Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mikrochim Acta ; 191(7): 367, 2024 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-38832980

RESUMO

An electrochemical aptasensor was used for the fast and sensitive detection of zearalenone (ZEN) based on the combination of Co3O4/MoS2/Au nanocomposites and the hybrid chain reaction (HCR). The glassy carbon electrode was coated with Co3O4/MoS2/Au nanomaterials to immobilize the ZEN-cDNA that had been bound with ZEN-Apt by the principle of base complementary pairing. In the absence of ZEN, the HCR could not be triggered because the ZEN-cDNA could not be exposed. After ZEN was added to the surface of the electrode, a complex structure was produced on the modified electrode by the combination of ZEN and ZEN-Apt. Therefore, the ZEN-cDNA can raise the HCR to produce the long-strand dsDNA structure. Due to the formation of dsDNA, the methylene blue (MB) could be inserted into the superstructure of branched DNA and the peak currents of the MB redox signal dramatically increased. So the concentration of ZEN could be detected by the change of signal intensity. Under optimized conditions, the developed electrochemical biosensing strategy showed an outstanding linear detection range of 1.0×10-10 mol/L to 1.0×10-6 mol/L, a low detection limit (LOD) of 8.5×10-11 mol/L with desirable selectivity and stability. Therefore, the fabricated platform possessed a great application potential in fields of food safety, medical detection, and drug analysis.


Assuntos
Técnicas Eletroquímicas , Análise de Alimentos , Análise de Perigos e Pontos Críticos de Controle , Nanocompostos , Zearalenona , Zearalenona/análise , Análise de Perigos e Pontos Críticos de Controle/métodos , Análise de Alimentos/instrumentação , Análise de Alimentos/métodos , Nanocompostos/química , Nanocompostos/normas , Eletrodos , Ouro/química , Sensibilidade e Especificidade , Reprodutibilidade dos Testes
2.
IET Nanobiotechnol ; 13(8): 816-823, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31625521

RESUMO

Several materials such as silver are used to enhance graphene oxide (GO) sheets antimicrobial activity. However, these toxic materials decrease its biocompatibility and hinder its usage in many biological applications. Therefore, there is an urgent need to develop nanocomposites that can preserve both the antimicrobial activity and biocompatibility simultaneously. This work highlights the importance of functionalisation of GO sheets using Polyvinylpyrrolidone (PVP) and decorating them with silver nanoparticles (AgNPs) in order to enhance their antimicrobial activity and biocompatibility at the same time. The structural and morphological characterisations were performed by UV-Visible, Fourier transform infrared (FTIR), and Raman spectroscopic techniques, X-ray diffraction (XRD), and high-resolution transmission electron microscopy (HR-TEM). The antimicrobial activities of the prepared samples against Staphylococcus aureus, Pseudomonas aeruginosa, and Candida albicans were studied. The cytotoxicity of prepared materials was tested against BJ1 normal skin fibroblasts. The results indicated that the decoration with AgNPs showed a significant increase in the antimicrobial activity of GO and FGO sheets, and functionalisation of GO sheets and GO-Ag nanocomposite with PVP improved the cell viability about 40 and 35%, respectively.


Assuntos
Materiais Revestidos Biocompatíveis/síntese química , Grafite/química , Nanopartículas Metálicas/química , Nanocompostos/química , Povidona/química , Prata/química , Antibacterianos/síntese química , Antibacterianos/química , Antibacterianos/farmacologia , Candida albicans , Células Cultivadas , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Materiais Revestidos Biocompatíveis/normas , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/fisiologia , Grafite/farmacologia , Humanos , Teste de Materiais , Nanopartículas Metálicas/normas , Testes de Sensibilidade Microbiana , Nanocompostos/normas , Povidona/farmacologia , Pseudomonas aeruginosa , Melhoria de Qualidade , Prata/farmacologia , Pele/citologia , Pele/efeitos dos fármacos , Staphylococcus aureus
3.
Adv Food Nutr Res ; 88: 275-298, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31151726

RESUMO

The production of engineered nanomaterials (ENMs) has increased exponentially over the last few decades. ENMs, made from use of engineered nanoparticles (ENPs), have been applied to the food, agriculture, pharmaceutical, and automobile industries. Of particular interest are their applications in packaging nanocomposites for consumer and non-consumer goods. ENPs in nanocomposites are of interest as a packaging material because they reduce the amount of polymer needed, while improving the physical properties. However, the transformation of ENPs in nanocomposite production, their fate, and their toxicity remain unknown while in contact with the package content or after the end of life. The objectives of this chapter are (a) to provide an overview of the main nanoclays used in packaging; (b) to categorize the main polymeric packaging nanocomposites; (c) to provide an overview of the fate and mass transport of ENPs, especially nanoclays; (d) to describe the mass transfer of nanoclays in food simulants and in compost environments; and (e) to identify current and future research needs.


Assuntos
Estimulantes do Apetite/metabolismo , Argila , Compostagem/normas , Embalagem de Alimentos/métodos , Nanocompostos/normas , Argila/química , Argila/classificação , Argila/normas , Compostagem/métodos , Embalagem de Alimentos/normas , Nanocompostos/toxicidade , Pesquisa/normas , Pesquisa/tendências
4.
J Neural Eng ; 8(6): 066011, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22049097

RESUMO

The hypothesis is that the mechanical mismatch between brain tissue and microelectrodes influences the inflammatory response. Our unique, mechanically adaptive polymer nanocomposite enabled this study within the cerebral cortex of rats. The initial tensile storage modulus of 5 GPa decreases to 12 MPa within 15 min under physiological conditions. The response to the nanocomposite was compared to surface-matched, stiffer implants of traditional wires (411 GPa) coated with the identical polymer substrate and implanted on the contralateral side. Both implants were tethered. Fluorescent immunohistochemistry labeling examined neurons, intermediate filaments, macrophages, microglia and proteoglycans. We demonstrate, for the first time, a system that decouples the mechanical and surface chemistry components of the neural response. The neuronal nuclei density within 100 µm of the device at four weeks post-implantation was greater for the compliant nanocomposite compared to the stiff wire. At eight weeks post-implantation, the neuronal nuclei density around the nanocomposite was maintained, but the density around the wire recovered to match that of the nanocomposite. The glial scar response to the compliant nanocomposite was less vigorous than it was to the stiffer wire. The results suggest that mechanically associated factors such as proteoglycans and intermediate filaments are important modulators of the response of the compliant nanocomposite.


Assuntos
Adaptação Fisiológica/fisiologia , Córtex Cerebral/citologia , Córtex Cerebral/fisiologia , Eletrodos Implantados/normas , Nanocompostos/normas , Neurônios/fisiologia , Animais , Masculino , Microeletrodos/normas , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA