogênio , Modelos Moleculares , Dados de Sequência Molecular , Nanoarchaeota/genética , Filogenia , Conformação Proteica , Estrutura Quaternária de Proteína , Subunidades Proteicas , Homologia de Sequência de Aminoácidos , Eletricidade Estática , Homologia Estrutural de Proteína
13.
J Phys Chem B ; 119(3): 883-95, 2015 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-25145273

RESUMO

Highly charged metal ions act as catalytic centers and structural elements in a broad range of chemical complexes. The nonbonded model for metal ions is extensively used in molecular simulations due to its simple form, computational speed, and transferability. We have proposed and parametrized a 12-6-4 LJ (Lennard-Jones)-type nonbonded model for divalent metal ions in previous work, which showed a marked improvement over the 12-6 LJ nonbonded model. In the present study, by treating the experimental hydration free energies and ion-oxygen distances of the first solvation shell as targets for our parametrization, we evaluated 12-6 LJ parameters for 18 M(III) and 6 M(IV) metal ions for three widely used water models (TIP3P, SPC/E, and TIP4PEW). As expected, the interaction energy underestimation of the 12-6 LJ nonbonded model increases dramatically for the highly charged metal ions. We then parametrized the 12-6-4 LJ-type nonbonded model for these metal ions with the three water models. The final parameters reproduced the target values with good accuracy, which is consistent with our previous experience using this potential. Finally, tests were performed on a protein system, and the obtained results validate the transferability of these nonbonded model parameters.


Assuntos
Elétrons , Metais/química , Modelos Moleculares , Água/química , Nanoarchaeota/enzimologia , Oxirredutases/química , Conformação Proteica
14.
Proc Natl Acad Sci U S A ; 110(38): E3587-94, 2013 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-24003117

RESUMO

Type IA DNA topoisomerases work with a unique mechanism of strand passage through an enzyme-bridged, ssDNA gate, thus enabling them to carry out diverse reactions in processing structures important for replication, recombination, and repair. Here we report a unique reaction mediated by an archaeal type IA topoisomerase, the synthesis and dissolution of hemicatenanes. We cloned, purified, and characterized an unusual type IA enzyme from a hyperthermophilic archaeum, Nanoarchaeum equitans, which is split into two pieces. The recombinant heterodimeric enzyme has the expected activities in its preference of relaxing negatively supercoiled DNA. Its amino acid sequence and cleavage site sequence analysis suggest that it is topoisomerase III, and therefore we named it "NeqTop3." At high enzyme concentrations, NeqTop3 can generate high-molecular-weight DNA networks. Biochemical and electron microscopic data indicate that the DNA networks are connected through hemicatenane linkages. The hemicatenane formation likely is mediated by the single-strand passage through denatured bubbles in the substrate DNA under high temperature. NeqTop3 at lower concentrations can reverse hemicatenanes. A complex of human topoisomerase 3α, Bloom helicase, and RecQ-mediated genome instability protein 1 and 2 can partially disentangle the hemicatenane network. Both the formation and dissolution of hemicatenanes by type IA topoisomerases demonstrate that these enzymes have an important role in regulating intermediates from replication, recombination, and repair.


Assuntos
Proteínas de Transporte/metabolismo , Catenanos/metabolismo , DNA Topoisomerases Tipo I/metabolismo , Proteínas de Ligação a DNA/metabolismo , Complexos Multiproteicos/metabolismo , Nanoarchaeota/enzimologia , Proteínas Nucleares/metabolismo , RecQ Helicases/metabolismo , Sequência de Bases , Proteínas de Transporte/genética , Clonagem Molecular , DNA Topoisomerases Tipo I/genética , Proteínas de Ligação a DNA/genética , Humanos , Microscopia Eletrônica , Dados de Sequência Molecular , Proteínas Nucleares/genética , RecQ Helicases/genética , Alinhamento de Sequência , Análise de Sequência de DNA
15.
Antioxid Redox Signal ; 16(3): 193-201, 2012 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-21902454

RESUMO

AIMS: Redox regulation of cellular processes is an important mechanism that operates in organisms from bacteria to mammals. Much of the redox control is provided by thiol oxidoreductases: proteins that employ cysteine residues for redox catalysis. We wanted to identify thiol oxidoreductases on a genome-wide scale and use this information to obtain insights into the general principles of thiol-based redox control. RESULTS: Thiol oxidoreductases were identified by three independent methods that took advantage of the occurrence of selenocysteine homologs of these proteins and functional linkages among thiol oxidoreductases revealed by comparative genomics. Based on these searches, we describe thioredoxomes, which are sets of thiol oxidoreductases in organisms. Their analyses revealed that these proteins are present in all living organisms, generally account for 0.5%-1% of the proteome and that their use correlates with proteome size, distinguishing these proteins from those involved in core metabolic functions. We further describe thioredoxomes of Saccharomyces cerevisiae and humans, including proteins which have not been characterized previously. Thiol oxidoreductases occur in various cellular compartments and are enriched in the endoplasmic reticulum and cytosol. INNOVATION: We developed bioinformatics methods and used them to characterize thioredoxomes on a genome-wide scale, which in turn revealed properties of thioredoxomes. CONCLUSION: These data provide information about organization and properties of thiol-based redox control, whose use is increased with the increase in complexity of organisms. Our data also show an essential combined function of a set of thiol oxidoreductases, and of thiol-based redox regulation in general, in all living organisms.


Assuntos
Metabolismo , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/genética , Sequência de Aminoácidos , Arabidopsis/enzimologia , Arabidopsis/genética , Bactérias/enzimologia , Bactérias/genética , Sequência de Bases , Mineração de Dados , Bases de Dados Genéticas , Genômica , Humanos , Dados de Sequência Molecular , Nanoarchaeota/enzimologia , Nanoarchaeota/genética , Óperon , Oxirredução , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Homologia de Sequência
16.
Artigo em Inglês | MEDLINE | ID: mdl-21543869

RESUMO

Superoxide reductases (SORs) are the most recent oxygen-detoxification system to be identified in anaerobic and microaerobic bacteria and archaea. SORs are metalloproteins that are characterized by their possession of a catalytic nonhaem iron centre in the ferrous form coordinated by four histidine ligands and one cysteine ligand. Ignicoccus hospitalis, a hyperthermophilic crenarchaeon, is the only organism known to date to serve as a host for Nanoarchaeum equitans, a nanosized hyperthermophilic archaeon isolated from a submarine hot vent which completely depends on the presence of and contact with I. hospitalis cells for growth to occur. Similarly to I. hospitalis, N. equitans has a neelaredoxin (a 1Fe-type SOR) that keeps toxic oxygen species under control, catalysing the one-electron reduction of superoxide to hydrogen peroxide. Blue crystals of recombinant N. equitans SOR in the oxidized form (12.7 kDa, 109 residues) were obtained using polyethylene glycol (PEG 2000 MME) as precipitant. These crystals diffracted to 1.9 Å resolution at 100 K and belonged to the orthorhombic space group P2(1)2(1)2(1), with unit-cell parameters a = 51.88, b = 82.01, c = 91.30 Å. Cell-content analysis suggested the presence of four monomers in the asymmetric unit. The Matthews coefficient (V(M)) was determined to be 1.9 Å(3) Da(-1), corresponding to an estimated solvent content of 36%. Self-rotation function and native Patterson calculations suggested a tetramer with 222 point-group symmetry, similar to other 1Fe-SORs. The three-dimensional structure will be determined by the molecular-replacement method.


Assuntos
Nanoarchaeota/enzimologia , Oxirredutases/química , Cristalização , Cristalografia por Raios X , Expressão Gênica , Oxirredutases/genética , Oxirredutases/isolamento & purificação
17.
J Biol Chem ; 285(51): 39637-45, 2010 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-20929866

RESUMO

Reverse gyrase reanneals denatured DNA and induces positive supercoils in DNA, an activity that is critical for life at very high temperatures. Positive supercoiling occurs by a poorly understood mechanism involving the coordination of a topoisomerase domain and a helicase-like domain. In the parasitic archaeon Nanoarchaeum equitans, these domains occur as separate subunits. We express the subunits, and characterize them both in isolation and as a heterodimer. Each subunit tightly associates and interacts with the other. The topoisomerase subunit enhances the catalytic specificity of the DNA-dependent ATPase activity of the helicase-like subunit, and the helicase-like subunit inhibits the relaxation activity of the topoisomerase subunit while promoting positive supercoiling. DNA binding preference for both single- and double-stranded DNA is partitioned between the subunits. Based on a sensitive topological shift assay, the binding preference of helicase-like subunit for underwound DNA is modulated by its binding with ATP cofactor. These results provide new insight into the mechanism of positive supercoil induction by reverse gyrase.


Assuntos
Proteínas Arqueais/metabolismo , DNA Topoisomerases Tipo I/metabolismo , DNA Arqueal/metabolismo , DNA Super-Helicoidal/metabolismo , Nanoarchaeota/enzimologia , Multimerização Proteica/fisiologia , Trifosfato de Adenosina/genética , Trifosfato de Adenosina/metabolismo , Proteínas Arqueais/genética , Domínio Catalítico , DNA Topoisomerases Tipo I/genética , DNA Arqueal/genética , DNA Super-Helicoidal/genética , Nanoarchaeota/genética
18.
Protein Eng Des Sel ; 23(11): 835-42, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20851826

RESUMO

Neq DNA polymerase is the first archaeal family B DNA polymerase reported to lack uracil recognition function and successfully utilize deaminated bases. We have focused on two amino acid residues (Y515, A523) in the fingers subdomain of Neq DNA polymerase, which were predicted to be located in the middle of the fingers subdomain, based on amino acid sequence alignment of the Neq DNA polymerase with structurally determined archaeal DNA polymerases. Those two residues were replaced by site-directed mutagenesis, and the enzymatic properties of the mutants were analyzed. Here, we show that the A523 residue located in the middle of the fingers subdomain affects the processivity of Neq DNA polymerase. Mutational analysis has allowed us to enhance the protein function as well as understand the function of the residues. One mutant protein, Neq A523R DNA polymerase, exhibited a roughly 3-fold enhanced processivity and extension rate compared to wild type, enabling more efficient PCR. In the presence of uracil, Neq A523R DNA polymerase outperformed Taq DNA polymerase with enhanced specificity and sensitivity. These results suggest that Neq A523R DNA polymerase could be most effectively utilized in real-time PCR using uracil-DNA glycosylase without the risk of carry-over contamination.


Assuntos
DNA Polimerase beta/genética , DNA Polimerase beta/metabolismo , DNA Arqueal/metabolismo , Nanoarchaeota/enzimologia , Engenharia de Proteínas , Sequência de Aminoácidos , DNA Polimerase beta/química , DNA Polimerase beta/isolamento & purificação , Expressão Gênica , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/isolamento & purificação , Proteínas Mutantes/metabolismo , Nanoarchaeota/química , Nanoarchaeota/metabolismo , Reação em Cadeia da Polimerase , Alinhamento de Sequência , Uracila/metabolismo
19.
Nucleic Acids Res ; 37(17): 5793-802, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19578064

RESUMO

The RNA splicing and processing endonuclease from Nanoarchaeum equitans (NEQ) belongs to the recently identified (alphabeta)(2) family of splicing endonucleases that require two different subunits for splicing activity. N. equitans splicing endonuclease comprises the catalytic subunit (NEQ205) and the structural subunit (NEQ261). Here, we report the crystal structure of the functional NEQ enzyme at 2.1 A containing both subunits, as well as that of the NEQ261 subunit alone at 2.2 A. The functional enzyme resembles previously known alpha(2) and alpha(4) endonucleases but forms a heterotetramer: a dimer of two heterodimers of the catalytic subunit (NEQ205) and the structural subunit (NEQ261). Surprisingly, NEQ261 alone forms a homodimer, similar to the previously known homodimer of the catalytic subunit. The homodimers of isolated subunits are inhibitory to heterodimerization as illustrated by a covalently linked catalytic homodimer that had no RNA cleavage activity upon mixing with the structural subunit. Detailed structural comparison reveals a more favorable hetero- than homodimerization interface, thereby suggesting a possible regulation mechanism of enzyme assembly through available subunits. Finally, the uniquely flexible active site of the NEQ endonuclease provides a possible explanation for its broader substrate specificity.


Assuntos
Proteínas Arqueais/química , Endorribonucleases/química , Nanoarchaeota/enzimologia , Sequência de Aminoácidos , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Domínio Catalítico , Cristalografia por Raios X , Dimerização , Endorribonucleases/genética , Endorribonucleases/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Conformação Proteica , Subunidades Proteicas/química , Splicing de RNA , RNA de Transferência/metabolismo , Homologia de Sequência de Aminoácidos , Especificidade por Substrato
20.
Phys Chem Chem Phys ; 11(11): 1809-15, 2009 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-19290353

RESUMO

The resonance Raman (RR) spectra of the oxidized wild-type Archaeoglobus fuglidus 1Fe-Superoxide reductase (SOR), E12V and E12Q mutants were studied at different pH conditions upon excitation in resonance with the pH-dependent charge transfer transition to the ferric iron. The wild-type SOR from Nanoarchaeum equitans that lacks the highly conserved glutamate residue was investigated as a 'natural variant'. No substantial differences were observed in the RR spectra of the active sites of the A. fulgidus proteins. Based on the component analysis in the metal-ligand stretching region the modes involving the Fe-S(Cys) stretching coordinates have been identified. The frequencies of these modes reflect the electronic properties of the Fe-S bond which are related to the catalytic activity of SORs, including reduction of superoxide and product dissociation. Moreover, hydroxide binding to the E12 mutant proteins was demonstrated at high pH. It was further observed that the ferric active site of all three SORs from A. fulgidus senses the presence of phosphate, which possibly replaces the hydroxide at high pH.


Assuntos
Proteínas Arqueais/química , Archaeoglobus fulgidus/enzimologia , Oxirredução , Oxirredutases/química , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Domínio Catalítico , Mutação , Nanoarchaeota/enzimologia , Oxirredutases/genética , Oxirredutases/metabolismo , Análise Espectral Raman , Superóxidos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA