Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 825
Filtrar
1.
Ultrasound Med Biol ; 50(6): 869-881, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38538442

RESUMO

OBJECTIVE: Novel strategies for treating triple-negative breast cancer (TNBC) are ongoing because of the lack of standard-of-care treatment. Nanoframed materials with a protein pillar are considered a valuable tool for designing multigoals of energy-absorbing/medication cargo and are a bridge to cross-conventional treatment strategies. METHODS: Nanobioconjugates of gold nanoclusters-bovine serum albumin (AuNCs-BSA) and doxorubicin-AuNCs-BSA (Dox-AuNCs-BSA) were prepared and employed as a simultaneous double photosensitizer/sonosensitizer and triple chemotherapeutic/photosensitizer/sonosensitizer, respectively. RESULTS: The highly stable AuNCs-BSA and Dox-AuNCs-BSA have ζ potentials of -29 and -18 mV, respectively, and represent valuable photothermal and sonodynamic activities for the combination of photothermal therapy and sonodynamic therapy (PTT/SDT) and synchronized chemotherapy/photothermal therapy/sonodynamic therapy (CTX/PTT/SDT) of human TNBC cells, respectively. The efficiency of photothermal conversion of AuNCs-BSA was calculated to be a promising value of 32.9%. AuNCs-BSA and Dox-AuNCs-BSA were activated on either laser light irradiation or ultrasound exposure with the highest efficiency on the combination of both types of radiation. CTX/PTT/SDT of MCF-7 and MDA-MB-231 breast cancer cell lines by Dox-AuNCs-BSA were evaluated with the MTT cell proliferation assay and found to progress synergistically. CONCLUSION: Results of the MTT assay, detection of the generation of intracellular reactive oxygen species and occurrence of apoptosis in the cells confirmed that CTX/PTT/SDT by Dox-AuNCs-BSA was attained with lower needed doses of the drug and improved tumor cell ablation, which would result in the enhancement of therapeutic efficacy and overcoming of therapeutic resistance.


Assuntos
Antibióticos Antineoplásicos , Doxorrubicina , Ouro , Terapia Fototérmica , Soroalbumina Bovina , Neoplasias de Mama Triplo Negativas , Terapia por Ultrassom , Humanos , Ouro/química , Doxorrubicina/farmacologia , Neoplasias de Mama Triplo Negativas/terapia , Feminino , Terapia por Ultrassom/métodos , Terapia Fototérmica/métodos , Antibióticos Antineoplásicos/farmacologia , Nanoconjugados/química , Terapia Combinada , Nanopartículas Metálicas , Receptores de Estrogênio , Linhagem Celular Tumoral , Neoplasias da Mama/terapia
2.
J Med Chem ; 67(3): 2004-2018, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38241140

RESUMO

Antimicrobial photodynamic therapy (APDT) utilizes photosensitizers (PSs) that eradicate a broad spectrum of bacteria in the presence of light and molecular oxygen. On the other hand, some light sources such as ultraviolet (UVB and UVC) have poor penetration and high cytotoxicity, leading to undesired PDT of the PSs. Herein, we have synthesized conjugatable mesosubstituted porphyrins and extensively characterized them. Time-dependent density functional theory (TD-DFT) calculations revealed that metalloporphyrin EP (5) is a suitable candidate for further applications. Subsequently, the metalloporphyrin was conjugated with lignin-based zinc oxide nanocomposites (ZnOAL and ZnOKL) to develop hydrophilic nanoconjugates (ZnOAL@EP and ZnOKL@EP). Upon dual light (UV + green light) exposure, nanoconjugates showed enhanced singlet oxygen generation ability and also demonstrated pH responsiveness. These nanoconjugates displayed significantly improved APDT efficiency (4-7 fold increase) to treat bacterial infection under dual light irradiation.


Assuntos
Anti-Infecciosos , Metaloporfirinas , Fotoquimioterapia , Nanoconjugados/química , Metaloporfirinas/farmacologia , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Fármacos Fotossensibilizantes/química
3.
Dalton Trans ; 53(5): 2108-2119, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38180438

RESUMO

Photo-redox chemistry resulting from ligand to metal charge transfer in red-light-activable iron(III) complexes could be a potent strategic tool for next-generation photochemotherapeutic applications. Herein, we developed an iron(III) complex and folate co-functionalized gold nanoconjugate (Fe@FA-AuNPs) and thoroughly characterized it with NMR, ESI MS, UV-visible, EPR, EDX, XPS, powder X-ray diffraction, TEM and DLS studies. There was a remarkable shift in the SPR band of AuNPs to 680 nm, and singlet oxygen (1O2) and hydroxyl radicals were potently generated upon red-light activation, which were probed by UV-visible and EPR spectroscopic assays. Cellular uptake studies of the nanoconjugate (Fe@FA-AuNPs) revealed significantly higher uptake in folate(+) cancer cells (HeLa and MDA-MB-231) than folate(-) (A549) cancer cells or normal cells (HPL1D), indicating the targeting potential of the nanoconjugate. Confocal imaging indicated primarily mitochondrial localization. The IC50 values of the nanoconjugate determined from a cell viability assay in HeLa, MDA-MB-231, and A549 cells were 27.83, 39.91, and 69.54 µg mL-1, respectively in red light, while in the dark the values were >200 µg mL-1; the photocytotoxicity was correlated with the cellular uptake of the nanoconjugate. The nanocomposite exhibited similar photocytotoxicity (IC50 in red light, 37.35 ± 8.29 µg mL-1 and IC50 in the dark, >200 µg mL-1). Mechanistic studies revealed that intracellular generation of ROS upon red-light activation led to apoptosis in HeLa cells. Scratch-wound-healing assays indicated the inhibition of the migration of MDA-MB-231 cells treated with the nanoconjugate and upon photo-activation. Overall, the nanoconjugate has emerged as a potent tool for next-generation photo-chemotherapeutics in the clinical arena of targeted cancer therapy.


Assuntos
Nanopartículas Metálicas , Neoplasias , Humanos , Células HeLa , Ferro , Nanoconjugados/química , Ouro/farmacologia , Ouro/química , Células MDA-MB-231 , Ácido Fólico/química , Nanopartículas Metálicas/química
4.
Small ; 20(10): e2306303, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37919854

RESUMO

The combination of immunotherapy and chemotherapy to ablate tumors has attracted substantial attention due to the ability to simultaneously elicit antitumor immune responses and trigger direct tumor cell death. However, conventional combinational strategies mainly focus on the employment of drug carriers to deliver immunomodulators, chemotherapeutics, or their combinations, always suffering from complicated preparation and carrier-relevant side effects. Here, the fabrication of bacterial flagellum-drug nanoconjugates (FDNCs) for carrier-free immunochemotherapy is described. FDNCs are simply prepared by attaching chemotherapeutics to amine residues of flagellin through an acid-sensitive and traceless cis-aconityl linker. By virtue of native nanofibrous structure and immunogenicity, bacterial flagella not only show long-term tumor retention and highly efficient cell internalization, but also provoke robust systemic antitumor immune responses. Meanwhile, conjugated chemotherapeutics exhibit an acid-mediated release profile and durable intratumoral exposure, which can induce potent tumor cell inhibition via direct killing. More importantly, this combination is able to augment immunoactivation effects associated with chemotherapy-enabled immunogenic tumor cell death to further enhance antitumor efficacy. By leveraging the innate response of the immune system to pathogens, the conjugation of therapeutic agents with self-adjuvant bacterial flagella provides an alternative approach to develop carrier-free nanotherapeutics for tumor immunochemotherapy.


Assuntos
Nanoconjugados , Neoplasias , Humanos , Nanoconjugados/química , Portadores de Fármacos/química , Neoplasias/tratamento farmacológico , Adjuvantes Imunológicos , Flagelos , Imunoterapia , Linhagem Celular Tumoral
5.
Food Chem ; 428: 136709, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37429239

RESUMO

Protein-polysaccharide nanoconjugates are covalently interactive networks that are currently the subject of intense research owing to their emerging applications in the food nanotechnology field. Due to their biocompatibility and biodegradability properties, they have played a significant role as wall materials for the formation of various nanostructures to encapsulate nutraceuticals. The food-grade protein-polysaccharide nanoconjugates would be employed to enhance the delivery and stability of nutraceuticals for their real use in the food industry. The most common edible polysaccharides (cellulose, chitosan, pectin, starch, carrageenan, fucoidan, mannan, glucomannan, and arabic gum) and proteins (silk fibroin, collagen, gelatin, soy protein, corn zein, and wheat gluten) have been used as potential building blocks in nano-encapsulation systems because of their excellent physicochemical properties. This article broadens the discussion of food-grade proteins and polysaccharides as nano-encapsulation biomaterials and their fabrication methods, along with a review of the applications of protein-polysaccharide nanoconjugates in the delivery of plant-derived nutraceuticals.


Assuntos
Nanoconjugados , Nanoestruturas , Nanoconjugados/química , Polissacarídeos/química , Proteínas , Nanoestruturas/química , Suplementos Nutricionais
6.
Chem Biodivers ; 20(7): e202300389, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37366243

RESUMO

In this study, a new phthalonitrile derivative namely 4-[(2,4-difluorophenyl)ethynyl]phthalonitrile (1) and its metal phthalocyanines (2 and 3) were synthesized. The resultant compounds were conjugated to silver nanoparticles and characterized using transmission electron microscopy (TEM) images. The biological properties of compounds (1-3), their nanoconjugates (4-6), and silver nanoparticles (7) were examined for the first time in this study. The antioxidant activities of biological candidates (1-7) were studied by applying the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay. The highest antioxidant activity was obtained 97.47 % for 200 mg/L manganese phthalocyanine-silver nanoconjugates (6). The antimicrobial and antimicrobial photodynamic therapy (APDT) activities of biological candidates (1-7) were examined using a micro-dilution assay. The highest MIC value was obtained 8 mg/L for nanoconjugate 6 against E. hirae. The studied compounds and their silver nanoconjugates exhibited high APDT activities against all the studied microorganisms. The most effective APDT activities were obtained 4 mg/L for nanoconjugates (5 and 6) against L. pneumophila and E. hirae, respectively. All the studied biological candidates displayed high cell viability inhibition activities against E. coli cell growth. The biofilm inhibition activities of the tested biological candidates were also investigated against S. aureus and P. Aeruginosa. Biological candidates (1-6) can be considered efficient metal nanoparticle-based materials for multi-disciplinary biological applications.


Assuntos
Anti-Infecciosos , Nanopartículas Metálicas , Nanoconjugados/química , Prata/farmacologia , Prata/química , Nanopartículas Metálicas/química , Staphylococcus aureus , Escherichia coli , Anti-Infecciosos/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Testes de Sensibilidade Microbiana
7.
Arch Microbiol ; 205(5): 170, 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-37017767

RESUMO

Balamuthia mandrillaris and Naegleria fowleri are protist pathogens that can cause fatal infections. Despite mortality rate of > 90%, there is no effective therapy. Treatment remains problematic involving repurposed drugs, e.g., azoles, amphotericin B and miltefosine but requires early diagnosis. In addition to drug discovery, modifying existing drugs using nanotechnology offers promise in the development of therapeutic interventions against these parasitic infections. Herein, various drugs conjugated with nanoparticles were developed and evaluated for their antiprotozoal activities. Characterizations of the drugs' formulations were accomplished utilizing Fourier-transform infrared spectroscopy, efficiency of drug entrapment, polydispersity index, zeta potential, size, and surface morphology. The nanoconjugates were tested against human cells to determine their toxicity in vitro. The majority of drug nanoconjugates exhibited amoebicidal effects against B. mandrillaris and N. fowleri. Amphotericin B-, Sulfamethoxazole-, Metronidazole-based nanoconjugates are of interest since they exhibited significant amoebicidal effects against both parasites (p < 0.05). Furthermore, Sulfamethoxazole and Naproxen significantly diminished host cell death caused by B. mandrillaris by up to 70% (p < 0.05), while Amphotericin B-, Sulfamethoxazole-, Metronidazole-based drug nanoconjugates showed the highest reduction in host cell death caused by N. fowleri by up to 80%. When tested alone, all of the drug nanoconjugates tested in this study showed limited toxic effects against human cells in vitro (less than 20%). Although these are promising findings, prospective work is warranted to comprehend the mechanistic details of nanoconjugates versus amoebae as well as their in vivo testing, to develop antimicrobials against the devastating infections caused by these parasites.


Assuntos
Amebíase , Amebicidas , Balamuthia mandrillaris , Naegleria fowleri , Humanos , Anfotericina B/farmacologia , Metronidazol/farmacologia , Metronidazol/uso terapêutico , Nanoconjugados/química , Nanoconjugados/uso terapêutico , Estudos Prospectivos , Amebicidas/química , Amebicidas/farmacologia , Sulfametoxazol/farmacologia , Sulfametoxazol/uso terapêutico , Amebíase/tratamento farmacológico , Amebíase/parasitologia
8.
Anal Chim Acta ; 1242: 340794, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36657889

RESUMO

In this study, an assay for detection of the cancer biomarker Thomsen-nouvelle (Tn) antigen on the ELISA plates format was designed and developed. The effects of size and the interfacial density of the negative charge of magnetic beads (MBs) on the specific sensitivity of the bioaffinity interaction were studied. In particular, glyconanoconjugate, i.e. glycan Tn antigen conjugated to bovine serum albumin (BSA) was covalently immobilised on MBs for the bioaffinity detection of anti-Tn antibodies as cancer biomarkers. Six different MBs were used in the study, i.e. carboxy-modified MBs of 250 nm, 500 nm, 1000 nm and 2800 nm and epoxy-modified MBs of 2800 nm and 4500 nm. In order to evaluate which MBs are the best suited for detection of the analyte anti-Tn antibodies, sensitivities of detection (slopes from calibration curves) were calculated. Next, specific sensitivities were calculated for each type of MBs as a ratio of sensitivity of detection to the mass of MBs. From zeta potential ζ for each type of MBs, the interfacial charge density on MBs was calculated, expressed as the density of zeta potential ζd (ratio of zeta potential to surface area of MBs, i.e. ζd = Î¶/A). Then, we evaluated the effect of size and ζd on the specific sensitivity of detection of anti-Tn antibodies in order to understand the immobilisation process on nanoscale. We also identified an optimal value of ζd on MBs; this was essential to achieve highly sensitive detection of the analyte, which made it possible to attain limit of detection (LOD) of (0.31 ± 0.01) ng mL-1 or (2.10 ± 0.04) pM for analyte detection. In addition, the optimal assay configuration was highly selective and enabled reliable detection of the analyte in human serum with a recovery index in the range of 102-104%.


Assuntos
Antígenos Glicosídicos Associados a Tumores , Magnetismo , Nanoconjugados , Humanos , Fenômenos Magnéticos , Soroalbumina Bovina , Nanoconjugados/química , Antígenos Glicosídicos Associados a Tumores/análise
9.
J Pharm Sci ; 112(6): 1603-1614, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-34678274

RESUMO

Bacterial polysaccharides can be easily modified to offer dual stimuli-responsive drug delivery systems with double targeting potential. In this research work, bacterial polysaccharides hyaluronic acid (HA) were functionalized with α-tocopherol polyethylene glycol succinate (TPGS) and cholic acid (CA) to form multifunctional polysaccharides nanoconjugates (TPGS-HA-CA). Smart nanoconjugates were synthesized by forming a redox-responsive disulfide bond, and it is composed of double targeting ligands. Doxorubicin (DOX) encapsulated smart nanoconjugates were exhibited an average size of 200 nm with a uniform core-shell structure. It serves the pH-responsive side chain modulation of TPGS-HA-CA, which affords a high degree of swelling at acidic pH. Under the pH 5.0 it shows 57% of release due to the side chain modulation of C-H/N-H. Polysaccharides nanoconjugates exhibited the double stimuli-responsive drug delivery by rapid disassembly of disulfide linkage, which exhibited 72% drug release (pH 5.0+GSH 10 mM). In cytotoxic studies, DOX@TPGS-HA-CA exhibited a higher cytotoxic effect compared to DOX. Hyaluronic acid functionalization with CA, TPGS increases cell internalization, and dual stimuli activity promotes more cell death. Overall, multifunctional polysaccharides hydrogel nanoconjugates is a prospective material that has great potential for targeting breast cancer therapy.


Assuntos
Antineoplásicos , Nanoconjugados , Humanos , Nanoconjugados/química , Ácido Hialurônico/química , Antineoplásicos/uso terapêutico , Doxorrubicina , Sistemas de Liberação de Medicamentos , Dissulfetos , Liberação Controlada de Fármacos , Concentração de Íons de Hidrogênio
10.
Int J Biol Macromol ; 222(Pt B): 1818-1829, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36191785

RESUMO

Paclitaxel (PTX) is an essential anticancer drug from the biopharmaceutical classification system (BCS) class IV. Unfortunately, PTX has some drawbacks including low solubility, cell toxicity, adverse cell reaction, etc. Therefore, folic acid (FA) tailored carboxymethyl-dextran (CMD), and bovine serum albumin (BSA) mediated nanoconjugates of paclitaxel (PTX) (FA-CMD-BSA-PTX) were designed. At first, esterification reaction between FA and CMD resulted in FA-CMD conjugate whereas FA-CMD-BSA conjugate was synthesized via the Maillard reaction. Finally, FA-CMD-BSA conjugates of PTX were achieved via hydrophobic interaction and gelation of BSA. Herein, heating offers the gelation of BSA that furnishes the cross-linking wherein PTX gets fixed inside BSA. Thermogram of FA-CMD-BSA-PTX showed the absence of PTX peak that concluding PTX has been molecularly dispersed in polymer matrix and entrapment inside polymeric conjugate. As an effect, surface decorated FA-CMD-BSA-PTX showed low hemolytic toxicity over free PTX. Cytotoxicity assay on A549 human lung cancer cells shows cell viability decreased from 60 % to 10 % with increasing concentration from 1 to 5 µg/mL. In conclusion, CMD facilitates the circulation time of PTX and BSA acts as a carrier to target tumor locations effectively. The nano-conjugate formulation significantly reduces toxicity and can be used for the treatment of lung cancer.


Assuntos
Antineoplásicos Fitogênicos , Neoplasias Pulmonares , Nanopartículas , Humanos , Paclitaxel/farmacologia , Paclitaxel/química , Nanoconjugados/química , Dextranos , Proteínas de Membrana , Antineoplásicos Fitogênicos/química , Nanopartículas/química , Soroalbumina Bovina/química , Ácido Fólico/química , Polímeros/química , Neoplasias Pulmonares/tratamento farmacológico , Portadores de Fármacos/química , Linhagem Celular Tumoral
12.
Colloids Surf B Biointerfaces ; 213: 112355, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35158220

RESUMO

A new hybrid organic-inorganic silsesquioxane material, 3-n-propyl(2-amino-4-methyl)pyridium chloride (SiAMPy+Cl-), was synthesized and successfully applied for the synthesis of stable nanoconjugates with gold nanoparticles (AuNPs-SiAMPy+). SiAMPy+Cl- was obtained through a simple sol-gel procedure by using chloropropyltrimetoxysilane and tetraethylorthosilicate as precursors and 2-amino-4-methylpyridine as the functionalizing agent. The resulting material was characterized by employing FTIR, XRD, and 1H-, 13C-, and 29Si-NMR spectroscopy. The synthesis of AuNPs-SiAMPy+ nanoconjugates was optimized through a 23 full factorial design. UV-VIS, FTIR, TEM, DLS, and ζ-potential measurements were used to characterize the nanoconjugates, which presented a spherical morphology with an average diameter of 5.8 nm. To investigate the existence of toxic effects of AuNPs-SiAMPy+ on blood cells, which is essential for their future biomedical applications, toxicity assays on human erythrocytes and leukocytes were performed. Interestingly, no cytotoxic effects were observed for both types of cells. The nanoconjugates were further applied in the construction of electrochemical immunosensing devices, aiming the detection of anti-Trypanosoma cruzi antibodies in serum as biomarkers of Chagas disease. The AuNPs-SiAMPy+ significantly enhanced the sensitivity of the biodevice, which was able to discriminate between anti-T. cruzi positive and negative serum samples. Thus, the AuNPs-SiAMPy+-based biosensor showed great potential to be used as a new tool to perform fast and accurate diagnosis of Chagas disease. The promising findings described herein strongly confirm the remarkable potential of SiAMPy+Cl- to obtain nanomaterials, which can present notable biomedical properties and applications.


Assuntos
Técnicas Biossensoriais , Doença de Chagas , Nanopartículas Metálicas , Ouro/química , Humanos , Nanopartículas Metálicas/química , Nanoconjugados/química
13.
Biomacromolecules ; 23(5): 1928-1937, 2022 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-35119839

RESUMO

Plant-derived phytoglycogen nanoparticles (PhG NPs) have the advantages of size uniformity, dispersibility in water, excellent lubrication properties, and lack of cytotoxicity; however, their chemical functionalization may lead to loss of NP structural integrity. Here, we report a straightforward approach to the generation of PhG NP conjugates with biologically active molecules. Hydrogen bonding of bovine serum albumin with electroneutral PhG NPs endows them with additional ligand binding affinity and enables the electrostatically governed attachment of methotrexate (MTX), a therapeutic agent commonly used in the treatment of cancer and arthritis diseases, to the protein-capped NPs. We showed stimuli-responsive release of MTX from the PhG-based nanoconjugates under physiological cues such as temperature and ionic strength. The results of this study stimulate future exploration of biomedical applications of nanoconjugates of PhG NPs.


Assuntos
Nanoconjugados , Nanopartículas , Metotrexato/química , Metotrexato/farmacologia , Nanoconjugados/química , Nanopartículas/química , Soroalbumina Bovina
14.
Int J Mol Sci ; 23(3)2022 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-35163186

RESUMO

Targeted drug delivery by nanocarriers molecules can increase the efficiency of cancer treatment. One of the targeting ligands is folic acid (FA), which has a high affinity for the folic acid receptors, which are overexpressed in many cancers. Herein, we describe the preparation of the nanoconjugates containing quantum dots (QDs) and ß-cyclodextrin (ß-CD) with foliate-targeting properties for the delivery of anticancer compound C-2028. C-2028 was bound to the nanoconjugate via an inclusion complex with ß-CD. The effect of using FA in QDs-ß-CD(C-2028)-FA nanoconjugates on cytotoxicity, cellular uptake, and the mechanism of internalization in cancer (H460, Du-145, and LNCaP) and normal (MRC-5 and PNT1A) cells was investigated. The QDs-ß-CD(C-2028)-FA were characterized using DLS (dynamic light scattering), ZP (zeta potential), quartz crystal microbalance with dissipation (QCM-D), and UV-vis spectroscopy. The conjugation of C-2028 with non-toxic QDs or QDs-ß-CD-FA did not change the cytotoxicity of this compound. Confocal microscopy studies proved that the use of FA in nanoconjugates significantly increased the amount of delivered compound, especially to cancer cells. QDgreen-ß-CD(C-2028)-FA enters the cells through multiple endocytosis pathways in different levels, depending on the cell line. To conclude, the use of FA is a good self-navigating molecule in the QDs platform for drug delivery to cancer cells.


Assuntos
Acridinas/administração & dosagem , Sistemas de Liberação de Medicamentos/métodos , Ácido Fólico/farmacologia , Acridinas/farmacologia , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Portadores de Fármacos/química , Humanos , Pulmão/patologia , Neoplasias Pulmonares/tratamento farmacológico , Masculino , Nanoconjugados/química , Nanoestruturas , Próstata/patologia , Neoplasias da Próstata/tratamento farmacológico , Pontos Quânticos/química , beta-Ciclodextrinas/química , beta-Ciclodextrinas/farmacologia
15.
Int J Mol Sci ; 23(4)2022 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-35216438

RESUMO

Spherical gold nanoparticles (GNPs), whose unique properties regarding biomedical applications were broadly investigated, are an object of interest as nanocarriers in drug targeted delivery systems (DTDSs). The possibility of surface functionalization, especially in enabling longer half-life in the bloodstream and enhancing cellular uptake, provides an opportunity to overcome the limitations of popular anticancer drugs (such as cisplatin) that cause severe side effects due to their nonselective transportation. Herein, we present investigations of gold nanoparticle-cisplatin systems formation (regarding reaction kinetics and equilibrium) in which it was proved that the formation efficiency and stability strongly depend on the nanoparticle surface functionalization. In this study, the capillary electrophoresis hyphenated with inductively coupled plasma tandem mass spectrometry (CE-ICP-MS/MS) was used for the first time to monitor gold-drug nanoconjugates formation. The research included optimizing CE separation conditions and determining reaction kinetics using the CE-ICP-MS/MS developed method. To characterize nanocarriers and portray changes in their physicochemical properties induced by the surface's processes, additional hydrodynamic size and ζ-potential by dynamic light scattering (DLS) measurements were carried out. The examinations of three types of functionalized GNPs (GNP-PEG-COOH, GNP-PEG-OCH3, and GNP-PEG-biotin) distinguished the essential differences in drug binding efficiency and nanoconjugate stability.


Assuntos
Cisplatino/química , Portadores de Fármacos/química , Ouro/química , Nanopartículas Metálicas/química , Antineoplásicos/química , Difusão Dinâmica da Luz/métodos , Eletroforese Capilar/métodos , Nanoconjugados/química , Tamanho da Partícula , Espectrometria de Massas em Tandem/métodos
16.
Int J Mol Sci ; 22(17)2021 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-34502468

RESUMO

In this paper, magnetic molecularly imprinted nano-conjugates were synthesized to serve as selective sorbents in a model study of tyramine determination in craft beer samples. The molecularly imprinted sorbent was characterized in terms of morphology, structure, and composition. The magnetic dispersive solid phase extraction protocol was developed and combined with liquid chromatography coupled with mass spectrometry to determine tyramine. Ten samples of craft beers were analyzed using a validated method, revealing tyramine concentrations in the range between 0.303 and 126.5 mg L-1. Tyramine limits of detection and quantification were 0.033 mg L-1 and 0.075 mg L-1, respectively. Therefore, the fabricated molecularly imprinted magnetic nano-conjugates with a fast magnetic responsivity and desirable adsorption performance could be an effective tool for monitoring tyramine levels in beverages.


Assuntos
Cerveja/análise , Fenômenos Magnéticos , Impressão Molecular , Nanoconjugados/química , Tiramina/análise
17.
Molecules ; 26(15)2021 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-34361811

RESUMO

Recently, we designed an inventive paradigm in nanomedicine-drug-free macromolecular therapeutics (DFMT). The ability of DFMT to induce apoptosis is based on biorecognition at cell surface, and crosslinking of receptors without the participation of low molecular weight drugs. The system is composed of two nanoconjugates: a bispecific engager, antibody or Fab' fragment-morpholino oligonucleotide (MORF1) conjugate; the second nanoconjugate is a multivalent effector, human serum albumin (HSA) decorated with multiple copies of complementary MORF2. Here, we intend to demonstrate that DFMT is a platform that will be effective on other receptors than previously validated CD20. We appraised the impact of daratumumab (DARA)- and isatuximab (ISA)-based DFMT to crosslink CD38 receptors on CD38+ lymphoma (Raji, Daudi) and multiple myeloma cells (RPMI 8226, ANBL-6). The biological properties of DFMTs were determined by flow cytometry, confocal fluorescence microscopy, reactive oxygen species determination, lysosomal enlargement, homotypic cell adhesion, and the hybridization of nanoconjugates. The data revealed that the level of apoptosis induction correlated with CD38 expression, the nanoconjugates meet at the cell surface, mitochondrial signaling pathway is strongly involved, insertion of a flexible spacer in the structure of the macromolecular effector enhances apoptosis, and simultaneous crosslinking of CD38 and CD20 receptors increases apoptosis.


Assuntos
ADP-Ribosil Ciclase 1/genética , Anticorpos Monoclonais Humanizados/farmacologia , Anticorpos Monoclonais/farmacologia , Mieloma Múltiplo/tratamento farmacológico , Apoptose/efeitos dos fármacos , Linfócitos B/efeitos dos fármacos , Linfócitos B/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Reagentes de Ligações Cruzadas/farmacologia , Citometria de Fluxo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Morfolinos/química , Morfolinos/genética , Morfolinos/farmacologia , Mieloma Múltiplo/patologia , Nanoconjugados/química , Albumina Sérica Humana/química , Albumina Sérica Humana/farmacologia , Transdução de Sinais/efeitos dos fármacos
18.
Biomed Mater ; 16(5)2021 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-34280914

RESUMO

Acute myeloid leukemia (AML) is a highly aggressive type of cancer caused by the uncontrolled proliferation of undifferentiated myeloblasts, affecting the bone marrow and blood. Systemic chemotherapy is considered the primary treatment strategy; unfortunately, healthy cells are also affected to a large extent, leading to severe side effects of this treatment. Targeted drug therapies are becoming increasingly popular in modern medicine, as they bypass normal tissues and cells. Two-dimensional MoS2-based nanomaterials have attracted attention in the biomedical field as promising agents for cancer diagnosis and therapy. Cancer cells typically (over)express distinctive cytoplasmic membrane-anchored or -spanning protein-based structures (e.g., receptors, enzymes) that distinguish them from healthy, non-cancerous cells. Targeting cancer cells via tumor-specific markers using MoS2-based nanocarriers loaded with labels or drugs can significantly improve specificity and reduce side effects of such treatment. SKM-1 is an established AML cell line that has been employed in various bio-research applications. However, to date, it has not been used as the subject of studies on selective cancer targeting by inorganic nanomaterials. Here, we demonstrate an efficient targeting of AML cells using MoS2nanoflakes prepared by a facile exfoliation route and functionalized with anti-CD33 antibody that binds to CD33 receptors expressed by SKM-1 cells. Microscopic analyses by confocal laser scanning microscopy supplemented by label-free confocal Raman microscopy proved that (anti-CD33)-MoS2conjugates were present on the cell surface and within SKM-1 cells, presumably having been internalized via CD33-mediated endocytosis. Furthermore, the cellular uptake of SKM-1 specific (anti-CD33)-MoS2conjugates assessed by flow cytometry analysis was significantly higher compared with the cellular uptake of SKM-1 nonspecific (anti-GPC3)-MoS2conjugates. Our results indicate the importance of appropriate functionalization of MoS2nanomaterials by tumor-recognizing elements that significantly increase their specificity and hence suggest the utilization of MoS2-based nanomaterials in the diagnosis and therapy of AML.


Assuntos
Dissulfetos/química , Sistemas de Liberação de Medicamentos/métodos , Leucemia Mieloide Aguda/metabolismo , Molibdênio/química , Nanoconjugados/química , Lectina 3 Semelhante a Ig de Ligação ao Ácido Siálico/metabolismo , Antineoplásicos/química , Antineoplásicos/farmacocinética , Linhagem Celular Tumoral , Humanos , Microscopia Óptica não Linear , Lectina 3 Semelhante a Ig de Ligação ao Ácido Siálico/imunologia
19.
J Mater Chem B ; 9(29): 5877-5886, 2021 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-34259273

RESUMO

Tumors are complex and highly variable, making it difficult for a single treatment strategy to be significantly effective for cancer therapy. Herein, we report a robust cascade biomimetic nanoplatform that integrates chemiluminescence-induced photodynamic therapy (CL-PDT), Fenton reaction-based chemodynamic therapy (CDT), and glucose oxidase (GOD)-mediated starvation therapy to synergistically enhance cancer treatment. For the nanoplatform of CPPO@porphyrin-MOF@Cancer cell membrane-GOD (C1@M@C2G), the ferric ion-linked porphyrin-MOF can trigger a Fenton reaction to reach CDT, the carried CPPO as an energy donor is used to excite a photo-sensitive porphyrin-MOF in situ to generate singlet oxygen (1O2) for PDT, GOD catalyzes glucose into H2O2 and gluconic acid to realize starvation therapy, and the cancer cell membrane wrapped onto the nanoparticle plays a key role in homologous targeting, which is conducive to achieving better therapeutic effects. Significantly, the porphyrin-MOF with catalase-like activity can generate O2 to effectively relieve tumor hypoxia, thereby enhancing the catalytic effect of GOD and the efficacy of PDT. Additionally, the produced H2O2 and gluconic acid can further improve the CPPO-H2O2-triggered CL-PDT and promote the low pH-dependence Fenton reaction-based CDT, respectively. Both in vitro and in vivo studies showed that the constructed nanoplatform displays an excellent cooperative anti-tumor performance, so we firmly believe that this simple nanoplatform broadens the pathway to fight against cancer through effective cascade catalysis.


Assuntos
Antineoplásicos/farmacologia , Materiais Biomiméticos/farmacologia , Glucose Oxidase/metabolismo , Estruturas Metalorgânicas/farmacologia , Nanoconjugados/química , Fotoquimioterapia , Animais , Antineoplásicos/química , Antineoplásicos/metabolismo , Biocatálise , Materiais Biomiméticos/química , Materiais Biomiméticos/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Neoplasias Mamárias Experimentais/tratamento farmacológico , Neoplasias Mamárias Experimentais/metabolismo , Neoplasias Mamárias Experimentais/patologia , Estruturas Metalorgânicas/química , Estruturas Metalorgânicas/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Hipóxia Tumoral/efeitos dos fármacos
20.
J Nanobiotechnology ; 19(1): 182, 2021 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-34127005

RESUMO

BACKGROUND: Photodynamic therapy (PDT) may elicit antitumor immune response in addition to killing cancer cells. However, PDT as a monotherapy often fails to induce a strong immunity. Immune checkpoint inhibitors, which selectively block regulatory axes, may be used in combination with PDT to improve treatment outcomes. Indoleamine 2,3-dioxygenase (IDO) is an immunoregulatory enzyme and an important meditator of tumor immune escape. Combination therapy with PDT and IDO-targeted immune checkpoint blockage is promising but has been seldom been explored. METHODS: Herein we report a composite nanoparticle that allows for simultaneous delivery of photosensitizer and IDO inhibitor. Briefly, we separately load ZnF16Pc, a photosensitizer, and NLG919, an indoleamine 2,3-dioxygenase (IDO) inhibitor, into ferritin and poly(lactide-co-glycolic)-block-poly(ethylene glycol) (PEG-PLGA) nanoparticles; we then conjugate these two compartments to form a composite nanoparticle referred to as PPF NPs. We tested combination treatment with PPF NPs first in vitro and then in vivo in B16F10-tumor bearing C57/BL6 mice. RESULTS: Our results showed that PPF NPs can efficiently encapsulate both ZnF16Pc and NLG919. In vivo studies found that the combination treatment led to significantly improved tumor suppression and animal survival. Moreover, the treatment increased tumor infiltration of CD8+ T cells, while reducing frequencies of MDSCs and Tregs. 30% of the animals showed complete tumor eradication, and they successfully rejected a second tumor inoculation. Overall, our studies introduce a unique composite nanoplatform that allows for co-delivery of photosensitizer and IDO inhibitor with minimal inter-species interference, which is ideal for combination therapy.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Imunoterapia/métodos , Indolamina-Pirrol 2,3,-Dioxigenase/efeitos dos fármacos , Nanoconjugados/uso terapêutico , Nanopartículas/uso terapêutico , Fotoquimioterapia/métodos , Animais , Linfócitos T CD8-Positivos , Linhagem Celular Tumoral , Liberação Controlada de Fármacos , Inibidores Enzimáticos/farmacologia , Ferritinas , Humanos , Imidazóis , Isoindóis , Camundongos , Células Supressoras Mieloides , Nanoconjugados/química , Nanopartículas/química , Neoplasias/tratamento farmacológico , Fármacos Fotossensibilizantes/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA