Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 160
Filtrar
1.
ASN Neuro ; 16(1): 2394352, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39249102

RESUMO

Iron is a critical transition metal required to sustain a healthy central nervous system. Iron is involved in metabolic reactions, enzymatic activity, myelinogenesis, and oxygen transport. However, in several pathological conditions such as cancer, neurodegeneration, and neurotrauma iron becomes elevated. Excessive iron can have deleterious effects leading to reactive oxygen species (ROS) via the Fenton reaction. Iron-derived ROS are known to drive several mechanisms such as cell death pathways including ferroptosis, necroptosis, and pyroptosis. Excessive iron present in the post-traumatic brain could trigger these harmful pathways potentiating the high rates of morbidity and mortality. In the present review, we will discuss how iron plays an intricate role in initiating ferroptosis, necroptosis, and pyroptosis, examine their potential link to traumatic brain injury morbidity and mortality, and suggest therapeutic targets.


Assuntos
Lesões Encefálicas Traumáticas , Ferroptose , Ferro , Necroptose , Piroptose , Piroptose/fisiologia , Humanos , Ferroptose/fisiologia , Ferro/metabolismo , Necroptose/fisiologia , Animais , Lesões Encefálicas Traumáticas/metabolismo , Lesões Encefálicas Traumáticas/patologia , Espécies Reativas de Oxigênio/metabolismo
2.
J Cardiothorac Surg ; 19(1): 524, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39261934

RESUMO

INTRODUCTION: Acute myocardial infarction (AMI) is a serious, deadly disease with a high incidence. However, it remains unclear how necroptosis affects the pathophysiology of AMI. Using bioinformatic analyses, this study investigated necroptosis in AMI. METHODS: We obtained the GSE66360 dataset related to AMI by the GEO database. Venn diagrams were used to identify necroptosis-related differential genes (NRDEGs). The genes with differential expression in AMI were analyzed using gene set enrichment analysis, and a PPI network was established. A transcription factor prediction and enrichment analysis were conducted for the NRDEGs, and the relationships between AMI, NRDEGs, and immune cells were determined. Finally, in the additional dataset, NRDEG expression levels, immune infiltration, and ROC curve analysis were confirmed, and gene expression levels were further verified experimentally. RESULTS: GSEA revealed that necroptosis pathways were significantly enriched in AMI. We identified 10 NRDEGs, including TNF, TLR4, FTH1 and so on. Enrichment analysis indicated that the NOD-like receptor and NF-kappa B signaling pathways were significantly enriched. Four NRDEGs, FTH1, IFNGR1, STAT3, and TLR4, were identified; however, additional datasets and further experimental validation are required to confirm their roles. In addition, we determined that a high abundance of macrophages and neutrophils prompted AMI development. CONCLUSIONS: In this study, four potential genes that affect the development of AMI through necroptosis (FTH1, IFNGR1, STAT3, and TLR4) were identified. In addition, we found that a high abundance of macrophages and neutrophils affected AMI. This helps determine the pathological mechanism of necroptosis and immune cells that influence AMI and provides a novel strategy for targeted therapy.


Assuntos
Biologia Computacional , Infarto do Miocárdio , Necroptose , Infarto do Miocárdio/genética , Infarto do Miocárdio/imunologia , Infarto do Miocárdio/patologia , Humanos , Necroptose/genética , Necroptose/fisiologia
3.
Biochem J ; 481(17): 1125-1142, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39136677

RESUMO

Necroptosis is a lytic and pro-inflammatory form of programmed cell death executed by the terminal effector, the MLKL (mixed lineage kinase domain-like) pseudokinase. Downstream of death and Toll-like receptor stimulation, MLKL is trafficked to the plasma membrane via the Golgi-, actin- and microtubule-machinery, where activated MLKL accumulates until a critical lytic threshold is exceeded and cell death ensues. Mechanistically, MLKL's lytic function relies on disengagement of the N-terminal membrane-permeabilising four-helix bundle domain from the central autoinhibitory brace helix: a process that can be experimentally mimicked by introducing the R30E MLKL mutation to induce stimulus-independent cell death. Here, we screened a library of 429 kinase inhibitors for their capacity to block R30E MLKL-mediated cell death, to identify co-effectors in the terminal steps of necroptotic signalling. We identified 13 compounds - ABT-578, AR-A014418, AZD1480, AZD5363, Idelalisib, Ipatasertib, LJI308, PHA-793887, Rapamycin, Ridaforolimus, SMI-4a, Temsirolimus and Tideglusib - each of which inhibits mammalian target of rapamycin (mTOR) signalling or regulators thereof, and blocked constitutive cell death executed by R30E MLKL. Our study implicates mTOR signalling as an auxiliary factor in promoting the transport of activated MLKL oligomers to the plasma membrane, where they accumulate into hotspots that permeabilise the lipid bilayer to cause cell death.


Assuntos
Necroptose , Proteínas Quinases , Transdução de Sinais , Serina-Treonina Quinases TOR , Proteínas Quinases/metabolismo , Proteínas Quinases/genética , Necroptose/efeitos dos fármacos , Necroptose/fisiologia , Humanos , Serina-Treonina Quinases TOR/metabolismo , Inibidores de Proteínas Quinases/farmacologia
4.
Invest Ophthalmol Vis Sci ; 65(10): 38, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39189995

RESUMO

Purpose: To identify molecular signatures specific for ocular graft-versus-host disease (GVHD) by proteomic analysis of corneas from mice with GVHD. Methods: We identified differentially expressed proteins (DEPs) in corneal samples from GVHD model mice and syngeneic control mice 4 weeks after bone marrow transplantation. Data-independent acquisition analysis was performed on individual samples, and the roles of DEPs in biological pathways related to GVHD were evaluated via bioinformatics and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. Results: Three important signaling pathways were upregulated in the cornea in mice with GVHD: (1) the necroptosis pathway, (2) the mitogen-activated protein kinase (MAPK) pathway, and (3) as previously reported, the neutrophil extracellular trap (NET) pathway. In those signaling pathways, we identified new upregulated molecules, including (1) receptor-interacting protein kinase 1 (RIPK1), RIPK3, interferon regulatory factor 9, the interferon-induced double-stranded RNA-activated protein kinase lipoxygenase, and high mobility group box1 (HMGB1) which are damage-associated molecular patterns (DAMPs) in the necroptosis pathway; (2) the sequentially upregulated interleukin 1 (IL-1) receptor-associated kinase (IRAK), an evolutionarily conserved signaling intermediate in the Toll pathway (ECSIT), and p38, which is downstream of the IL-1 receptor and increased CDC42/Rac (Rac2), a Rho family GTPase in the MAPK pathway; and (3) the integrin components CR3 and macrophage-1 antigen (MAC-1), which are DAMPs, and the pyroptosis-related protein gasdermin D (GSDMD) in the NET pathway. Conclusions: These novel molecules may help researchers elucidate the pathogenesis of GVHD and identify new therapeutic targets for corneal changes in patients with ocular GVHD.


Assuntos
Córnea , Modelos Animais de Doenças , Doença Enxerto-Hospedeiro , Camundongos Endogâmicos C57BL , Necroptose , Proteômica , Transdução de Sinais , Regulação para Cima , Animais , Camundongos , Necroptose/fisiologia , Doença Enxerto-Hospedeiro/metabolismo , Córnea/metabolismo , Córnea/patologia , Transdução de Sinais/fisiologia , Feminino , Transplante de Medula Óssea
5.
Front Endocrinol (Lausanne) ; 15: 1427679, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39193373

RESUMO

Diabetic peripheral neuropathy (DPN) is a complication of diabetes mellitus that lacks specific treatment, its high prevalence and disabling neuropathic pain greatly affects patients' physical and mental health. Schwann cells (SCs) are the major glial cells of the peripheral nervous system, which play an important role in various inflammatory and metabolic neuropathies by providing nutritional support, wrapping axons and promoting repair and regeneration. Increasingly, high glucose (HG) has been found to promote the progression of DPN pathogenesis by targeting SCs death regulation, thus revealing the specific molecular process of programmed cell death (PCD) in which SCs are disrupted is an important link to gain insight into the pathogenesis of DPN. This paper is the first to review the recent progress of HG studies on apoptosis, autophagy, pyroptosis, ferroptosis and necroptosis pathways in SCs, and points out the crosstalk between various PCDs and the related therapeutic perspectives, with the aim of providing new perspectives for a deeper understanding of the mechanisms of DPN and the exploration of effective therapeutic targets.


Assuntos
Neuropatias Diabéticas , Células de Schwann , Células de Schwann/metabolismo , Células de Schwann/patologia , Humanos , Neuropatias Diabéticas/terapia , Neuropatias Diabéticas/patologia , Neuropatias Diabéticas/metabolismo , Neuropatias Diabéticas/etiologia , Animais , Apoptose , Morte Celular , Autofagia/fisiologia , Necroptose/fisiologia
6.
Pflugers Arch ; 476(11): 1645-1651, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39037477

RESUMO

Necroptosis is a regulated form of cell death with implications in various physiological and pathological processes in multiple tissues. However, the relevant findings from post-mitotic tissues, such as skeletal muscle, are scarce. This review summarizes the potential contributions of necroptosis to skeletal muscle health and diseases. It first discusses the physiological roles of necroptosis in muscle regeneration and development. It then summarizes the contributions of necroptosis to the pathogenesis of multiple muscle diseases, including muscular dystrophies, inflammatory myopathies, cachexia, and neuromuscular disorders. Lastly, it unravels the gaps in our understanding and therapeutic challenges of inhibiting necroptosis as a potential intervention for muscle diseases. Specifically, the findings from the transgenic animal models and the use of pharmacological inhibitors of necroptosis are discussed with relevance to improving the structure and/or function of skeletal muscle in various diseases. Recent developments from experimental animal models and clinical data are presented to discuss the roles of necroptosis in skeletal muscle health and diseases.


Assuntos
Músculo Esquelético , Doenças Musculares , Necroptose , Humanos , Animais , Necroptose/fisiologia , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Doenças Musculares/metabolismo , Doenças Musculares/patologia
7.
Metabolism ; 158: 155975, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39004396

RESUMO

Metabolic dysfunction-associated steatotic liver disease (MASLD), formerly known as non-alcoholic fatty liver disease (NAFLD), encompasses a progressive spectrum of liver conditions, ranging from steatosis to metabolic dysfunction-associated steatohepatitis, characterised by hepatocellular death and inflammation, potentially progressing to cirrhosis and/or liver cancer. In both experimental and human MASLD, necroptosis-a regulated immunogenic necrotic cell death pathway-is triggered, yet its exact role in disease pathogenesis remains unclear. Noteworthy, necroptosis-related signalling pathways are emerging as key players in metabolic reprogramming, including lipid and mitochondrial metabolism. Additionally, metabolic dysregulation is a well-established contributor to MASLD development and progression. This review explores the intricate interplay between cell metabolism and necroptosis regulation and its impact on MASLD pathogenesis. Understanding these cellular events may offer new insights into the complexity of MASLD pathophysiology, potentially uncovering therapeutic opportunities and unforeseen metabolic consequences of targeting necroptosis.


Assuntos
Necroptose , Hepatopatia Gordurosa não Alcoólica , Humanos , Necroptose/fisiologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Animais , Transdução de Sinais/fisiologia
8.
Biomed Pharmacother ; 178: 117196, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39053418

RESUMO

Necroptosis is a crucial modality of programmed cell death characterized by distinct morphological and biochemical hallmarks, including cell membrane rupture, organelle swelling, cytoplasmic and nuclear disintegration, cellular contents leakage, and release of damage-associated molecular patterns (DAMPs), accompanied by the inflammatory responses. Studies have shown that necroptosis is involved in the etiology and evolution of a variety of pathologies including organ damage, inflammation disorders, and cancer. Despite its significance, the field of necroptosis research grapples with the challenge of non-standardized detection methodologies. In this review, we introduce the fundamental concepts and molecular mechanisms of necroptosis and critically appraise the principles, merits, and inherent limitations of current detection technologies. This endeavor seeks to establish a methodological framework for necroptosis detection, thereby propelling deeper insights into the research of cell necroptosis.


Assuntos
Necroptose , Necroptose/fisiologia , Humanos , Animais , Transdução de Sinais , Inflamação/patologia
9.
Arch Pharm Res ; 47(7): 617-631, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38987410

RESUMO

Regulated cell death (RCD) pathways, such as pyroptosis, apoptosis, and necroptosis, are essential for maintaining the body's balance, defending against pathogens, and eliminating abnormal cells that could lead to diseases like cancer. Although these pathways operate through distinct mechanisms, recent genetic and pharmacological studies have shown that they can interact and influence each other. The concept of "PANoptosis" has emerged, highlighting the interplay between pyroptosis, apoptosis, and necroptosis, especially during cellular responses to infections. This article provides a concise overview of PANoptosis and its molecular mechanisms, exploring its implications in various diseases. The review focuses on the extensive interactions among different RCD pathways, emphasizing the role of PANoptosis in infections, cytokine storms, inflammatory diseases, and cancer. Understanding PANoptosis is crucial for developing novel treatments for conditions involving infections, sterile inflammations, and cancer.


Assuntos
Inflamação , Necroptose , Neoplasias , Piroptose , Humanos , Inflamação/patologia , Inflamação/tratamento farmacológico , Inflamação/imunologia , Animais , Necroptose/efeitos dos fármacos , Necroptose/fisiologia , Piroptose/efeitos dos fármacos , Piroptose/fisiologia , Neoplasias/patologia , Neoplasias/tratamento farmacológico , Neoplasias/imunologia , Neoplasias/metabolismo , Apoptose/efeitos dos fármacos , Morte Celular/fisiologia , Morte Celular Regulada/efeitos dos fármacos , Infecções/patologia , Infecções/imunologia
10.
Respir Res ; 25(1): 271, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38987753

RESUMO

BACKGROUND: Airway epithelial cell (AEC) necroptosis contributes to airway allergic inflammation and asthma exacerbation. Targeting the tumor necrosis factor-like ligand 1 A (TL1A)/death receptor 3 (DR3) axis has a therapeutic effect on asthmatic airway inflammation. The role of TL1A in mediating necroptosis of AECs challenged with ovalbumin (OVA) and its contribution to airway inflammation remains unclear. METHODS: We evaluated the expression of the receptor-interacting serine/threonine-protein kinase 3(RIPK3) and the mixed lineage kinase domain-like protein (MLKL) in human serum and lung, and histologically verified the level of MLKL phosphorylation in lung tissue from asthmatics and OVA-induced mice. Next, using MLKL knockout mice and the RIPK3 inhibitor GSK872, we investigated the effects of TL1A on airway inflammation and airway barrier function through the activation of necroptosis in experimental asthma. RESULTS: High expression of necroptosis marker proteins was observed in the serum of asthmatics, and necroptosis was activated in the airway epithelium of both asthmatics and OVA-induced mice. Blocking necroptosis through MLKL knockout or RIPK3 inhibition effectively attenuated parabronchial inflammation, mucus hypersecretion, and airway collagen fiber accumulation, while also suppressing type 2 inflammatory factors secretion. In addition, TL1A/ DR3 was shown to act as a death trigger for necroptosis in the absence of caspases by silencing or overexpressing TL1A in HBE cells. Furthermore, the recombinant TL1A protein was found to induce necroptosis in vivo, and knockout of MLKL partially reversed the pathological changes induced by TL1A. The necroptosis induced by TL1A disrupted the airway barrier function by decreasing the expression of tight junction proteins zonula occludens-1 (ZO-1) and occludin, possibly through the activation of the NF-κB signaling pathway. CONCLUSIONS: TL1A-induced airway epithelial necroptosis plays a significant role in promoting airway inflammation and barrier dysfunction in asthma. Inhibition of the TL1A-induced necroptosis pathway could be a promising therapeutic strategy.


Assuntos
Asma , Camundongos Knockout , Necroptose , Membro 15 da Superfamília de Ligantes de Fatores de Necrose Tumoral , Animais , Asma/metabolismo , Asma/patologia , Necroptose/fisiologia , Humanos , Camundongos , Membro 15 da Superfamília de Ligantes de Fatores de Necrose Tumoral/metabolismo , Masculino , Feminino , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Camundongos Endogâmicos C57BL , Proteínas Quinases/metabolismo , Inflamação/metabolismo , Inflamação/patologia , Ovalbumina/toxicidade
11.
J Endocrinol ; 262(2)2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38842911

RESUMO

ß-Cell death contributes to ß-cell loss and insulin insufficiency in type 1 diabetes (T1D), and this ß-cell demise has been attributed to apoptosis and necrosis. Apoptosis has been viewed as the lone form of programmed ß-cell death, and evidence indicates that ß-cells also undergo necrosis, regarded as an unregulated or accidental form of cell demise. More recently, studies in non-islet cell types have identified and characterized novel forms of cell death that are biochemically and morphologically distinct from apoptosis and necrosis. Several of these mechanisms of cell death have been categorized as forms of regulated necrosis and linked to inflammation and disease pathogenesis. In this review, we revisit discoveries of ß-cell death in humans with diabetes and describe studies characterizing ß-cell apoptosis and necrosis. We explore literature on mechanisms of regulated necrosis including necroptosis, ferroptosis and pyroptosis, review emerging literature on the significance of these mechanisms in ß-cells, and discuss experimental approaches to differentiate between various mechanisms of ß-cell death. Our review of the literature leads us to conclude that more detailed experimental characterization of the mechanisms of ß-cell death is warranted, along with studies to better understand the impact of various forms of ß-cell demise on islet inflammation and ß-cell autoimmunity in pathophysiologically relevant models. Such studies will provide insight into the mechanisms of ß-cell loss in T1D and may shed light on new therapeutic approaches to protect ß-cells in this disease.


Assuntos
Apoptose , Morte Celular , Diabetes Mellitus Tipo 1 , Células Secretoras de Insulina , Necrose , Humanos , Células Secretoras de Insulina/patologia , Células Secretoras de Insulina/fisiologia , Diabetes Mellitus Tipo 1/patologia , Diabetes Mellitus Tipo 1/imunologia , Animais , Morte Celular/fisiologia , Apoptose/fisiologia , Necroptose/fisiologia , Piroptose/fisiologia , Ferroptose/fisiologia
12.
Acta Neuropathol ; 147(1): 96, 2024 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-38852117

RESUMO

Although apoptosis, pyroptosis, and ferroptosis have been implicated in AD, none fully explains the extensive neuronal loss observed in AD brains. Recent evidence shows that necroptosis is abundant in AD, that necroptosis is closely linked to the appearance of Tau pathology, and that necroptosis markers accumulate in granulovacuolar neurodegeneration vesicles (GVD). We review here the neuron-specific activation of the granulovacuolar mediated neuronal-necroptosis pathway, the potential AD-relevant triggers upstream of this pathway, and the interaction of the necrosome with the endo-lysosomal pathway, possibly providing links to Tau pathology. In addition, we underscore the therapeutic potential of inhibiting necroptosis in neurodegenerative diseases such as AD, as this presents a novel avenue for drug development targeting neuronal loss to preserve cognitive abilities. Such an approach seems particularly relevant when combined with amyloid-lowering drugs.


Assuntos
Doença de Alzheimer , Necroptose , Humanos , Necroptose/fisiologia , Doença de Alzheimer/patologia , Doença de Alzheimer/metabolismo , Animais , Neurônios/patologia , Neurônios/metabolismo , Degeneração Neural/patologia , Degeneração Neural/metabolismo
13.
World Neurosurg ; 187: e136-e147, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38636634

RESUMO

BACKGROUND: Traumatic brain injury (TBI) is an important health concern in the society. Previous studies have suggested that necroptosis occurs following TBI. However, the underlying mechanisms and roles of necroptosis are not well understood. In this study, we aimed to assess the role of receptor-interacting serine/threonine-protein kinase 3 (RIP3)-mediated necroptosis after TBI both in vitro and in vivo. METHODS: We established a cell-stretching injury and mouse TBI model by applying a cell injury controller and controlled cortical impactor to evaluate the relationships among necroptosis, apotosis, inflammation, and TBI both in vitro and in vivo. RESULTS: The results revealed that necroptosis mediated by RIP1, RIP3, and mixed lineage kinase domain-like protein was involved in secondary TBI. Additionally, protein kinase B (Akt), phosphorylated Akt, mammalian target of rapamycin (mTOR), and phosphorylated mTOR potentially contribute to necroptosis. The inhibition of RIP3 by GSK'872 (a specific inhibitor) blocked necroptosis and reduced the activity of Akt/mTOR, leading to the alleviation of inflammation by reducing the levels of NOD-, LRR- and pyrin domain-containing protein 3. Moreover, the inhibition of RIP3 by GSK'872 promoted the activity of cysteinyl aspartate specific proteinase-8, an enzyme involved in apoptosis and inflammation. CONCLUSIONS: These data demonstrate that RIP3 inhibition could improve the prognosis of TBI, based on the attenuation of inflammation by switching RIP3-dependent necroptosis to cysteinyl aspartate specific proteinase-8-dependent apoptosis.


Assuntos
Apoptose , Lesões Encefálicas Traumáticas , Necroptose , Proteína Serina-Treonina Quinases de Interação com Receptores , Animais , Lesões Encefálicas Traumáticas/metabolismo , Lesões Encefálicas Traumáticas/patologia , Necroptose/fisiologia , Necroptose/efeitos dos fármacos , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Camundongos , Apoptose/fisiologia , Apoptose/efeitos dos fármacos , Masculino , Prognóstico , Camundongos Endogâmicos C57BL , Caspase 8/metabolismo
14.
Eur J Clin Invest ; 54(9): e14226, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38632688

RESUMO

Intervertebral disc degeneration (IVDD) is a common chronic orthopaedic disease in orthopaedics that imposes a heavy economic burden on people and society. Although it is well established that IVDD is associated with genetic susceptibility, ageing and obesity, its pathogenesis remains incompletely understood. Previously, IVDD was thought to occur because of excessive mechanical loading leading to destruction of nucleus pulposus cells (NPCs), but studies have shown that IVDD is a much more complex process associated with inflammation, metabolic factors and NPCs death and can involve all parts of the disc, characterized by causing NPCs death and extracellular matrix (ECM) degradation. The damage pattern of NPCs in IVDD is like that of some programmed cell death, suggesting that IVDD is associated with programmed cell death. Although apoptosis and pyroptosis of NPCs have been studied in IVDD, the pathogenesis of intervertebral disc degeneration can still not be fully elucidated by using only traditional cell death modalities. With increasing research, some new modes of cell death, PANoptosis, ferroptosis and senescence have been found to be closely related to intervertebral disc degeneration. Among these, PANoptosis combines essential elements of pyroptosis, apoptosis and necroptosis to form a highly coordinated and dynamically balanced programmed inflammatory cell death process. Furthermore, we believe that PANoptosis may also crosstalk with pyroptosis and senescence. Therefore, we review the progress of research on multiple deaths of NPCs in IVDD to provide guidance for clinical treatment.


Assuntos
Senescência Celular , Degeneração do Disco Intervertebral , Núcleo Pulposo , Piroptose , Humanos , Núcleo Pulposo/patologia , Piroptose/fisiologia , Senescência Celular/fisiologia , Apoptose/fisiologia , Ferroptose/fisiologia , Necroptose/fisiologia , Matriz Extracelular/metabolismo , Morte Celular/fisiologia
15.
Poult Sci ; 103(5): 103634, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38537409

RESUMO

Moderate cold stimulation regulates the thymus's growth and function and facilitates cold acclimatization in broilers. However, the underlying mechanism remains unknown. To explore the possible mechanism of the thymus in cold-acclimated broilers against cold stress, 240 one-day-old Arbor Acres (AA) broilers were assigned to 2 groups randomly. The control group (C) was housed at conventional temperatures. The temperature during the first week was 33°C to 34°C. Between the ages of 8 and 32 d, the temperature was lowered by 1°C every 2 d, i.e., gradually from 32°C to 20°C, and then maintained at 20°C until 42 d of age. The cold-acclimated group (C-3) was housed at the same temperature as C from 1 to 7 d after birth. Between 8 and 42 d, the temperature of C-3 was 3°C colder than C. After 24 h exposure to acute cold stress (ACS) at 42 d, C and C-3 were named as S and S-3. The results showed that ACS was able to induce oxidation stress, modulate PI3K/AKT signal, and cause necroptosis and apoptosis in broiler thymus. By contrast, cold acclimation could alleviate apoptosis and necroptosis induced by cold stress via alleviating oxidative stress, efficiently activating the PI3K/AKT signal, as well as decreasing apoptotic and necrotic genes' levels. This study offers a novel theoretical basis for cold acclimation to improve the body's cold tolerance.


Assuntos
Aclimatação , Apoptose , Galinhas , Temperatura Baixa , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Timo , Animais , Galinhas/fisiologia , Timo/fisiologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinases/genética , Necroptose/fisiologia , Transdução de Sinais , Proteínas Aviárias/metabolismo , Proteínas Aviárias/genética , Distribuição Aleatória , Resposta ao Choque Frio , Masculino
16.
Cancer Lett ; 585: 216693, 2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38301909

RESUMO

Necroptosis is a regulated necrotic cell death mechanism and plays a crucial role in the progression of cancers. However, the potential role and mechanism of necroptosis in colorectal cancer (CRC) has not been fully elucidated. In this study, we found that nuclear receptor subfamily 4 group A member 1 (NR4A1) was highly expressed in CRC cells treated with TNF-α, Smac mimetic, and z-VAD-FMK (TSZ). The depletion of NR4A1 significantly enhanced the sensitivity of CRC cells to TSZ-induced necroptosis, while NR4A1 overexpression suppressed these effects, as evidenced by the LDH assay, flow cytometry analysis of cell death, PI staining, and expression analysis of necrosome complexes (RIPK1, RIPK3, and MLKL). Moreover, NR4A1 deficiency made HT29 xenograft tumors sensitive to necroptotic cell death in vivo. Mechanistically, NR4A1 depletion promoted necroptosis activation in CRC through the RIG-I-like receptor pathway by interacting with DDX3. Importantly, the RIG-I pathway agonist poly(I:C) or inhibitor cFP abolished the effects of NR4A1 overexpression or suppression on necroptosis in CRC cells. Moreover, we observed that NR4A1 was highly expressed in CRC tissues and was associated with a poor prognosis. In conclusion, our results suggest that NR4A1 plays a critical role in modulating necroptosis in CRC cells and provide a new therapeutic target for CRC.


Assuntos
Neoplasias Colorretais , Proteínas Quinases , Humanos , Proteínas Quinases/metabolismo , Necroptose/fisiologia , Morte Celular , Necrose , Neoplasias Colorretais/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Apoptose , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/genética , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo
17.
Cell Death Dis ; 15(1): 100, 2024 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-38286985

RESUMO

Necroptosis, a type of lytic cell death executed by the pseudokinase Mixed Lineage Kinase Domain-Like (MLKL) has been implicated in the detrimental inflammation caused by SARS-CoV-2 infection. We minimally and extensively passaged a single clinical SARS-CoV-2 isolate to create models of mild and severe disease in mice allowing us to dissect the role of necroptosis in SARS-CoV-2 disease pathogenesis. We infected wild-type and MLKL-deficient mice and found no significant differences in viral loads or lung pathology. In our model of severe COVID-19, MLKL-deficiency did not alter the host response, ameliorate weight loss, diminish systemic pro-inflammatory cytokines levels, or prevent lethality in aged animals. Our in vivo models indicate that necroptosis is dispensable in the pathogenesis of mild and severe COVID-19.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Camundongos , SARS-CoV-2/metabolismo , Necroptose/fisiologia , Proteínas Quinases/metabolismo , Modelos Animais de Doenças , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo
18.
Immunol Rev ; 321(1): 52-70, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37897080

RESUMO

Necroptosis is generally considered as an inflammatory cell death form. The core regulators of necroptotic signaling are receptor-interacting serine-threonine protein kinases 1 (RIPK1) and RIPK3, and the executioner, mixed lineage kinase domain-like pseudokinase (MLKL). Evidence demonstrates that necroptosis contributes profoundly to inflammatory respiratory diseases that are common public health problem. Necroptosis occurs in nearly all pulmonary cell types in the settings of inflammatory respiratory diseases. The influence of necroptosis on cells varies depending upon the type of cells, tissues, organs, etc., which is an important factor to consider. Thus, in this review, we briefly summarize the current state of knowledge regarding the biology of necroptosis, and focus on the key molecular mechanisms that define the necroptosis status of specific cell types in inflammatory respiratory diseases. We also discuss the clinical potential of small molecular inhibitors of necroptosis in treating inflammatory respiratory diseases, and describe the pathological processes that engage cross talk between necroptosis and other cell death pathways in the context of respiratory inflammation. The rapid advancement of single-cell technologies will help understand the key mechanisms underlying cell type-specific necroptosis that are critical to effectively treat pathogenic lung infections and inflammatory respiratory diseases.


Assuntos
Proteínas Quinases , Doenças Respiratórias , Humanos , Proteínas Quinases/metabolismo , Necroptose/fisiologia , Morte Celular , Transdução de Sinais , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Apoptose
19.
Int J Mol Sci ; 24(20)2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37894970

RESUMO

Apoptosis has historically been considered the primary form of programmed cell death (PCD) and is responsible for regulating cellular processes during development, homeostasis, and disease. Conversely, necrosis was considered uncontrolled and unregulated. However, recent evidence has unveiled the significance of necroptosis, a regulated form of necrosis, as an important mechanism of PCD alongside apoptosis. The activation of necroptosis leads to cellular membrane disruption, inflammation, and vascularization. This process is crucial in various pathological conditions, including intervertebral disc degeneration (IVDD), neurodegeneration, inflammatory diseases, multiple cancers, and kidney injury. In recent years, extensive research efforts have shed light on the molecular regulation of the necroptotic pathway. Various stimuli trigger necroptosis, and its regulation involves the activation of specific proteins such as receptor-interacting protein kinase 1 (RIPK1), RIPK3, and the mixed lineage kinase domain-like (MLKL) pseudokinase. Understanding the intricate mechanisms governing necroptosis holds great promise for developing novel therapeutic interventions targeting necroptosis-associated IVDD. The objective of this review is to contribute to the growing body of scientific knowledge in this area by providing a comprehensive overview of necroptosis and its association with IVDD. Ultimately, these understandings will allow the development of innovative drugs that can modulate the necroptotic pathway, offering new therapeutic avenues for individuals suffering from necroptosis.


Assuntos
Degeneração do Disco Intervertebral , Proteínas Quinases , Humanos , Proteínas Quinases/metabolismo , Necroptose/fisiologia , Apoptose , Necrose/patologia , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo
20.
Int J Mol Sci ; 24(19)2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37834141

RESUMO

The mechanism of long-term cognitive impairment after neonatal sepsis remains poorly understood, although long-lasting neuroinflammation has been considered the primary contributor. Necroptosis is actively involved in the inflammatory process, and in this study, we aimed to determine whether neonatal sepsis-induced long-term cognitive impairment was associated with activation of necroptosis. Rat pups on postnatal day 3 (P3) received intraperitoneal injections of lipopolysaccharide (LPS, 1 mg/kg) to induce neonatal sepsis. Intracerebroventricular injection of IL-1ß-siRNA and necrostatin-1 (NEC1) were performed to block the production of IL-1ß and activation of necroptosis in the brain, respectively. The Morris water maze task and fear conditioning test were performed on P28-P32 and P34-P35, respectively. Enzyme-linked immunosorbent assay (ELISA), quantitative real-time PCR (RT-PCR), and Western blotting were used to examine the expression levels of proinflammatory cytokines and necroptosis-associated proteins, such as receptor-interacting protein 1 (RIP1) and receptor-interacting protein 3 (RIP3). Sustained elevation of IL-1ß level was observed in the brain after initial neonatal sepsis, which would last for at least 32 days. Sustained necroptosis activation was also observed in the brain. Knockdown of IL-1ß expression in the brain alleviated necroptosis and improved long-term cognitive function. Direct inhibition of necroptosis also improved neurodevelopment and cognitive performance. This research indicated that sustained activation of necroptosis via IL-1ß contributed to long-term cognitive dysfunction after neonatal sepsis.


Assuntos
Sepse Neonatal , Sepse , Ratos , Animais , Necroptose/fisiologia , Encéfalo/metabolismo , Sepse/complicações , Sepse/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA