Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 13.070
Filtrar
1.
J Cancer Res Clin Oncol ; 150(5): 244, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38717526

RESUMO

PURPOSE: Cystatin SA (CST2) belongs to the superfamily of cysteine protease inhibitors. Emerging research indicates that CST2 is often dysregulated across various cancers. Its role and molecular mechanisms in gastric cancer remain underexplored. This study aims to explore the expression and function of CST2 in gastric cancer. METHODS: CST2 expression was analyzed and validated through Western blot. CST2 overexpression was induced by lentivirus in GC cells, and the correlation between CST2 expression levels and downstream signaling pathways was assessed. In addition, multiple assays, including cell proliferation, colony formation, wound-healing, and transwell migration/invasion, were considered to ascertain the influence of CST2 overexpression on gastric cancer. The cell cycle and apoptosis were detected by flow cytometry. RESULTS: CST2 expression at the protein level was decreased to be reduced in both gastric cancer tissues and cell lines, and CST2 expression attenuate gastric cancer growth, an effect restricted to gastric cancer cells and absent in gastric epithelial GES-1 cells. Furthermore, CST2 was demonstrated to improve chemosensitivity to Oxaliplatin in gastric cancer cells through the PI3K/AKT signaling pathway. CONCLUSION: These findings indicate that CST2 is downregulated at the protein level in gastric cancer tissues and cell lines. Additionally, CST2 was found to attenuate the growth of gastric cancer cells and to enhance sensitivity to Oxaliplatin through the PI3K/AKT signaling pathway, specific to gastric cancer cell lines. CST2 may serve as a tumor suppressor gene increasing sensitivity to Oxaliplatin in gastric cancer.


Assuntos
Proliferação de Células , Oxaliplatina , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Neoplasias Gástricas , Neoplasias Gástricas/patologia , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/genética , Humanos , Oxaliplatina/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Cistatinas Salivares/metabolismo , Cistatinas Salivares/genética , Apoptose/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos , Movimento Celular/efeitos dos fármacos
2.
Redox Rep ; 29(1): 2345455, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38723197

RESUMO

OBJECTIVES: Cancer cells undergo metabolic reprogramming to adapt to high oxidative stress, but little is known about how metabolic remodeling enables gastric cancer cells to survive stress associated with aberrant reactive oxygen species (ROS) production. Here, we aimed to identify the key metabolic enzymes that protect gastric cancer (GC) cells from oxidative stress. METHODS: ROS level was detected by DCFH-DA probes. Multiple cell biological studies were performed to identify the underlying mechanisms. Furthermore, cell-based xenograft and patient-derived xenograft (PDX) model were performed to evaluate the role of MTHFD2 in vivo. RESULTS: We found that overexpression of MTHFD2, but not MTHFD1, is associated with reduced overall and disease-free survival in gastric cancer. In addition, MTHFD2 knockdown reduces the cellular NADPH/NADP+ ratio, colony formation and mitochondrial function, increases cellular ROS and cleaved PARP levels and induces in cell death under hypoxia, a hallmark of solid cancers and a common inducer of oxidative stress. Moreover, genetic or pharmacological inhibition of MTHFD2 reduces tumor burden in both tumor cell lines and patient-derived xenograft-based models. DISCUSSION: our study highlights the crucial role of MTHFD2 in redox regulation and tumor progression, demonstrating the therapeutic potential of targeting MTHFD2.


Assuntos
Metilenotetra-Hidrofolato Desidrogenase (NADP) , Oxirredução , Estresse Oxidativo , Espécies Reativas de Oxigênio , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patologia , Neoplasias Gástricas/genética , Metilenotetra-Hidrofolato Desidrogenase (NADP)/metabolismo , Metilenotetra-Hidrofolato Desidrogenase (NADP)/genética , Animais , Camundongos , Espécies Reativas de Oxigênio/metabolismo , Enzimas Multifuncionais/metabolismo , Enzimas Multifuncionais/genética , Linhagem Celular Tumoral , Homeostase , Aminoidrolases/metabolismo , Aminoidrolases/genética , Progressão da Doença , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Med Oncol ; 41(6): 148, 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38733486

RESUMO

Numerous herbal products have been the subject of research regarding their potential role in cancer prevention or adjuvant therapy. Pistacia atlantica and its main phytochemicals have garnered significant attention for their potential anti-cancer effects. The study aimed to assess the growth inhibitory effects of P. atlantica essential oil (PAEO) on MKN-45 and AGS cells. This study quantified the volatile compounds in PAEO using Gas Chromatography-Mass Spectrometry (GC-MS). Subsequently, MKN-45 and AGS cells were treated with varying concentrations of PAEO (5%, 2.5%, 1.25%, 0.625%, 0.3125%, 0.156%, 0.0781%, 0.0391%, 0.0195%) for 24 h. Cell viability was evaluated through the MTT assay. The impact of PAEO on gene expression was investigated by quantifying the mRNA levels of Bax and Bcl2 in the various experimental groups using quantitative Real-Time PCR (qRT-PCR) analysis. Additionally, flow cytometry was utilized to evaluate apoptosis in the treated cells. The analysis of PAEO revealed that α-pinene was the predominant monoterpene, constituting 87.9% of the oil composition. The cytotoxic effects of PAEO were evaluated, and it was found that the oil significantly reduced the viability of MKN-45 and AGS cells. The IC50 for MKN-45 cells was determined to be 1.94 × 10-3% after 24 h of treatment, while for AGS cells the IC50 was 2.8 × 10-3% after 24 h. Additionally, the research revealed that PAEO triggered a notable rise in apoptotic cells in both AGS and MKN-45 cell lines. Moreover, at the molecular level, the findings indicated an increase in Bax expression and a decrease in Bcl2 mRNA expression, providing further evidence of the induction of apoptosis in both MKN-45 and AGS cell lines following PAEO treatment. The findings of this study offer evidence supporting the cytotoxic effects of PAEO on gastric cancer cell lines by promoting apoptosis. The findings suggest that PAEO may offer potential as a therapeutic candidate in managing and treating gastric cancer.


Assuntos
Apoptose , Sobrevivência Celular , Óleos Voláteis , Pistacia , Neoplasias Gástricas , Humanos , Óleos Voláteis/farmacologia , Pistacia/química , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/patologia , Neoplasias Gástricas/metabolismo , Linhagem Celular Tumoral , Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Antineoplásicos Fitogênicos/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteína X Associada a bcl-2/metabolismo , Proteína X Associada a bcl-2/genética , Cromatografia Gasosa-Espectrometria de Massas
4.
Sci Rep ; 14(1): 10745, 2024 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-38730240

RESUMO

Gastric cancer is one of the most common malignant tumors, and chemotherapy is the main treatment for advanced gastric cancer. However, chemotherapy resistance leads to treatment failure and poor prognosis in patients with gastric cancer. Multidrug resistance (MDR) is a major challenge that needs to be overcome in chemotherapy. According to recent research, ferroptosis activation is crucial for tumor therapeutic strategies. In this work, we explored the solution to chemoresistance in gastric cancer by investigating the effects of the Chinese medicine monomer baicalin on ferroptosis. Baicalin with different concentrations was used to treat the parent HGC27 and drug-resistant HGC27/L cells of gastric cancer. Cell viability was measured by CCK8, and synergistic effects of baicalin combined with oxaliplatin were evaluated using Synergy Finder software. The effects of baicalin on organelles and cell morphology were investigated using projective electron microscopy. Iron concentration, MDA production and GSH inhibition rate were measured by colorimetry. ROS accumulation was detected by flow cytometry. The ferroptosis-related genes (IREB2, TfR, GPX4, FTH1), P53, and SLC7A11 were analysed by Western blot, and the expression differences of the above proteins between pretreatment and pretreatment of different concentrations of baicalin, were assayed in both parental HGC27 cells and Oxaliplatin-resistant HGC27/L cells. Mechanically, Baicalin disrupted iron homeostasis and inhibits antioxidant defense, resulting in iron accumulation, lipid peroxide aggregation, and specifically targeted and activated ferroptosis by upregulating the expression of tumor suppressor gene p53, thereby activating the SLC7A11/GPX4/ROS pathway mediated by it. Baicalin activates ferroptosis through multiple pathways and targets, thereby inhibiting the viability of oxaliplatin-resistant gastric cancer HGC27/L cells and enhancing the sensitivity to oxaliplatin chemotherapy.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Ferroptose , Flavonoides , Oxaliplatina , Neoplasias Gástricas , Proteína Supressora de Tumor p53 , Ferroptose/efeitos dos fármacos , Humanos , Flavonoides/farmacologia , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patologia , Neoplasias Gástricas/genética , Oxaliplatina/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Antineoplásicos/farmacologia , Sinergismo Farmacológico , Espécies Reativas de Oxigênio/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos
5.
Int J Mol Sci ; 25(9)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38731847

RESUMO

Yamogenin is a steroidal saponin occurring in plant species such as Asparagus officinalis, Dioscorea collettii, Trigonella foenum-graecum, and Agave sp. In this study, we evaluated in vitro cytotoxic, antioxidant, and antimicrobial properties of yamogenin. The cytotoxic activity was estimated on human colon cancer HCT116, gastric cancer AGS, squamous carcinoma UM-SCC-6 cells, and human normal fibroblasts with MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay. The amount of apoptotic and dead AGS cells after treatment with yamogenin was estimated with flow cytometry. Also, in yamogenin-treated AGS cells we investigated the reactive oxygen species (ROS) production, mitochondrial membrane depolarization, activity level of caspase-8 and -9, and gene expression at mRNA level with flow cytometry, luminometry, and RT-PCR, respectively. The antioxidant properties of yamogenin were assessed with DPPH (2,2-diphenyl-1-picrylhydrazyl) and ABTS (2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) assays. The antimicrobial potential of the compound was estimated on Staphylococcus aureus, Bacillus cereus, Klebsiella pneumoniae, Escherichia coli, Salmonella enterica, Helicobacter pylori, Campylobacter coli, Campylobacter jejuni, Listeria monocytogenes, Lactobacillus paracasei, and Lactobacillus acidophilus bacteria strains. Yamogenin showed the strongest cytotoxic effect on AGS cells (IC50 18.50 ± 1.24 µg/mL) among the tested cell lines. This effect was significantly stronger in combinations of yamogenin with oxaliplatin or capecitabine than for the single compounds. Furthermore, yamogenin induced ROS production, depolarized mitochondrial membrane, and increased the activity level of caspase-8 and -9 in AGS cells. RT-PCR analysis revealed that this sapogenin strongly up-regulated TNFRSF25 expression at the mRNA level. These results indicate that yamogenin induced cell death via the extrinsic and intrinsic way of apoptosis. Antioxidant study showed that yamogenin had moderate in vitro potential (IC50 704.7 ± 5.9 µg/mL in DPPH and 631.09 ± 3.51 µg/mL in ABTS assay) as well as the inhibition of protein denaturation properties (with IC50 1421.92 ± 6.06 µg/mL). Antimicrobial test revealed a weak effect of yamogenin on bacteria strains, the strongest one being against S. aureus (with MIC value of 350 µg/mL). In conclusion, yamogenin may be a potential candidate for the treatment and prevention of gastric cancers.


Assuntos
Antioxidantes , Apoptose , Espécies Reativas de Oxigênio , Saponinas , Neoplasias Gástricas , Humanos , Antioxidantes/farmacologia , Saponinas/farmacologia , Saponinas/química , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/patologia , Linhagem Celular Tumoral , Apoptose/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Anti-Infecciosos/farmacologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/química
6.
Int J Mol Sci ; 25(9)2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38732067

RESUMO

Plexiform fibromyxoma (PF), also referred to as plexiform angiomyxoid myofibroblast tumor, is an exceedingly rare mesenchymal neoplasm primarily affecting the stomach. Herein, we present a case of PF diagnosed in a 71-year-old male with a history of lung cancer, initially suspected to have a gastrointestinal stromal tumor (GIST) of the stomach, who subsequently underwent subtotal gastrectomy. The histopathological and molecular features of the tumor, including mutations in ABL1, CCND1, CSF1R, FGFR4, KDR, and MALAT1-GLI1 fusion, are elucidated and discussed in the context of diagnostic, prognostic, and therapeutic considerations.


Assuntos
Fibroma , Neoplasias Gástricas , Humanos , Masculino , Idoso , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Neoplasias Gástricas/cirurgia , Neoplasias Gástricas/metabolismo , Fibroma/genética , Fibroma/patologia , Fibroma/metabolismo , Imuno-Histoquímica , Mutação , Biomarcadores Tumorais/genética , Gastrectomia
7.
Commun Biol ; 7(1): 545, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38714724

RESUMO

CircRNAs are covalently closed, single-stranded RNA that form continuous loops and play a crucial role in the initiation and progression of tumors. Cancer stem cells (CSCs) are indispensable for cancer development; however, the regulation of cancer stem cell-like properties in gastric cancer (GC) and its specific mechanism remain poorly understood. We elucidate the specific role of Circ-0075305 in GC stem cell properties. Circ-0075305 associated with chemotherapy resistance was identified by sequencing GC cells. Subsequent confirmation in both GC tissues and cell lines revealed that patients with high expression of Circ-0075305 had significantly better overall survival (OS) rates than those with low expression, particularly when treated with postoperative adjuvant chemotherapy for GC. In vitro and in vivo experiments confirmed that overexpression of Circ-0075305 can effectively reduce stem cell-like properties and enhance the sensitivity of GC cells to Oxaliplatin compared with the control group. Circ-0075305 promotes RPRD1A expression by acting as a sponge for corresponding miRNAs. The addition of LF3 (a ß-catenin/TCF4 interaction antagonist) confirmed that RPRD1A inhibited the formation of the TCF4-ß-catenin transcription complex through competitive to ß-catenin and suppressed the transcriptional activity of stem cell markers such as SOX9 via the Wnt/ß-catenin signaling pathway. This leads to the downregulation of stem cell-like property-related markers in GC. This study revealed the underlying mechanisms that regulate Circ-0075305 in GCSCs and suggests that its role in reducing ß-catenin signaling may serve as a potential therapeutic candidate.


Assuntos
Regulação para Baixo , Regulação Neoplásica da Expressão Gênica , Células-Tronco Neoplásicas , RNA Circular , Fatores de Transcrição SOX9 , Neoplasias Gástricas , Fator de Transcrição 4 , beta Catenina , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patologia , Humanos , Fatores de Transcrição SOX9/metabolismo , Fatores de Transcrição SOX9/genética , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , beta Catenina/metabolismo , beta Catenina/genética , RNA Circular/genética , RNA Circular/metabolismo , Fator de Transcrição 4/genética , Fator de Transcrição 4/metabolismo , Animais , Camundongos , Linhagem Celular Tumoral , Camundongos Nus , Masculino , Feminino , Resistencia a Medicamentos Antineoplásicos/genética , Camundongos Endogâmicos BALB C , Pessoa de Meia-Idade
8.
Biol Direct ; 19(1): 34, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38698487

RESUMO

BACKGROUND: LncRNA PCED1B-AS1 is abnormally expressed in multiple cancers and has been confirmed as an oncogene. Our study aimed to investigate the regulatory mechanism of lncRNA PCED1B-AS1 in gastric cancer. METHODS: TCGA database was used to analyze the abnormal expression of lncRNA PCED1B-AS1 in gastric cancer. By database prediction and mass spectrometric analysis, miR-3681-3p and MAP2K7 are potential downstream target molecules of lncRNA PCED1B-AS1 and verified by dual-luciferase report assay. RT-qPCR analysis and western blot were performed to detect the expressions of PCED1B-AS1 and MAP2K7 in gastric cancer cell lines and tissues. CCK-8 kit was applied to measure the cell viability. Wound healing and Transwell experiment were used to detect the migration and invasion. Western blot and immunohistochemical staining were performed to detect the expressions of EMT-related proteins in tissues. The changes of tumor proliferation were detected by xenograft experiment in nude mice. RESULTS: PCED1B-AS1 expression was higher but miR-3681-3 expression was lower in gastric cancer cell lines or tissues, compared to normal group. Function analysis verified PCED1B-AS1 promoted cell proliferation and inhibited cell apoptosis in gastric cancer cells in vitro and in vivo. LncRNA PCED1B-AS1 could bind directly to miR-3681-3p, and MAP2K7 was found to be a downstream target of miR-3681-3p. MiR-3681-3p mimics or si-MAP2K7 could partly reverse the effect of PCED1B-AS1 on gastric cancer cells. CONCLUSION: PCED1B-AS1 accelerated cell proliferation and inhibited cell apoptosis through sponging miR-3681-3p to upregulate MAP2K7 expression in gastric cancer, which indicated PCED1B-AS1/miR-3681-3p/MAP2K7 axis may serve as a potential therapeutic target for gastric cancer.


Assuntos
Transição Epitelial-Mesenquimal , MAP Quinase Quinase Quinases , Camundongos Nus , MicroRNAs , RNA Longo não Codificante , Neoplasias Gástricas , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Transição Epitelial-Mesenquimal/genética , Linhagem Celular Tumoral , Animais , Camundongos , MAP Quinase Quinase Quinases/genética , MAP Quinase Quinase Quinases/metabolismo , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Invasividade Neoplásica , Movimento Celular , Metástase Neoplásica
9.
Oncoimmunology ; 13(1): 2352179, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38746869

RESUMO

Cancer-associated fibroblasts (CAFs) exhibit remarkable phenotypic heterogeneity, with specific subsets implicated in immunosuppression in various malignancies. However, whether and how they attenuate anti-tumor immunity in gastric cancer (GC) remains elusive. CPT1C, a unique isoform of carnitine palmitoyltransferase pivotal in regulating fatty acid oxidation, is briefly indicated as a protumoral metabolic mediator in the tumor microenvironment (TME) of GC. In the present study, we initially identified specific subsets of fibroblasts exclusively overexpressing CPT1C, hereby termed them as CPT1C+CAFs. Subsequent findings indicated that CPT1C+CAFs fostered a stroma-enriched and immunosuppressive TME as they correlated with extracellular matrix-related molecular features and enrichment of both immunosuppressive subsets, especially M2-like macrophages, and multiple immune-related pathways. Next, we identified that CPT1C+CAFs promoted the M2-like phenotype of macrophage in vitro. Bioinformatic analyses unveiled the robust IL-6 signaling between CPT1C+CAFs and M2-like phenotype of macrophage and identified CPT1C+CAFs as the primary source of IL-6. Meanwhile, suppressing CPT1C expression in CAFs significantly decreased IL-6 secretion in vitro. Lastly, we demonstrated the association of CPT1C+CAFs with therapeutic resistance. Notably, GC patients with high CPT1C+CAFs infiltration responded poorly to immunotherapy in clinical cohort. Collectively, our data not only present the novel identification of CPT1C+CAFs as immunosuppressive subsets in TME of GC, but also reveal the underlying mechanism that CPT1C+CAFs impair tumor immunity by secreting IL-6 to induce the immunosuppressive M2-like phenotype of macrophage in GC.


Assuntos
Fibroblastos Associados a Câncer , Carnitina O-Palmitoiltransferase , Interleucina-6 , Macrófagos , Microambiente Tumoral , Humanos , Microambiente Tumoral/imunologia , Carnitina O-Palmitoiltransferase/genética , Carnitina O-Palmitoiltransferase/metabolismo , Fibroblastos Associados a Câncer/metabolismo , Fibroblastos Associados a Câncer/imunologia , Fibroblastos Associados a Câncer/patologia , Interleucina-6/metabolismo , Interleucina-6/genética , Macrófagos/imunologia , Macrófagos/metabolismo , Neoplasias Gástricas/imunologia , Neoplasias Gástricas/patologia , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Fenótipo , Animais , Camundongos , Masculino , Feminino , Linhagem Celular Tumoral , Tolerância Imunológica
10.
Cancer Immunol Immunother ; 73(7): 131, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38748299

RESUMO

PURPOSE: The variable responses to immunotherapy observed in gastric cancer (GC) patients can be attributed to the intricate nature of the tumor microenvironment. Glutathione (GSH) metabolism significantly influences the initiation and progression of gastric cancer. Consequently, targeting GSH metabolism holds promise for improving the effectiveness of Immune checkpoints inhibitors (ICIs). METHODS: We investigated 16 genes related to GSH metabolism, sourced from the MSigDB database, using pan-cancer datasets from TCGA. The most representative prognosis-related gene was identified for further analysis. ScRNA-sequencing analysis was used to explore the tumor heterogeneity of GC, and the results were confirmed by  Multiplex immunohistochemistry (mIHC). RESULTS: Through DEGs, LASSO, univariate and multivariate Cox regression analyses, and survival analysis, we identified GGT5 as the hub gene in GSH metabolism with the potential to promote GC. Combining CIBERSORT, ssGSEA, and scRNA analysis, we constructed the immune architecture of GC. The subpopulations of T cells were isolated, revealing a strong association between GGT5 and memory CD8+ T cells. Furthermore, specimens from 10 GC patients receiving immunotherapy were collected. mIHC was used to assess the expression levels of GGT5 and memory CD8+ T cell markers. Our results established a positive correlation between GGT5 expression, the enrichment of memory CD8+ T cells, and a suboptimal response to immunotherapy. CONCLUSIONS: Our study identifies GGT5, a hub gene in GSH metabolism, as a potential therapeutic target for inhibiting the response to immunotherapy in GC patients. These findings offer new insights into strategies for optimizing immunotherapy of GC.


Assuntos
Linfócitos T CD8-Positivos , Glutationa , Imunoterapia , Neoplasias Gástricas , Microambiente Tumoral , Humanos , Neoplasias Gástricas/imunologia , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/patologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Glutationa/metabolismo , Imunoterapia/métodos , Microambiente Tumoral/imunologia , Prognóstico , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Feminino , Biomarcadores Tumorais/metabolismo , Masculino , gama-Glutamiltransferase/metabolismo , Inibidores de Checkpoint Imunológico/uso terapêutico , Inibidores de Checkpoint Imunológico/farmacologia
11.
Commun Biol ; 7(1): 565, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38745044

RESUMO

Circular RNAs (circRNAs) have recently been suggested as potential functional modulators of cellular physiology processes in gastric cancer (GC). In this study, we demonstrated that circFOXP1 was more highly expressed in GC tissues. High circFOXP1 expression was positively associated with tumor size, lymph node metastasis, TNM stage, and poor prognosis in patients with GC. Cox multivariate analysis revealed that higher circFOXP1 expression was an independent risk factor for disease-free survival (DFS) and overall survival (OS) in GC patients. Functional studies showed that increased circFOXP1 expression promoted cell proliferation, cell invasion, and cell cycle progression in GC in vitro. In vivo, the knockdown of circFOXP1 inhibited tumor growth. Mechanistically, we observed ALKBH5-mediated m6A modification of circFOXP1 and circFOXP1 promoted GC progression by regulating SOX4 expression and sponging miR-338-3p in GC cells. Thus, our findings highlight that circFOXP1 could serve as a novel diagnostic and prognostic biomarker and potential therapeutic target for GC.


Assuntos
Homólogo AlkB 5 da RNA Desmetilase , Progressão da Doença , Fatores de Transcrição Forkhead , Regulação Neoplásica da Expressão Gênica , MicroRNAs , RNA Circular , Fatores de Transcrição SOXC , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/mortalidade , MicroRNAs/genética , MicroRNAs/metabolismo , Fatores de Transcrição SOXC/genética , Fatores de Transcrição SOXC/metabolismo , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Masculino , RNA Circular/genética , RNA Circular/metabolismo , Feminino , Homólogo AlkB 5 da RNA Desmetilase/metabolismo , Homólogo AlkB 5 da RNA Desmetilase/genética , Pessoa de Meia-Idade , Linhagem Celular Tumoral , Animais , Camundongos , Proliferação de Células/genética , Camundongos Nus , Prognóstico , Camundongos Endogâmicos BALB C
12.
J Invest Surg ; 37(1): 2350358, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38724045

RESUMO

OBJECTIVES: Hypermetabolism is associated with clinical prognosis of cancer patients. The aim of this study was to explore the association between basal metabolic rate (BMR) and postoperative clinical outcomes in gastric cancer patients. METHODS: We collected data of 958 gastric cancer patients admitted at our center from June 2014 to December 2018. The optimal cutoff value of BMR (BMR ≤1149 kcal/day) was obtained using the X-tile plot. Logistic and Cox regression analyses were then performed to evaluate the relevant influencing factors of clinical outcomes. Finally, R software was utilized to construct the nomogram. RESULTS: A total of 213 patients were defined as having a lower basal metabolic rate (LBMR). Univariate and multivariate analyses showed that gastric cancer patients with LBMR were more prone to postoperative complications and had poor long-term overall survival (OS). The established nomogram had good predictive power to assess the risk of OS in gastric cancer patients after radical gastrectomy (c-index was 0.764). CONCLUSIONS: Overall, LBMR on admission is associated with the occurrence of postoperative complications in gastric cancer patients, and this population has a poorer long-term survival. Therefore, there should be more focus on the perioperative management of patients with this risk factor before surgery.


Assuntos
Metabolismo Basal , Gastrectomia , Nomogramas , Complicações Pós-Operatórias , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/cirurgia , Neoplasias Gástricas/mortalidade , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patologia , Masculino , Feminino , Estudos Retrospectivos , Pessoa de Meia-Idade , Gastrectomia/efeitos adversos , Gastrectomia/métodos , Idoso , Complicações Pós-Operatórias/epidemiologia , Complicações Pós-Operatórias/etiologia , Prognóstico , Fatores de Risco , Resultado do Tratamento , Adulto
13.
Mol Biol Rep ; 51(1): 641, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38727798

RESUMO

BACKGROUND: The interrelationship between cellular metabolism and the epithelial-to-mesenchymal transition (EMT) process has made it an interesting topic to investigate the adjuvant effect of therapeutic diets in the treatment of cancers. However, the findings are controversial. In this study, the effects of glucose limitation along and with the addition of beta-hydroxybutyrate (bHB) were examined on the expression of specific genes and proteins of EMT, Wnt, Hedgehog, and Hippo signaling pathways, and also on cellular behavior of gastric cancer stem-like (MKN-45) and non-stem-like (KATO III) cells. METHODS AND RESULTS: The expression levels of chosen genes and proteins studied in cancer cells gradually adopted a low-glucose condition of one-fourth, along and with the addition of bHB, and compared to the unconditioned control cells. The long-term switching of the metabolic fuels successfully altered the expression profiles and behaviors of both gastric cancer cells. However, the results for some changes were the opposite. Glucose limitation along and with the addition of bHB reduced the CD44+ population in MKN-45 cells. In KATO III cells, glucose restriction increased the CD44+ population. Glucose deprivation alleviated EMT-related signaling pathways in MKN-45 cells but stimulated EMT in KATO III cells. Interestingly, bHB enrichment reduced the beneficial effect of glucose starvation in MKN-45 cells, but also alleviated the adverse effects of glucose restriction in KATO III cells. CONCLUSIONS: The findings of this research clearly showed that some controversial results in clinical trials for ketogenic diet in cancer patients stemmed from the different signaling responses of various cells to the metabolic changes in a heterogeneous cancer mass.


Assuntos
Ácido 3-Hidroxibutírico , Transição Epitelial-Mesenquimal , Glucose , Transdução de Sinais , Neoplasias Gástricas , Transição Epitelial-Mesenquimal/genética , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Humanos , Linhagem Celular Tumoral , Ácido 3-Hidroxibutírico/farmacologia , Ácido 3-Hidroxibutírico/metabolismo , Glucose/metabolismo , Cetose/metabolismo , Regulação Neoplásica da Expressão Gênica , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Receptores de Hialuronatos/metabolismo , Receptores de Hialuronatos/genética
14.
Sci Rep ; 14(1): 10075, 2024 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-38698201

RESUMO

Intraperitoneal (IP) chemotherapy with paclitaxel (PTX) for gastric cancer (GC) with peritoneal metastasis (PM) is considered a promising treatment approach, however, there are no useful biomarkers to predict the efficacy of IP therapy. We examined the association between intra-peritoneal exosomes, particularly exosomal micro-RNAs (exo-miRNAs), and IP-chemo sensitivity. MKN45 cells that were cultured with intra-peritoneal exosomes from patients who did not respond to IP therapy with PTX (IPnon-respond group) exhibited resistance to PTX compared with exosomes from responding patients (IPrespond group) (p = 0.002). A comprehensive search for exo-miRNAs indicated that miR-493 was significantly up-regulated in exosomes from the IPnon-respond group compared with those collected from the IPrespond group. The expression of miR-493 in PTX-resistant MKN45 cells (MKN45PTX-res) was higher compared with that in MKN45. In addition, MKN45PTX-res cells exhibited lower MAD2L1 gene and protein expression compared with MKN45. Finally, miR-493 enhancement by transfection of miR-493 mimics significantly down-regulated MAD2L1 expression in MKN45 cells and reduced PTX sensitivity. Our results suggest that intra-peritoneal exo-miR-493 is involved in chemoresistance to PTX by downregulating MAD2L1 in GC with PM. Exo-miR-493 may be a biomarker for chemoresistance and prognosis of GC patients with PM and may also be a promising therapeutic target.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Exossomos , Regulação Neoplásica da Expressão Gênica , Proteínas Mad2 , MicroRNAs , Paclitaxel , Neoplasias Peritoneais , Neoplasias Gástricas , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Neoplasias Gástricas/metabolismo , Paclitaxel/farmacologia , Paclitaxel/uso terapêutico , Paclitaxel/administração & dosagem , Resistencia a Medicamentos Antineoplásicos/genética , Exossomos/metabolismo , Exossomos/genética , Neoplasias Peritoneais/secundário , Neoplasias Peritoneais/tratamento farmacológico , Neoplasias Peritoneais/genética , Neoplasias Peritoneais/metabolismo , Linhagem Celular Tumoral , Masculino , Feminino , Proteínas Mad2/metabolismo , Proteínas Mad2/genética , Pessoa de Meia-Idade , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Idoso , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/uso terapêutico , Antineoplásicos Fitogênicos/administração & dosagem
15.
Sci Rep ; 14(1): 10284, 2024 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-38704421

RESUMO

The use of magnetic metal nanoparticles has been considered in cancer treatment studies. In this study, BiFe2O4@Ag nanoparticles were synthesized biologically by Scenedesmus obliquus for the first time and their anticancer mechanism in a gastric cancer cell line was characterized. The physicochemical properties of the nanoparticles were evaluated by fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), dynamic Light Scattering (DLS), and zeta potential analyses. Cell viability and nuclear damage were investigated by the MTT and Hoechst staining assays, respectively. Flow cytometry analysis was performed to determine the frequency of the necrotic and apoptotic cells as well as cell cycle analysis of the nanoparticles-treated cells. Physicochemical characterization showed that the synthesized particles were spherical, without impurities, in a size range of 38-83 nm, with DLS size and zeta potential of 295.7 nm and -27.7 mV, respectively. BiFe2O4@Ag nanoparticles were considerably more toxic for the gastric cancer cells (AGS cell line) than HEK293 normal cells with IC50 of 67 and 117 µg/ml, respectively. Treatment of AGS cells with the nanoparticles led to a remarkable increase in the percentage of late apoptosis (38.5 folds) and cell necrosis (13.4 folds) and caused cell cycle arrest, mainly at the S phase. Also, nuclear fragmentation and apoptotic bodies were observed in the gastric cancer cells treated with the nanoparticles. This study represents BiFe2O4@Ag as a novel anticancer candidate against gastric cancer that can induce cell apoptosis through DNA damage and inhibition of cell cycle progression.


Assuntos
Apoptose , Nanopartículas Metálicas , Scenedesmus , Prata , Neoplasias Gástricas , Humanos , Apoptose/efeitos dos fármacos , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/patologia , Neoplasias Gástricas/metabolismo , Linhagem Celular Tumoral , Nanopartículas Metálicas/química , Scenedesmus/efeitos dos fármacos , Prata/química , Prata/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/química , Células HEK293 , Difração de Raios X
16.
Nat Commun ; 15(1): 3684, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38693181

RESUMO

The metal-nucleic acid nanocomposites, first termed metal-nucleic acid frameworks (MNFs) in this work, show extraordinary potential as functional nanomaterials. However, thus far, realized MNFs face limitations including harsh synthesis conditions, instability, and non-targeting. Herein, we discover that longer oligonucleotides can enhance the synthesis efficiency and stability of MNFs by increasing oligonucleotide folding and entanglement probabilities during the reaction. Besides, longer oligonucleotides provide upgraded metal ions binding conditions, facilitating MNFs to load macromolecular protein drugs at room temperature. Furthermore, longer oligonucleotides facilitate functional expansion of nucleotide sequences, enabling disease-targeted MNFs. As a proof-of-concept, we build an interferon regulatory factor-1(IRF-1) loaded Ca2+/(aptamer-deoxyribozyme) MNF to target regulate glucose transporter (GLUT-1) expression in human epidermal growth factor receptor-2 (HER-2) positive gastric cancer cells. This MNF nanodevice disrupts GSH/ROS homeostasis, suppresses DNA repair, and augments ROS-mediated DNA damage therapy, with tumor inhibition rate up to 90%. Our work signifies a significant advancement towards an era of universal MNF application.


Assuntos
Aptâmeros de Nucleotídeos , DNA Catalítico , Neoplasias Gástricas , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/genética , Humanos , Aptâmeros de Nucleotídeos/química , Aptâmeros de Nucleotídeos/metabolismo , Linhagem Celular Tumoral , DNA Catalítico/metabolismo , DNA Catalítico/química , Animais , Receptor ErbB-2/metabolismo , Fator Regulador 1 de Interferon/metabolismo , Fator Regulador 1 de Interferon/genética , Espécies Reativas de Oxigênio/metabolismo , Camundongos , Reparo do DNA , Dano ao DNA , Glutationa/metabolismo , Glutationa/química , Ácidos Nucleicos/metabolismo , Ácidos Nucleicos/química
17.
J Cancer Res Clin Oncol ; 150(5): 230, 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38703300

RESUMO

OBJECTIVES: Gastric cancer (GC) is a prevalent malignant tumor widely distributed globally, exhibiting elevated incidence and fatality rates. The gene LAMC2 encodes the laminin subunit gamma-2 chain and is found specifically in the basement membrane of epithelial cells. Its expression is aberrant in multiple types of malignant tumors. This research elucidated a link between LAMC2 and the clinical characteristics of GC and investigated the potential involvement of LAMC2 in GC proliferation and advancement. MATERIALS AND METHODS: LAMC2 expressions were detected in GC cell lines and normal gastric epithelial cell lines via qRT-PCR. Silencing and overexpression of the LAMC2 were conducted by lentiviral transfection. A xenograft mouse model was also developed for in vivo analysis. Cell functional assays were conducted to elucidate the involvement of LAMC2 in cell growth, migration, and penetration. Further, immunoblotting was conducted to investigate the impact of LAMC2 on the activation of signal pathways after lentiviral transfection. RESULTS: In the findings, LAMC2 expression was markedly upregulated in GC cell lines as opposed to normal gastric epithelial cells. In vitro analysis showed that sh-LAMC2 substantially inhibited GC cell growth, migration, and invasion, while oe-LAMC2 displayed a contrasting effect. Xenograft tumor models demonstrated that oe-LAMC2 accelerated tumor growth via high expression of Ki-67. Immunoblotting analysis revealed a substantial decrease in various signaling pathway proteins, PI3K, p-Akt, and Vimentin levels upon LAMC2 knockdown, followed by increased E-cadherin expression. Conversely, its overexpression exhibited contrasting effects. Besides, epithelial-mesenchymal transition (EMT) was accelerated by LAMC2. CONCLUSION: This study provides evidence indicating that LAMC2, by stimulating signaling pathways, facilitated EMT and stimulated the progression of GC cells in laboratory settings and mouse models. Research also explored that the abnormal LAMC2 expression acts as a biomarker for GC.


Assuntos
Proliferação de Células , Laminina , Invasividade Neoplásica , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Neoplasias Gástricas , Neoplasias Gástricas/patologia , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Humanos , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Camundongos , Laminina/metabolismo , Linhagem Celular Tumoral , Camundongos Nus , Transição Epitelial-Mesenquimal , Movimento Celular , Feminino , Masculino , Camundongos Endogâmicos BALB C , Metástase Neoplásica , Ensaios Antitumorais Modelo de Xenoenxerto , Regulação Neoplásica da Expressão Gênica
18.
J Pathol ; 263(2): 226-241, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38572612

RESUMO

Loss of the cell-cell adhesion protein E-cadherin underlies the development of diffuse-type gastric cancer (DGC), which is characterized by the gradual accumulation of tumor cells originating from the gastric epithelium in the surrounding stroma. How E-cadherin deficiency drives DGC formation remains elusive. Therefore, we investigated the consequences of E-cadherin loss on gastric epithelial organization utilizing a human gastric organoid model and histological analyses of early-stage DGC lesions. E-cadherin depletion from gastric organoids recapitulates DGC initiation, with progressive loss of a single-layered architecture and detachment of individual cells. We found that E-cadherin deficiency in gastric epithelia does not lead to a general loss of epithelial cohesion but disrupts the spindle orientation machinery. This leads to a loss of planar cell division orientation and, consequently, daughter cells are positioned outside of the gastric epithelial layer. Although basally delaminated cells fail to detach and instead reintegrate into the epithelium, apically mispositioned daughter cells can trigger the gradual loss of the single-layered epithelial architecture. This impaired architecture hampers reintegration of mispositioned daughter cells and enables basally delaminated cells to disseminate into the surrounding matrix. Taken together, our findings describe how E-cadherin deficiency disrupts gastric epithelial architecture through displacement of dividing cells and provide new insights in the onset of DGC. © 2024 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Assuntos
Caderinas , Divisão Celular , Organoides , Neoplasias Gástricas , Neoplasias Gástricas/patologia , Neoplasias Gástricas/metabolismo , Caderinas/metabolismo , Humanos , Organoides/patologia , Organoides/metabolismo , Mucosa Gástrica/patologia , Mucosa Gástrica/metabolismo , Movimento Celular , Antígenos CD/metabolismo , Células Epiteliais/patologia , Células Epiteliais/metabolismo
19.
Cell Death Dis ; 15(4): 288, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38654006

RESUMO

Cancer stem cells (CSCs) are believed to be responsible for cancer metastasis and recurrence due to their self-renewal ability and resistance to treatment. However, the mechanisms that regulate the stemness of CSCs remain poorly understood. Recently, evidence has emerged suggesting that long non-coding RNAs (lncRNAs) play a crucial role in regulating cancer cell function in different types of malignancies, including gastric cancer (GC). However, the specific means by which lncRNAs regulate the function of gastric cancer stem cells (GCSCs) are yet to be fully understood. In this study, we investigated a lncRNA known as HNF1A-AS1, which is highly expressed in GCSC s and serves as a critical regulator of GCSC stemness and tumorigenesis. Our experiments, both in vitro and in vivo, demonstrated that HNF1A-AS1 maintained the stemness of GC cells. Further analysis revealed that HNF1A-AS1, transcriptionally activated by CMYC, functioned as a competing endogenous RNA by binding to miR-150-5p to upregulate ß-catenin expression. This in turn facilitated the entry of ß-catenin into the nucleus to activate the Wnt/ß-catenin pathway and promote CMYC expression, thereby forming a positive feedback loop that sustained the stemness of GCSCs. We also found that blocking the Wnt/ß-catenin pathway effectively inhibited the function of HNF1A-AS1, ultimately resulting in the inhibition of GCSC stemness. Taken together, our results demonstrated that HNF1A-AS1 is a regulator of the stemness of GCSCs and could serve as a potential marker for targeted GC therapy.


Assuntos
Regulação Neoplásica da Expressão Gênica , Células-Tronco Neoplásicas , RNA Longo não Codificante , Neoplasias Gástricas , Animais , Humanos , Camundongos , beta Catenina/metabolismo , Linhagem Celular Tumoral , Fator 1-alfa Nuclear de Hepatócito/metabolismo , Fator 1-alfa Nuclear de Hepatócito/genética , Camundongos Endogâmicos BALB C , Camundongos Nus , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Neoplasias Gástricas/patologia , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Via de Sinalização Wnt/genética
20.
Mol Biol Rep ; 51(1): 542, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38642200

RESUMO

BACKGROUND: Inflammatory cancer-associated fibroblasts (iCAFs) was first identified by co-culture of pancreatic stellate cells and tumor organoids. The key feature of iCAFs is IL-6high/αSMAlow. We examine this phenomenon in gastric cancer using two cell lines of gastric fibroblasts (HGF and YS-1). METHODS AND RESULTS: HGF or YS-1 were co-cultured with MKN7 (a gastric adenocarcinoma cell line) in Matrigel. IL-6 protein levels in the culture supernatant were measured by ELISA. The increased production of IL-6 was not observed in any of the combinations. Instead, the supernatant of YS-1 exhibited the higher levels of IL-6. YS-1 showed IL-6high/αSMA (ACTA2)low in real-time PCR, mRNA-seq and immunohistochemistry. In mRNA-seq, iCAFs-associated genes and signaling pathways were up-regulated in YS-1. No transition to myofibroblastic phenotype was observed by monolayer culture, or the exposure to sonic hedgehog (SHH) or TGF-ß. YS-1 conditioned medium induced changes of morphology and stem-ness/differentiation in NUGC-3 (a human gastric adenocarcinoma cell line) and UBE6T-15 (a human bone marrow-derived mesenchymal stem cell line). CONCLUSIONS: YS-1 is a stable cell line of gastric iCAFs. This discovery will promote further research on iCAFs for many researchers.


Assuntos
Adenocarcinoma , Fibroblastos Associados a Câncer , Neoplasias Gástricas , Humanos , Fibroblastos Associados a Câncer/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Proteínas Hedgehog/metabolismo , Linhagem Celular Tumoral , Neoplasias Gástricas/metabolismo , Fibroblastos/metabolismo , Adenocarcinoma/metabolismo , RNA Mensageiro/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA