Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.576
Filtrar
1.
Appl Immunohistochem Mol Morphol ; 32(5): 244-248, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38712587

RESUMO

Tumor-to-tumor metastasis in the central nerve system is uncommon in our routine practice. Most reports include metastatic breast cancer into meningioma. Here we report a metastatic clear cell renal cell carcinoma (ccRCC) into a cerebellar hemangioblastoma in a patient with von Hippel-Lindau (VHL) disease. Imaging cannot distinguish metastatic ccRCC from primary cerebellar hemangioblastoma. Immuno-molecular studies are proven to be diagnostic. We also reviewed previously documented tumor-to-tumor metastasis of ccRCC to cerebellar hemangioblastoma in VHL disease. Lastly, we discussed potential mechanisms involved in the metastasis of ccRCC to hemangioblastoma in the cerebellum in patients with VHL.


Assuntos
Carcinoma de Células Renais , Neoplasias Cerebelares , Hemangioblastoma , Neoplasias Renais , Doença de von Hippel-Lindau , Humanos , Doença de von Hippel-Lindau/patologia , Doença de von Hippel-Lindau/diagnóstico , Neoplasias Cerebelares/patologia , Neoplasias Cerebelares/secundário , Carcinoma de Células Renais/patologia , Carcinoma de Células Renais/diagnóstico , Hemangioblastoma/patologia , Hemangioblastoma/diagnóstico , Neoplasias Renais/patologia , Neoplasias Renais/diagnóstico , Feminino , Pessoa de Meia-Idade , Metástase Neoplásica , Masculino
2.
Int J Mol Sci ; 25(9)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38732099

RESUMO

Medulloblastoma is the most common malignant brain tumor in childhood. Initial treatment generally includes surgery, irradiation, and chemotherapy. Approximately 20-30% of patients will experience a recurrence, which portends a very poor prognosis. The current standard of care for evaluation for relapse includes radiographic surveillance with magnetic resonance imaging at regular intervals. The presence of circulating tumor DNA in the cerebrospinal fluid has been demonstrated to be a predictor of a higher risk of progression in a research setting for patients with medulloblastoma treated on a prospective single institution clinical trial. We have previously published and clinically validated a liquid-biopsy-based genetic assay utilizing low-pass whole genome sequencing to detect copy number alterations in circulating tumor DNA. Here, we present two teenage patients with posterior fossa medulloblastoma with recurrent disease who have been monitored with serial liquid biopsies showing tumor evolution over time, demonstrating the clinical utility of these approaches.


Assuntos
Neoplasias Cerebelares , Meduloblastoma , Recidiva Local de Neoplasia , Humanos , Meduloblastoma/líquido cefalorraquidiano , Meduloblastoma/genética , Meduloblastoma/diagnóstico , Meduloblastoma/patologia , Meduloblastoma/diagnóstico por imagem , Biópsia Líquida/métodos , Recidiva Local de Neoplasia/líquido cefalorraquidiano , Recidiva Local de Neoplasia/genética , Adolescente , Neoplasias Cerebelares/líquido cefalorraquidiano , Neoplasias Cerebelares/diagnóstico , Neoplasias Cerebelares/patologia , Neoplasias Cerebelares/genética , Masculino , DNA Tumoral Circulante/líquido cefalorraquidiano , DNA Tumoral Circulante/genética , DNA Tumoral Circulante/sangue , Feminino , Progressão da Doença , Imageamento por Ressonância Magnética
3.
Cancer Rep (Hoboken) ; 7(4): e2048, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38599791

RESUMO

BACKGROUND: Medulloblastoma (MB) is a rare primitive neuroectodermal tumors originating from the cerebellum. MB is the most common malignant primary brain tumor of childhood. MB originates from neural precursor cells in distinctive regions of the rhombic lip, and their maturation occurs in the cerebellum or the brain stem during embryonal development. Also, apoptosis is a programmed cell death associated with numerous physiological as well as pathological regulations. RECENT FINDINGS: Irradiation (IR)-induce apoptosis triggers cell death, with or without intervening mitosis within a few hours of IR and these share different morphologic alteration such as, loss of normal nuclear structure as well as degradation of DNA. Moreover, MB is strikingly sensitive to DNA-damaging therapies and the role of apoptosis a key treatment modality. Furthermore, in MB, the apoptotic pathways are made up of several triggers, modulators, as well as effectors. Notably, IR-induced apoptotic mechanisms in MB therapy are very complex and they either induce radiosensitivity or inhibit radioresistance leading to potential effective treatment strategies for MB. CONCLUSION: This review explicitly explores the pivotal roles of IR-induced apoptosis in the pathogenesis and therapy of MB.


Assuntos
Neoplasias Cerebelares , Estruturas Embrionárias , Meduloblastoma , Metencéfalo/embriologia , Células-Tronco Neurais , Humanos , Meduloblastoma/radioterapia , Meduloblastoma/genética , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/patologia , Apoptose , Neoplasias Cerebelares/radioterapia , Neoplasias Cerebelares/patologia , DNA
4.
Int J Mol Sci ; 25(8)2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38674001

RESUMO

Medulloblastoma (MB) encompasses diverse subgroups, and leptomeningeal disease/metastasis (LMD) plays a substantial role in associated fatalities. Despite extensive exploration of canonical genes in MB, the molecular mechanisms underlying LMD and the involvement of the orthodenticle homeobox 2 (OTX2) gene, a key driver in aggressive MB Group 3, remain insufficiently understood. Recognizing OTX2's pivotal role, we investigated its potential as a catalyst for aggressive cellular behaviors, including migration, invasion, and metastasis. OTX2 overexpression heightened cell growth, motility, and polarization in Group 3 MB cells. Orthotopic implantation of OTX2-overexpressing cells in mice led to reduced median survival, accompanied by the development of spinal cord and brain metastases. Mechanistically, OTX2 acted as a transcriptional activator of the Mechanistic Target of Rapamycin (mTOR) gene's promoter and the mTORC2 signaling pathway, correlating with upregulated downstream genes that orchestrate cell motility and migration. Knockdown of mTOR mRNA mitigated OTX2-mediated enhancements in cell motility and polarization. Analysis of human MB tumor samples (N = 952) revealed a positive correlation between OTX2 and mTOR mRNA expression, emphasizing the clinical significance of OTX2's role in the mTORC2 pathway. Our results reveal that OTX2 governs the mTORC2 signaling pathway, instigating LMD in Group 3 MBs and offering insights into potential therapeutic avenues through mTORC2 inhibition.


Assuntos
Movimento Celular , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Alvo Mecanístico do Complexo 2 de Rapamicina , Meduloblastoma , Neoplasias Meníngeas , Fatores de Transcrição Otx , Transdução de Sinais , Fatores de Transcrição Otx/metabolismo , Fatores de Transcrição Otx/genética , Humanos , Animais , Meduloblastoma/genética , Meduloblastoma/patologia , Meduloblastoma/metabolismo , Camundongos , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Neoplasias Meníngeas/genética , Neoplasias Meníngeas/patologia , Neoplasias Meníngeas/metabolismo , Neoplasias Meníngeas/secundário , Feminino , Neoplasias Cerebelares/genética , Neoplasias Cerebelares/patologia , Neoplasias Cerebelares/metabolismo , Masculino
5.
J Exp Clin Cancer Res ; 43(1): 130, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38689348

RESUMO

BACKGROUND: Medulloblastomas (MBs) are one of the most common malignant brain tumor types in children. MB prognosis, despite improvement in recent years, still depends on clinical and biological risk factors. Metastasis is the leading cause of MB-related deaths, which highlights an unmet need for risk stratification and targeted therapy to improve clinical outcomes. Among the four molecular subgroups, sonic-hedgehog (SHH)-MB harbors clinical and genetic heterogeneity with a subset of high-risk cases. Recently, long non-coding (lnc)RNAs were implied to contribute to cancer malignant progression, but their role in MB remains unclear. This study aimed to identify pro-malignant lncRNAs that have prognostic and therapeutic significance in SHH-MB. METHODS: The Daoy SHH-MB cell line was engineered for ectopic expression of MYCN, a genetic signature of SHH-MB. MYCN-associated lncRNA genes were identified using RNA-sequencing data and were validated in SHH-MB cell lines, MB tissue samples, and patient cohort datasets. SHH-MB cells with genetic manipulation of the candidate lncRNA were evaluated for metastatic phenotypes in vitro, including cell migration, invasion, sphere formation, and expressions of stemness markers. An orthotopic xenograft mouse model was used to evaluate metastasis occurrence and survival. Finally, bioinformatic screening and in vitro assays were performed to explore downstream mechanisms. RESULTS: Elevated lncRNA LOXL1-AS1 expression was identified in MYCN-expressing Daoy cells and MYCN-amplified SHH-MB tumors, and was significantly associated with lower survival in SHH-MB patients. Functionally, LOXL1-AS1 promoted SHH-MB cell migration and cancer stemness in vitro. In mice, MYCN-expressing Daoy cells exhibited a high metastatic rate and adverse effects on survival, both of which were suppressed under LOLX1-AS1 perturbation. Integrative bioinformatic analyses revealed associations of LOXL1-AS1 with processes of cancer stemness, cell differentiation, and the epithelial-mesenchymal transition. LOXL1-AS1 positively regulated the expression of transforming growth factor (TGF)-ß2. Knockdown of TGF-ß2 in SHH-MB cells significantly abrogated their LOXL1-AS1-mediated prometastatic functions. CONCLUSIONS: This study proved the functional significance of LOXL1-AS1 in SHH-MB metastasis by its promotion of TGF-ß2-mediated cancer stem-like phenotypes, providing both prognostic and therapeutic potentials for targeting SHH-MB metastasis.


Assuntos
Proteínas Hedgehog , Meduloblastoma , Células-Tronco Neoplásicas , Humanos , Meduloblastoma/genética , Meduloblastoma/patologia , Meduloblastoma/metabolismo , Animais , Camundongos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Proteínas Hedgehog/metabolismo , Proteínas Hedgehog/genética , Metástase Neoplásica , Fenótipo , Feminino , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Linhagem Celular Tumoral , Masculino , Neoplasias Cerebelares/genética , Neoplasias Cerebelares/patologia , Neoplasias Cerebelares/metabolismo , Prognóstico , Movimento Celular
6.
J Hematol Oncol ; 17(1): 26, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38685107

RESUMO

Constitutional heterozygous pathogenic variants in genes coding for some components of the Fanconi anemia-BRCA signaling pathway, which repairs DNA interstrand crosslinks, represent risk factors for common cancers, including breast, ovarian, pancreatic and prostate cancer. A high cancer risk is also a main clinical feature in patients with Fanconi anemia (FA), a rare condition characterized by bone marrow failure, endocrine and physical abnormalities. The mainly recessive condition is caused by germline pathogenic variants in one of 21 FA-BRCA pathway genes. Among patients with FA, the highest cancer risks are observed in patients with biallelic pathogenic variants in BRCA2 or PALB2. These patients develop a range of embryonal tumors and leukemia during the first decade of life, however, little is known about specific clinical, genetic and pathologic features or toxicities. Here, we present genetic, clinical, pathological and treatment characteristics observed in an international cohort of eight patients with FA due to biallelic BRCA2 pathogenic variants and medulloblastoma (MB), an embryonal tumor of the cerebellum. Median age at MB diagnosis was 32.5 months (range 7-58 months). All patients with available data had sonic hedgehog-MB. Six patients received chemotherapy and one patient also received proton radiation treatment. No life-threatening toxicities were documented. Prognosis was poor and all patients died shortly after MB diagnosis (median survival time 4.5 months, range 0-21 months) due to MB or other neoplasms. In conclusion, MB in patients with biallelic BRCA2 pathogenic variants is a lethal disease. Future experimental treatments are necessary to help these patients.


Assuntos
Proteína BRCA2 , Anemia de Fanconi , Mutação em Linhagem Germinativa , Meduloblastoma , Humanos , Proteína BRCA2/genética , Meduloblastoma/genética , Meduloblastoma/mortalidade , Meduloblastoma/patologia , Meduloblastoma/terapia , Masculino , Pré-Escolar , Feminino , Lactente , Estudos de Coortes , Anemia de Fanconi/genética , Neoplasias Cerebelares/genética , Neoplasias Cerebelares/patologia , Neoplasias Cerebelares/mortalidade , Alelos
7.
J Neurooncol ; 168(1): 139-149, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38662151

RESUMO

PURPOSE: Medulloblastoma (MB), a common and heterogeneous posterior fossa tumor in pediatric patients, presents diverse prognostic outcomes. To advance our understanding of MB's intricate biology, the development of novel patient tumor-derived culture MB models with necessary data is still an essential requirement. METHODS: We continuously passaged PUMC-MB1 in vitro in order to establish a continuous cell line. We examined the in vitro growth using Cell Counting Kit-8 (CCK-8) and in vivo growth with subcutaneous and intracranial xenograft models. The xenografts were investigated histopathologically with Hematoxylin and Eosin (HE) staining and immunohistochemistry (IHC). Concurrently, we explored its molecular features using Whole Genome Sequencing (WGS), targeted sequencing, and RNA sequecing. Guided by bioinformatics analysis, we validated PUMC-MB1's drug sensitivity in vitro and in vivo. RESULTS: PUMC-MB1, derived from a high-risk MB patient, displayed a population doubling time (PDT) of 48.18 h and achieved 100% tumor growth in SCID mice within 20 days. HE and Immunohistochemical examination of the original tumor and xenografts confirmed the classification of PUMC-MB1 as a classic MB. Genomic analysis via WGS revealed concurrent MYC and OTX2 amplifications. The RNA-seq data classified it within the Group 3 MB subgroup, while according to the WHO classification, it fell under the Non-WNT/Non-SHH MB. Comparative analysis with D283 and D341med identified 4065 differentially expressed genes, with notable enrichment in the PI3K-AKT pathway. Cisplatin, 4-hydroperoxy cyclophosphamide/cyclophosphamide, vincristine, and dactolisib (a selective PI3K/mTOR dual inhibitor) significantly inhibited PUMC-MB1 proliferation in vitro and in vivo. CONCLUSIONS: PUMC-MB1, a novel Group 3 (Non-WNT/Non-SHH) MB cell line, is comprehensively characterized for its growth, pathology, and molecular characteristics. Notably, dactolisib demonstrated potent anti-proliferative effects with minimal toxicity, promising a potential therapeutic avenue. PUMC-MB1 could serve as a valuable tool for unraveling MB mechanisms and innovative treatment strategies.


Assuntos
Neoplasias Cerebelares , Meduloblastoma , Camundongos SCID , Serina-Treonina Quinases TOR , Ensaios Antitumorais Modelo de Xenoenxerto , Humanos , Animais , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/metabolismo , Meduloblastoma/tratamento farmacológico , Meduloblastoma/patologia , Meduloblastoma/genética , Meduloblastoma/metabolismo , Camundongos , Neoplasias Cerebelares/tratamento farmacológico , Neoplasias Cerebelares/patologia , Neoplasias Cerebelares/genética , Neoplasias Cerebelares/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , Proliferação de Células/efeitos dos fármacos , Linhagem Celular Tumoral , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinases/genética
8.
Nat Commun ; 15(1): 3483, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664416

RESUMO

Chemical discovery efforts commonly target individual protein domains. Many proteins, including the EP300/CBP histone acetyltransferases (HATs), contain several targetable domains. EP300/CBP are critical gene-regulatory targets in cancer, with existing high potency inhibitors of either the catalytic HAT domain or protein-binding bromodomain (BRD). A domain-specific inhibitory approach to multidomain-containing proteins may identify exceptional-responding tumor types, thereby expanding a therapeutic index. Here, we discover that targeting EP300/CBP using the domain-specific inhibitors, A485 (HAT) or CCS1477 (BRD) have different effects in select tumor types. Group 3 medulloblastoma (G3MB) cells are especially sensitive to BRD, compared with HAT inhibition. Structurally, these effects are mediated by the difluorophenyl group in the catalytic core of CCS1477. Mechanistically, bromodomain inhibition causes rapid disruption of genetic dependency networks that are required for G3MB growth. These studies provide a domain-specific structural foundation for drug discovery efforts targeting EP300/CBP and identify a selective role for the EP300/CBP bromodomain in maintaining genetic dependency networks in G3MB.


Assuntos
Proteína p300 Associada a E1A , Redes Reguladoras de Genes , Meduloblastoma , Humanos , Meduloblastoma/genética , Meduloblastoma/tratamento farmacológico , Meduloblastoma/metabolismo , Meduloblastoma/patologia , Proteína p300 Associada a E1A/metabolismo , Proteína p300 Associada a E1A/genética , Proteína p300 Associada a E1A/antagonistas & inibidores , Linhagem Celular Tumoral , Redes Reguladoras de Genes/efeitos dos fármacos , Animais , Domínios Proteicos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Camundongos , Neoplasias Cerebelares/genética , Neoplasias Cerebelares/tratamento farmacológico , Neoplasias Cerebelares/metabolismo , Neoplasias Cerebelares/patologia , Antineoplásicos/farmacologia
9.
Medicine (Baltimore) ; 103(17): e37923, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38669361

RESUMO

RATIONALE: Primary central nervous system lymphoma (PCNSL) is a rare, highly malignant form of non-Hodgkin lymphoma categorized under the diffuse large B-cell type. It accounts for merely 1% of all non-Hodgkin lymphoma cases and comprises approximately 3% of all brain tumors. The involvement of the cerebellum is observed in only 9% of these cases. Recently, we came across an unusual instance: a young man presenting with multiple lesions located specifically within the cerebellum. PATIENT CONCERNS: A 26-year-old male was admitted to the hospital due to severe headaches. He has a medical history of sporadic headaches, accompanied by dizziness, nausea, and vomiting persisting for a month. Over the last 10 days, his headaches have intensified, coupled with decreased vision and protrusion of the eyeballs. Magnetic resonance imaging (MRI) revealed abnormal signals in both cerebellar hemispheres. DIAGNOSES, INTERVENTIONS, AND OUTCOMES: Diagnostic procedures included cerebellar biopsy, posterior fossa decompression, and lateral ventricle drainage. Histopathological examination identified diffuse large B-cell lymphoma (DLBCL) with high proliferative activity. To minimize neurotoxicity, chemotherapy involved intrathecal methotrexate (MTX) injections combined with the CHOP program. The patient has shown good tolerance to the treatment so far. LESSONS: While the definitive optimal treatment approach remains elusive, current chemotherapy centered on high-dose MTX stands as the standard induction therapy. Integrating surgery with radiotherapy and chemotherapy significantly extends patient survival.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica , Neoplasias Cerebelares , Linfoma Difuso de Grandes Células B , Humanos , Masculino , Adulto , Linfoma Difuso de Grandes Células B/terapia , Linfoma Difuso de Grandes Células B/patologia , Linfoma Difuso de Grandes Células B/diagnóstico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Neoplasias Cerebelares/terapia , Neoplasias Cerebelares/patologia , Ciclofosfamida/uso terapêutico , Ciclofosfamida/administração & dosagem , Vincristina/uso terapêutico , Doxorrubicina/uso terapêutico , Doxorrubicina/administração & dosagem , Metotrexato/uso terapêutico , Metotrexato/administração & dosagem , Prednisona/uso terapêutico , Prednisona/administração & dosagem , Terapia Combinada , Imageamento por Ressonância Magnética , Cerebelo/patologia , Cerebelo/diagnóstico por imagem
10.
Radiother Oncol ; 195: 110267, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38614282

RESUMO

BACKGROUND AND PURPOSE: Medulloblastoma (MB) is a common primary brain cancer in children. Proton therapy in pediatric MB is intensively studied and widely adopted. Compared to photon, proton radiations offer potential for reduced toxicity due to the characteristic Bragg Peak at the end of their path in tissue. The aim of this study was to compare the effects of irradiation with the same dose of protons or photons in Patched1 heterozygous knockout mice, a murine model predisposed to cancer and non-cancer radiogenic pathologies, including MB and lens opacity. MATERIALS AND METHODS: TOP-IMPLART is a pulsed linear proton accelerator for proton therapy applications. We compared the long-term health effects of 3 Gy of protons or photons in neonatal mice exposed at postnatal day 2, during a peculiarly susceptible developmental phase of the cerebellum, lens, and hippocampus, to genotoxic stress. RESULTS: Experimental testing of the 5 mm Spread-Out Bragg Peak (SOBP) proton beam, through evaluation of apoptotic response, confirmed that both cerebellum and hippocampus were within the SOBP irradiation field. While no differences in MB induction were observed after irradiation with protons or photons, lens opacity examination confirmed sparing of the lens after proton exposure. Marked differences in expression of neurogenesis-related genes and in neuroinflammation, but not in hippocampal neurogenesis, were observed after irradiation of wild-type mice with both radiation types. CONCLUSION: In-vivo experiments with radiosensitive mouse models improve our mechanistic understanding of the dependence of brain damage on radiation quality, thus having important implications in translational research.


Assuntos
Animais Recém-Nascidos , Apoptose , Hipocampo , Fótons , Terapia com Prótons , Animais , Camundongos , Apoptose/efeitos da radiação , Terapia com Prótons/efeitos adversos , Hipocampo/efeitos da radiação , Meduloblastoma/radioterapia , Meduloblastoma/patologia , Carcinogênese/efeitos da radiação , Camundongos Knockout , Neoplasias Cerebelares/radioterapia , Neoplasias Cerebelares/patologia , Encéfalo/efeitos da radiação , Receptor Patched-1/genética , Modelos Animais de Doenças , Prótons/efeitos adversos
11.
Neuropathol Appl Neurobiol ; 50(2): e12970, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38504418

RESUMO

PTEN hamartoma tumour syndrome (PHTS) comprises different hereditary conditions caused by germline PTEN mutations, predisposing to the development of multiple hamartomas in many body tissues and also increasing the risk of some types of cancer. Cerebellar involvement in PHTS patients has been long known due to the development of a pathognomonic cerebellar hamartoma (known as dysplastic gangliocytoma of the cerebellum or Lhermitte-Duclos disease). Recently, a crucial role of the cerebellum has been highlighted in the pathogenesis of autism spectrum disorders, now recognised as a phenotype expressed in a variable percentage of PHTS children. In addition, rare PTEN variants are indeed identified in medulloblastoma as well, even if they are less frequent than other germline gene mutations. The importance of PTEN and its downstream signalling enzymatic pathways, PI3K/AKT/mTOR, has been studied at different levels in both human clinical settings and animal models, not only leading to a better understanding of the pathogenesis of different disorders but, most importantly, to identify potential targets for specific therapies. In particular, PTEN integrity makes an important contribution to the normal development of tissue architecture in the nervous system, including the cerebellum. Thus, in patients with PTEN germline mutations, the cerebellum is an affected organ that is increasingly recognised in different disorders, whereas, in animal models, cerebellar Pten loss causes a variety of functional and histological alterations. In this review, we summarise the range of cerebellar involvement observed in PHTS and its relationships with germline PTEN mutations, along with the phenotypes expressed by murine models with PTEN deficiency in cerebellar tissue.


Assuntos
Neoplasias Cerebelares , Síndrome do Hamartoma Múltiplo , Criança , Humanos , Animais , Camundongos , Mutação em Linhagem Germinativa , Fosfatidilinositol 3-Quinases , PTEN Fosfo-Hidrolase/genética , Cerebelo/patologia , Síndrome do Hamartoma Múltiplo/genética , Síndrome do Hamartoma Múltiplo/patologia , Fenótipo , Neoplasias Cerebelares/genética , Neoplasias Cerebelares/patologia , Células Germinativas/patologia , Mutação
12.
Sci Rep ; 14(1): 7540, 2024 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-38553479

RESUMO

Medulloblastoma (MB) is a malignant brain tumour that is highly common in children and has a tendency to spread to the brain and spinal cord. MB is thought to be a metabolically driven brain tumour. Understanding tumour cell metabolic patterns and characteristics can provide a promising foundation for understanding MB pathogenesis and developing treatments. Here, by analysing RNA-seq data of MB samples from the Gene Expression Omnibus (GEO) database, 12 differentially expressed metabolic-related genes (DE-MRGs) were chosen for the construction of a predictive risk score model for MB. This model demonstrated outstanding accuracy in predicting the outcomes of MB patients and served as a standalone predictor. An evaluation of functional enrichment revealed that the risk score showed enrichment in pathways related to cancer promotion and the immune response. In addition, a high risk score was an independent poor prognostic factor for MB in patients with different ages, sexes, metastasis stages and subgroups (SHH and Group 4). Consistently, the metabolic enzyme ornithine decarboxylase (ODC1) was upregulated in MB patients with poor survival time. Inhibition of ODC1 in primary and metastatic MB cell lines decreased cell proliferation, migration and invasion but increased immune infiltration. This study could aid in identifying metabolic targets for MB as well as optimizing risk stratification systems and individual treatment plans for MB patients via the use of a metabolism-related gene prognostic risk score signature.


Assuntos
Neoplasias Encefálicas , Neoplasias Cerebelares , Meduloblastoma , Criança , Humanos , Meduloblastoma/patologia , Proliferação de Células , Prognóstico , Neoplasias Cerebelares/genética , Neoplasias Cerebelares/patologia
13.
Oncogene ; 43(19): 1463-1475, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38514855

RESUMO

Medulloblastoma (MB) is a prevalent malignant brain tumor among children, which can be classified into four primary molecular subgroups. Group 3 MB (G3-MB) is known to be highly aggressive and associated with a poor prognosis, necessitating the development of novel and effective therapeutic interventions. Ferroptosis, a regulated form of cell death induced by lipid peroxidation, has been identified as a natural tumor suppression mechanism in various cancers. Nevertheless, the potential role of ferroptosis in the treatment of G3-MB remains unexplored. In this study, we demonstrate that RNF126 acts as an anti-ferroptotic gene by interacting with ferroptosis suppressor protein 1 (FSP1, also known as AIFM2) and ubiquitinating FSP1 at the 4KR-2 sites. Additionally, the deletion of RNF126 reduces the subcellular localization of FSP1 in the plasma membrane, resulting in an increase in the CoQ/CoQH2 ratio in G3-MB. The RNF126-FSP1-CoQ10 pathway plays a pivotal role in suppressing phospholipid peroxidation and ferroptosis both in vivo and in vitro. Clinically, RNF126 exhibited elevated expression in G3-MB and its overexpression was significantly associated with reduced patient survival. Our findings indicate that RNF126 regulates G3-MB sensitivity to ferroptosis by ubiquitinating FSP1, which provides new evidence for the potential G3-MB therapy.


Assuntos
Ferroptose , Proteínas Mitocondriais , Ubiquitina-Proteína Ligases , Ubiquitinação , Ferroptose/genética , Humanos , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Animais , Camundongos , Linhagem Celular Tumoral , Neoplasias Cerebelares/metabolismo , Neoplasias Cerebelares/patologia , Neoplasias Cerebelares/genética , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas Reguladoras de Apoptose/genética , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/genética , Regulação Neoplásica da Expressão Gênica
14.
J Pediatr Endocrinol Metab ; 37(5): 467-471, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38529810

RESUMO

OBJECTIVES: Inactivating GNAS mutations result in varied phenotypes depending on parental origin. Maternally inherited mutations typically lead to hormone resistance and Albright's hereditary osteodystrophy (AHO), characterised by short stature, round facies, brachydactyly and subcutaneous ossifications. Paternal inheritance presents with features of AHO or ectopic ossification without hormone resistance. This report describes the case of a child with osteoma cutis and medulloblastoma. The objective of this report is to highlight the emerging association between inactivating germline GNAS mutations and medulloblastoma, aiming to shed light on its implications for tumor biology and promote future development of targeted surveillance strategies to improve outcomes in paediatric patients with these mutations. CASE PRESENTATION: A 12-month-old boy presented with multiple plaque-like skin lesions. Biopsy confirmed osteoma cutis, prompting genetic testing which confirmed a heterozygous inactivating GNAS mutation. At 2.5 years of age, he developed neurological symptoms and was diagnosed with a desmoplastic nodular medulloblastoma, SHH molecular group, confirmed by MRI and histology. Further analysis indicated a biallelic loss of GNAS in the tumor. CONCLUSIONS: This case provides important insights into the role of GNAS as a tumor suppressor and the emerging association between inactivating GNAS variants and the development of medulloblastoma. The case underscores the importance of careful neurological assessment and ongoing vigilance in children with known inactivating GNAS variants or associated phenotypes. Further work to establish genotype-phenotype correlations is needed to inform optimal management of these patients.


Assuntos
Neoplasias Cerebelares , Cromograninas , Subunidades alfa Gs de Proteínas de Ligação ao GTP , Meduloblastoma , Ossificação Heterotópica , Dermatopatias Genéticas , Humanos , Subunidades alfa Gs de Proteínas de Ligação ao GTP/genética , Masculino , Cromograninas/genética , Meduloblastoma/genética , Meduloblastoma/patologia , Ossificação Heterotópica/genética , Ossificação Heterotópica/patologia , Dermatopatias Genéticas/genética , Dermatopatias Genéticas/patologia , Dermatopatias Genéticas/complicações , Lactente , Neoplasias Cerebelares/genética , Neoplasias Cerebelares/patologia , Neoplasias Cerebelares/complicações , Prognóstico , Doenças Ósseas Metabólicas/genética , Doenças Ósseas Metabólicas/patologia , Mutação
15.
Oncologist ; 29(5): 377-383, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38438322

RESUMO

Adult medulloblastoma (MB) is a rare disease affecting 0.6 persons per million adults over 19 years of age. The SHH-activated/TP53-wild type is the most common subtype, accounting for 60% of adult MBs, being characterized by mutations in PTCH1, SMO, or the TERT promoter. Several small studies demonstrate objective but short-lived responses to SMO inhibitors such as vismodegib or sonidegib. Like other oncogene-addicted solid tumors, detection of the corresponding drivers through liquid biopsy could aid in the molecular diagnosis and monitoring of the disease through less invasive procedures. However, most studies have only evaluated cerebrospinal fluid as the ctDNA reservoir, and very limited evidence exists on the role of liquid biopsy in plasma in patients with primary central nervous system tumors, including MB. We present the case of a 26-year-old patient with a recurrent MB, in which next-generation sequencing (FoundationOne CDx) revealed a mutation in PTCH1, allowing the patient to be treated with vismodegib in second line, resulting in a durable benefit lasting for 1 year. Using an in-house digital PCR probe, the PTCH1 mutation could be tracked in ctDNA during treatment with first-line chemotherapy and while on treatment with vismodegib, demonstrating a precise correlation with the radiological and clinical behavior of the disease.


Assuntos
Anilidas , DNA Tumoral Circulante , Meduloblastoma , Mutação , Receptor Patched-1 , Piridinas , Humanos , Meduloblastoma/tratamento farmacológico , Meduloblastoma/genética , Meduloblastoma/sangue , Meduloblastoma/patologia , Piridinas/uso terapêutico , Receptor Patched-1/genética , Adulto , Anilidas/uso terapêutico , DNA Tumoral Circulante/genética , DNA Tumoral Circulante/sangue , Neoplasias Cerebelares/tratamento farmacológico , Neoplasias Cerebelares/genética , Neoplasias Cerebelares/patologia , Neoplasias Cerebelares/sangue , Masculino , Feminino
17.
Dis Model Mech ; 17(2)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38411252

RESUMO

Patched 1 (PTCH1) is the primary receptor for the sonic hedgehog (SHH) ligand and negatively regulates SHH signalling, an essential pathway in human embryogenesis. Loss-of-function mutations in PTCH1 are associated with altered neuronal development and the malignant brain tumour medulloblastoma. As a result of differences between murine and human development, molecular and cellular perturbations that arise from human PTCH1 mutations remain poorly understood. Here, we used cerebellar organoids differentiated from human induced pluripotent stem cells combined with CRISPR/Cas9 gene editing to investigate the earliest molecular and cellular consequences of PTCH1 mutations on human cerebellar development. Our findings demonstrate that developmental mechanisms in cerebellar organoids reflect in vivo processes of regionalisation and SHH signalling, and offer new insights into early pathophysiological events of medulloblastoma tumorigenesis without the use of animal models.


Assuntos
Neoplasias Cerebelares , Células-Tronco Pluripotentes Induzidas , Meduloblastoma , Humanos , Camundongos , Animais , Meduloblastoma/genética , Meduloblastoma/metabolismo , Meduloblastoma/patologia , Neoplasias Cerebelares/genética , Neoplasias Cerebelares/metabolismo , Neoplasias Cerebelares/patologia , Receptor Patched-1/genética , Receptor Patched-1/metabolismo , Proteínas Hedgehog/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Transformação Celular Neoplásica , Carcinogênese/genética , Organoides/metabolismo , Receptores Patched
18.
Oncogene ; 43(12): 839-850, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38355808

RESUMO

Medulloblastoma is one of the most common malignant pediatric brain tumors derived from posterior fossa. The current treatment includes maximal safe surgical resection, radiotherapy, whole cranio-spinal radiation and adjuvant with chemotherapy. However, it can only limitedly prolong the survival time with severe side effects and relapse. Defining the intratumoral heterogeneity, cellular origin and identifying the interaction network within tumor microenvironment are helpful for understanding the mechanisms of medulloblastoma tumorigenesis and relapse. Due to technological limitations, the mechanisms of cellular heterogeneity and tumor origin have not been fully understood. Recently, the emergence of single-cell technology has provided a powerful tool for achieving the goal of understanding the mechanisms of tumorigenesis. Several studies have demonstrated the intratumoral heterogeneity and tumor origin for each subtype of medulloblastoma utilizing the single-cell RNA-seq, which has not been uncovered before using conventional technologies. In this review, we present an overview of the current progress in understanding of cellular heterogeneity and tumor origin of medulloblastoma and discuss novel findings in the age of single-cell technologies.


Assuntos
Neoplasias Encefálicas , Neoplasias Cerebelares , Meduloblastoma , Criança , Humanos , Meduloblastoma/genética , Meduloblastoma/terapia , Meduloblastoma/patologia , Neoplasias Cerebelares/genética , Neoplasias Cerebelares/terapia , Neoplasias Cerebelares/patologia , Recidiva Local de Neoplasia , Neoplasias Encefálicas/patologia , Recidiva , Carcinogênese , Microambiente Tumoral/genética
19.
SLAS Discov ; 29(2): 100147, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38355016

RESUMO

Pediatric brain tumors (PBTs) represent about 25 % of all pediatric cancers and are the most common solid tumors in children and adolescents. Medulloblastoma (MB) is the most frequently occurring malignant PBT, accounting for almost 10 % of all pediatric cancer deaths. MB Group 3 (MB G3) accounts for 25-30 % of all MB cases and has the worst outcome, particularly when associated with MYC amplification. However, no targeted treatments for this group have been developed so far. Here we describe a unique high throughput screening (HTS) platform specifically designed to identify new therapies for MB G3. The platform incorporates optimized and validated 2D and 3D efficacy and toxicity models, that account for tumor heterogenicity, limited efficacy and unacceptable toxicity from the very early stage of drug discovery. The platform has been validated by conducting a pilot HTS campaign with a 1280 lead-like compound library. Results showed 8 active compounds, targeting MB reported targets and several are currently approved or in clinical trials for pediatric patients with PBTs, including MB. Moreover, hits were combined to avoid tumor resistance, identifying 3 synergistic pairs, one of which is currently under clinical study for recurrent MB and other PBTs.


Assuntos
Neoplasias Encefálicas , Neoplasias Cerebelares , Meduloblastoma , Humanos , Criança , Adolescente , Meduloblastoma/tratamento farmacológico , Meduloblastoma/genética , Meduloblastoma/patologia , Ensaios de Triagem em Larga Escala , Neoplasias Cerebelares/tratamento farmacológico , Neoplasias Cerebelares/patologia
20.
Neuro Oncol ; 26(4): 609-622, 2024 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-37767814

RESUMO

BACKGROUND: Medulloblastoma (MB) is the most common malignant brain tumor in children and requires intensive multimodal therapy. Long-term survival is still dissatisfying and, most importantly, survivors frequently suffer from severe treatment-associated morbidities. The sonic hedgehog pathway (SHH) in SHH MB provides a promising target for specific therapeutic agents. The small molecule Vismodegib allosterically inhibits SMO, the main upstream activator of SHH. Vismodegib has proven effective in the treatment of MB in mice and in clinical studies. However, due to irreversible premature epiphyseal growth plate fusions after systemic application to infant mice and children, its implementation to pediatric patients has been limited. Intraventricular Vismodegib application might provide a promising novel treatment strategy for pediatric medulloblastoma patients. METHODS: Infant medulloblastoma-bearing Math1-cre::Ptch1Fl/Fl mice were treated with intraventricular Vismodegib in order to evaluate efficacy on tumor growth and systemic side effects. RESULTS: We show that intraventricular Vismodegib treatment of Math1-cre::Ptch1Fl/Fl mice leads to complete or partial tumor remission only 2 days after completed treatment. Intraventricular treatment also significantly improved symptom-free survival in a dose-dependent manner. At the same time, intraventricular application prevented systemic side effects in the form of anatomical or histological bone deformities. CONCLUSIONS: We conclude that intraventricular application of a SHH pathway inhibitor combines the advantages of a specific treatment agent with precise drug delivery and might evolve as a promising new way of targeted treatment for SHH MB patients.


Assuntos
Neoplasias Cerebelares , Meduloblastoma , Piridinas , Humanos , Camundongos , Animais , Criança , Meduloblastoma/tratamento farmacológico , Meduloblastoma/genética , Meduloblastoma/metabolismo , Proteínas Hedgehog/metabolismo , Anilidas/farmacologia , Anilidas/uso terapêutico , Modelos Animais de Doenças , Neoplasias Cerebelares/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA