Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.347
Filtrar
1.
Molecules ; 29(9)2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38731540

RESUMO

Deferoxamine, an iron chelator used to treat diseases caused by excess iron, has had a Food and Drug Administration-approved status for many years. A large number of studies have confirmed that deferoxamine can reduce inflammatory response and promote angiogenesis. Blood vessels play a crucial role in sustaining vital life by facilitating the delivery of immune cells, oxygen, and nutrients, as well as eliminating waste products generated during cellular metabolism. Dysfunction in blood vessels may contribute significantly to the development of life-threatening diseases. Anti-angiogenesis therapy and pro-angiogenesis/angiogenesis strategies have been frequently recommended for various diseases. Herein, we describe the mechanism by which deferoxamine promotes angiogenesis and summarize its application in chronic wounds, bone repair, and diseases of the respiratory system. Furthermore, we discuss the drug delivery system of deferoxamine for treating various diseases, providing constructive ideas and inspiration for the development of new treatment strategies.


Assuntos
Desferroxamina , Neovascularização Fisiológica , Desferroxamina/farmacologia , Desferroxamina/uso terapêutico , Humanos , Animais , Neovascularização Fisiológica/efeitos dos fármacos , Regeneração/efeitos dos fármacos , Cicatrização/efeitos dos fármacos , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/metabolismo , Angiogênese
2.
ACS Appl Mater Interfaces ; 16(19): 24321-24340, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38700914

RESUMO

In current clinical practices related to orthopedics, dental, and cardiovascular surgeries, a number of biomaterial coatings, such as hydroxyapatite (HAp), diamond-like carbon (DLC), have been used in combination with metallic substrates (stainless steel, Ti6Al4V alloy, etc.). Although SiBCN coatings are widely explored in material science for diverse applications, their potential remains largely unexplored for biomedical applications. With this motivation, the present work reports the development of SiBxCyNzOm coatings on a Ti6Al4V substrate, employing a reactive radiofrequency (RF) magnetron sputtering technique. Three different coating compositions (Si0.27B0.10C0.31N0.07O0.24, Si0.23B0.06C0.21N0.22O0.27, and Si0.20B0.05C0.19N0.20O0.35) were obtained using a Si2BC2N target and varying nitrogen flow rates. The hydrophilic properties of the as-synthesized coatings were rationalized in terms of an increase in the number of oxygen-containing functional groups (OH and NO) on the surface, as probed using XPS and FTIR analyses. Furthermore, the cellular monoculture of SVEC4-10 endothelial cells and L929 fibroblasts established good cytocompatibility. More importantly, the coculture system of SVEC4-10 and L929, in the absence of growth factors, demonstrated clear cellular phenotypical changes, with extensive sprouting leading to tube-like morphologies on the coating surfaces, when stimulated using a customized cell stimulator (StimuCell) with 1.15 V/cm direct current (DC) electric field strength for 1 h. In addition, the hemocompatibility assessment using human blood samples revealed clinically acceptable hemolysis, less erythrocyte adhesion, shorter plasma recalcification, and reduced risk for thrombosis on the SiBxCyNzOm coatings, when compared to uncoated Ti6Al4V. Taken together, the present study unambiguously establishes excellent cytocompatibility, hemocompatibility, and defines the preangiogenic properties of SiBxCyNzOm bioceramic coatings for potential biomedical applications.


Assuntos
Ligas , Materiais Revestidos Biocompatíveis , Teste de Materiais , Titânio , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Ligas/química , Ligas/farmacologia , Titânio/química , Titânio/farmacologia , Humanos , Animais , Camundongos , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/citologia , Linhagem Celular , Propriedades de Superfície , Fibroblastos/efeitos dos fármacos , Fibroblastos/citologia , Neovascularização Fisiológica/efeitos dos fármacos
3.
ACS Appl Mater Interfaces ; 16(19): 24384-24397, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38709640

RESUMO

Vascularization and inflammation management are essential for successful bone regeneration during the healing process of large bone defects assisted by artificial implants/fillers. Therefore, this study is devoted to the optimization of the osteogenic microenvironment for accelerated bone healing through rapid neovascularization and appropriate inflammation inhibition that were achieved by applying a tantalum oxide (TaO)-based nanoplatform carrying functional substances at the bone defect. Specifically, TaO mesoporous nanospheres were first constructed and then modified by functionalized metal ions (Mg2+) with the following deferoxamine (DFO) loading to obtain the final product simplified as DFO-Mg-TaO. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) revealed that the product was homogeneously dispersed hollow nanospheres with large specific surface areas and mesoporous shells suitable for loading Mg2+ and DFO. The biological assessments indicated that DFO-Mg-TaO could enhance the adhesion, proliferation, and osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs). The DFO released from DFO-Mg-TaO promoted angiogenetic activity by upregulating the expressions of hypoxia-inducible factor-1 (HIF-1α) and vascular endothelial growth factor (VEGF). Notably, DFO-Mg-TaO also displayed anti-inflammatory activity by reducing the expressions of pro-inflammatory factors, benefiting from the release of bioactive Mg2+. In vivo experiments demonstrated that DFO-Mg-TaO integrated with vascular regenerative, anti-inflammatory, and osteogenic activities significantly accelerated the reconstruction of bone defects. Our findings suggest that the optimized DFO-Mg-TaO nanospheres are promising as multifunctional fillers to speed up the bone healing process.


Assuntos
Regeneração Óssea , Desferroxamina , Magnésio , Células-Tronco Mesenquimais , Óxidos , Tantálio , Desferroxamina/química , Desferroxamina/farmacologia , Regeneração Óssea/efeitos dos fármacos , Tantálio/química , Animais , Óxidos/química , Óxidos/farmacologia , Magnésio/química , Magnésio/farmacologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Osteogênese/efeitos dos fármacos , Neovascularização Fisiológica/efeitos dos fármacos , Ratos , Camundongos , Ratos Sprague-Dawley , Proliferação de Células/efeitos dos fármacos , Angiogênese
4.
PLoS One ; 19(5): e0303758, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38768136

RESUMO

Nitric oxide (NO) promotes angiogenesis via various mechanisms; however, the effective transmission of NO in ischemic diseases is unclear. Herein, we tested whether NO-releasing nanofibers modulate therapeutic angiogenesis in an animal hindlimb ischemia model. Male wild-type C57BL/6 mice with surgically-induced hindlimb ischemia were treated with NO-releasing 3-methylaminopropyltrimethoxysilane (MAP3)-derived or control (i.e., non-NO-releasing) nanofibers, by applying them to the wound for 20 min, three times every two days. The amount of NO from the nanofiber into tissues was assessed by NO fluorometric assay. The activity of cGMP-dependent protein kinase (PKG) was determined by western blot analysis. Perfusion ratios were measured 2, 4, and 14 days after inducing ischemia using laser doppler imaging. On day 4, Immunohistochemistry (IHC) with F4/80 and gelatin zymography were performed. IHC with CD31 was performed on day 14. To determine the angiogenic potential of NO-releasing nanofibers, aorta-ring explants were treated with MAP3 or control fiber for 20 min, and the sprout lengths were examined after 6 days. As per either LDPI (Laser doppler perfusion image) ratio or CD31 capillary density measurement, angiogenesis in the ischemic hindlimb was improved in the MAP3 nanofiber group; further, the total nitrate/nitrite concentration in the adduct muscle increased. The number of macrophage infiltrations and matrix metalloproteinase-9 (MMP-9) activity decreased. Vasodilator-stimulated phosphoprotein (VASP), one of the major substrates for PKG, increased phosphorylation in the MAP3 group. MAP3 nanofiber or NO donor SNAP (s-nitroso-n-acetyl penicillamine)-treated aortic explants showed enhanced sprouting in an ex vivo aortic ring assay, which was partially abrogated by KT5823, a potent inhibitor of PKG. These findings suggest that the novel NO-releasing nanofiber, MAP3 activates PKG and promotes therapeutic angiogenesis in response to hindlimb ischemia.


Assuntos
Proteínas Quinases Dependentes de GMP Cíclico , Membro Posterior , Isquemia , Camundongos Endogâmicos C57BL , Nanofibras , Neovascularização Fisiológica , Óxido Nítrico , Animais , Nanofibras/química , Masculino , Óxido Nítrico/metabolismo , Isquemia/tratamento farmacológico , Isquemia/metabolismo , Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , Camundongos , Membro Posterior/irrigação sanguínea , Neovascularização Fisiológica/efeitos dos fármacos , Metaloproteinase 9 da Matriz/metabolismo , Fosfoproteínas/metabolismo , Proteínas dos Microfilamentos/metabolismo , Moléculas de Adesão Celular
5.
Int J Nanomedicine ; 19: 4377-4409, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38774029

RESUMO

Angiogenesis, or the formation of new blood vessels, is a natural defensive mechanism that aids in the restoration of oxygen and nutrition delivery to injured brain tissue after an ischemic stroke. Angiogenesis, by increasing vessel development, may maintain brain perfusion, enabling neuronal survival, brain plasticity, and neurologic recovery. Induction of angiogenesis and the formation of new vessels aid in neurorepair processes such as neurogenesis and synaptogenesis. Advanced nano drug delivery systems hold promise for treatment stroke by facilitating efficient transportation across the the blood-brain barrier and maintaining optimal drug concentrations. Nanoparticle has recently been shown to greatly boost angiogenesis and decrease vascular permeability, as well as improve neuroplasticity and neurological recovery after ischemic stroke. We describe current breakthroughs in the development of nanoparticle-based treatments for better angiogenesis therapy for ischemic stroke employing polymeric nanoparticles, liposomes, inorganic nanoparticles, and biomimetic nanoparticles in this study. We outline new nanoparticles in detail, review the hurdles and strategies for conveying nanoparticle to lesions, and demonstrate the most recent advances in nanoparticle in angiogenesis for stroke treatment.


Assuntos
AVC Isquêmico , Nanopartículas , Neovascularização Fisiológica , Humanos , AVC Isquêmico/tratamento farmacológico , Animais , Nanopartículas/química , Neovascularização Fisiológica/efeitos dos fármacos , Barreira Hematoencefálica/efeitos dos fármacos , Lipossomos/química , Sistemas de Liberação de Medicamentos/métodos , Sistemas de Liberação de Fármacos por Nanopartículas/química , Angiogênese
6.
Mol Med ; 30(1): 57, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38698308

RESUMO

BACKGROUND: Ossification of the posterior longitudinal ligament (OPLL), an emerging heterotopic ossification disease, causes spinal cord compression, resulting in motor and sensory dysfunction. The etiology of OPLL remains unclear but may involve integrin αVß3 regulating the process of osteogenesis and angiogenesis. In this study, we focused on the role of integrin αVß3 in OPLL and explored the underlying mechanism by which the c(RGDyk) peptide acts as a potent and selective integrin αVß3 inhibitor to inhibit osteogenesis and angiogenesis in OPLL. METHODS: OPLL or control ligament samples were collected in surgery. For OPLL samples, RNA-sequencing results revealed activation of the integrin family, particularly integrin αVß3. Integrin αVß3 expression was detected by qPCR, Western blotting, and immunohistochemical analysis. Fluorescence microscopy was used to observe the targeted inhibition of integrin αVß3 by the c(RGDyk) peptide on ligaments fibroblasts (LFs) derived from patients with OPLL and endothelial cells (ECs). The effect of c(RGDyk) peptide on the ossification of pathogenic LFs was detected using qPCR, Western blotting. Alkaline phosphatase staining or alizarin red staining were used to test the osteogenic capability. The effect of the c(RGDyk) peptide on angiogenesis was determined by EC migration and tube formation assays. The effects of the c(RGDyk) peptide on heterotopic bone formation were evaluated by micro-CT, histological, immunohistochemical, and immunofluorescence analysis in vivo. RESULTS: The results indicated that after being treated with c(RGDyk), the osteogenic differentiation of LFs was significantly decreased. Moreover, the c(RGDyk) peptide inhibited the migration of ECs and thus prevented the nutritional support required for osteogenesis. Furthermore, the c(RGDyk) peptide inhibited ectopic bone formation in mice. Mechanistic analysis revealed that c(RGDyk) peptide could inhibit osteogenesis and angiogenesis in OPLL by targeting integrin αVß3 and regulating the FAK/ERK pathway. CONCLUSIONS: Therefore, the integrin αVß3 appears to be an emerging therapeutic target for OPLL, and the c(RGDyk) peptide has dual inhibitory effects that may be valuable for the new therapeutic strategy of OPLL.


Assuntos
Integrina alfaVbeta3 , Ossificação do Ligamento Longitudinal Posterior , Osteogênese , Integrina alfaVbeta3/metabolismo , Integrina alfaVbeta3/antagonistas & inibidores , Humanos , Osteogênese/efeitos dos fármacos , Animais , Camundongos , Ossificação do Ligamento Longitudinal Posterior/metabolismo , Ossificação do Ligamento Longitudinal Posterior/tratamento farmacológico , Masculino , Feminino , Pessoa de Meia-Idade , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/metabolismo , Fibroblastos/metabolismo , Fibroblastos/efeitos dos fármacos , Neovascularização Fisiológica/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Modelos Animais de Doenças , Oligopeptídeos/farmacologia , Oligopeptídeos/química , Angiogênese
7.
Carbohydr Polym ; 337: 122147, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38710554

RESUMO

Treatment of infected wound by simultaneously eliminating bacteria and inducing angiogenesis to promote wound tissue regeneration remains a clinical challenge. Dynamic and reversable hydrogels can adapt to irregular wound beds, which have raised great attention as wound dressings. Herein, a sprayable chitosan-based hydrogel (HPC/CCS/ODex-IGF1) was developed using hydroxypropyl chitosan (HPC), caffeic acid functionalized chitosan (CCS), oxidized dextran (ODex) to crosslink through the dynamic imine bond, which was pH-responsive to the acidic microenvironment and could controllably release insulin growth factor-1 (IGF1). The HPC/CCS/ODex-IGF1 hydrogels not only showed self-healing, self-adaptable and sprayable properties, but also exhibited excellent antibacterial ability, antioxidant property, low-cytotoxicity and angiogenetic activity. In vivo experiments demonstrated that hydrogels promoted tissue regeneration and healing of bacteria-infected wound with a rate of approximately 98.4 % on day 11 by eliminating bacteria, reducing inflammatory and facilitating angiogenesis, demonstrating its great potential for wound dressing.


Assuntos
Antibacterianos , Quitosana , Hidrogéis , Neovascularização Fisiológica , Cicatrização , Quitosana/química , Quitosana/farmacologia , Hidrogéis/química , Hidrogéis/farmacologia , Cicatrização/efeitos dos fármacos , Animais , Antibacterianos/farmacologia , Antibacterianos/química , Camundongos , Neovascularização Fisiológica/efeitos dos fármacos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Anti-Inflamatórios/uso terapêutico , Humanos , Masculino , Fator de Crescimento Insulin-Like I , Staphylococcus aureus/efeitos dos fármacos , Bandagens , Infecção dos Ferimentos/tratamento farmacológico , Infecção dos Ferimentos/microbiologia , Dextranos/química , Dextranos/farmacologia , Angiogênese
8.
Gynecol Endocrinol ; 40(1): 2351525, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38726683

RESUMO

OBJECTIVE: Stable luteal cell function is an important prerequisite for reproductive ability and embryonic development. However, luteal insufficiency seriously harms couples who have the desire to have a pregnancy, and the most important thing is that there is no complete solution. In addition, Vaspin has been shown to have regulatory effects on luteal cells, but the complex mechanisms involved have not been fully elucidated. Therefore, this study aimed to explore the effect of Vaspin on rat luteal cells and its mechanism. METHODS: Granulosa lutein cells separated from the ovary of female rats were incubated for 24h with gradient concentrations of Vaspin, and granulosa lutein cells incubated with 0.5% bovine serum albumin were used as controls. The proliferation, apoptosis, angiogenesis, progesterone (P4) and estradiol (E2) were detected by CCK-8, Anneixn-FITC/PI staining, angiogenesis experiment and ELISA. Western blot was applied to observe the expression levels of proteins related to cell proliferation, apoptosis, angiogenesis and MEK/MAPK signaling pathway. RESULTS: Compared with the Control group, Vaspin could significantly up-regulate the proliferation of granulosa lutein cells and reduce the apoptosis. Moreover, Vaspin promoted the angiogenesis of granulosa lutein cells and the production of P4 and E2 in a concentration-dependent manner. Furthermore, Vaspin up-regulated the CyclinD1, CyclinB1, Bcl2, VEGFA and FGF-2 expression in granulosa lutein cells, and down-regulated the level of Bax. Also, Vaspin increased the p-MEK1 and p-p38 levels. CONCLUSION: Vaspin can up-regulate the proliferation and steroidogenesis of rat luteal cells and reduce apoptosis, which may be related to the influence of MEK/MAPK activity.


Assuntos
Apoptose , Proliferação de Células , Células Lúteas , Progesterona , Serpinas , Animais , Feminino , Proliferação de Células/efeitos dos fármacos , Serpinas/metabolismo , Serpinas/farmacologia , Ratos , Células Lúteas/efeitos dos fármacos , Células Lúteas/metabolismo , Apoptose/efeitos dos fármacos , Progesterona/farmacologia , Estradiol/farmacologia , Células Cultivadas , Ratos Sprague-Dawley , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Neovascularização Fisiológica/efeitos dos fármacos
9.
Int J Mol Sci ; 25(9)2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38732080

RESUMO

Endothelial progenitor cells (EPCs) play a critical role in cardiovascular regeneration. Enhancement of their native properties would be highly beneficial to ensuring the proper functioning of the cardiovascular system. As androgens have a positive effect on the cardiovascular system, we hypothesized that dihydrotestosterone (DHT) could also influence EPC-mediated repair processes. To evaluate this hypothesis, we investigated the effects of DHT on cultured human EPCs' proliferation, viability, morphology, migration, angiogenesis, gene and protein expression, and ability to integrate into cardiac tissue. The results showed that DHT at different concentrations had no cytotoxic effect on EPCs, significantly enhanced the cell proliferation and viability and induces fast, androgen-receptor-dependent formation of capillary-like structures. DHT treatment of EPCs regulated gene expression of androgen receptors and the genes and proteins involved in cell migration and angiogenesis. Importantly, DHT stimulation promoted EPC migration and the cells' ability to adhere and integrate into murine cardiac slices, suggesting it has a role in promoting tissue regeneration. Mass spectrometry analysis further highlighted the impact of DHT on EPCs' functioning. In conclusion, DHT increases the proliferation, migration, and androgen-receptor-dependent angiogenesis of EPCs; enhances the cells' secretion of key factors involved in angiogenesis; and significantly potentiates cellular integration into heart tissue. The data offer support for potential therapeutic applications of DHT in cardiovascular regeneration and repair processes.


Assuntos
Movimento Celular , Proliferação de Células , Di-Hidrotestosterona , Células Progenitoras Endoteliais , Neovascularização Fisiológica , Receptores Androgênicos , Di-Hidrotestosterona/farmacologia , Humanos , Movimento Celular/efeitos dos fármacos , Receptores Androgênicos/metabolismo , Neovascularização Fisiológica/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Progenitoras Endoteliais/metabolismo , Células Progenitoras Endoteliais/efeitos dos fármacos , Células Progenitoras Endoteliais/citologia , Animais , Células Cultivadas , Camundongos , Sobrevivência Celular/efeitos dos fármacos , Androgênios/farmacologia , Androgênios/metabolismo , Masculino
10.
J Mater Chem B ; 12(19): 4613-4628, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38655586

RESUMO

The clinical treatment of chronic diabetic wounds is a long-standing thorny issue. Strategies targeting the diabetic micro-environment have been developed to promote wound healing. However, it remains challenging to reverse the adverse conditions and re-activate tissue regeneration and angiogenesis. In this work, we develop injectable hydrogels that are responsive to acidic conditions, reactive oxygen species (ROS), and high glucose levels in a diabetic wound micro-environment to sustainably deliver tannic acid (TA) to augment antibacterial, anti-inflammatory, and anti-oxidative activities. This triple-responsive mechanism is designed by introducing dynamic acylhydrazone and phenylboronic ester bonds to crosslink modified hyaluronic acid (HA) chains. At a diabetic wound, the acylhydrazone bonds may be hydrolyzed at low pH. Meanwhile, glucose may compete with TA, and ROS may oxidize the C-B bond to release TA. Thus, sustained release of TA is triggered by the diabetic micro-environment. The released TA effectively scavenges ROS and kills bacteria. In vivo experiments on diabetic mice demonstrate that the hydrogel dressing highly promotes angiogenesis and extracellular matrix (ECM) deposition, leading to eventual full healing of diabetic skin wounds. This micro-environment-triggered triple-responsive drug release provides a promising method for chronic diabetic wound healing.


Assuntos
Antibacterianos , Diabetes Mellitus Experimental , Ácido Hialurônico , Hidrogéis , Cicatrização , Ácido Hialurônico/química , Ácido Hialurônico/farmacologia , Cicatrização/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/química , Animais , Hidrogéis/química , Hidrogéis/farmacologia , Camundongos , Diabetes Mellitus Experimental/tratamento farmacológico , Neovascularização Fisiológica/efeitos dos fármacos , Colágeno/química , Bandagens , Taninos/química , Taninos/farmacologia , Testes de Sensibilidade Microbiana , Staphylococcus aureus/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Masculino , Espécies Reativas de Oxigênio/metabolismo , Humanos , Angiogênese
11.
ACS Appl Mater Interfaces ; 16(17): 21672-21688, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38637290

RESUMO

Titanium (Ti) and its alloys are widely used as hard tissue substitutes in dentistry and orthopedics, but their low bioactivity leads to undesirable osseointegration defects in the early osteogenic phase. Surface modification is an important approach to overcome these problems. In the present study, novel magnesium phosphate (MgP) coatings with controllable structures were fabricated on the surface of Ti using the phosphate chemical conversion (PCC) method. The effects of the microstructure on the physicochemical and biological properties of the coatings on Ti were researched. The results indicated that accelerators in PCC solution were important factors affecting the microstructure and properties of the MgP coatings. In addition, the coated Ti exhibited excellent hydrophilicity, high bonding strength, and good corrosion resistance. Moreover, the biological results showed that the MgP coatings could improve the spread, proliferation, and osteogenic differentiation of mouse osteoblast cells (MC3T3-E1) and vascular differentiation of human umbilical vein endothelial cells (HUVECs), indicating that the coated Ti samples had a great effect on promoting osteogenesis and angiogenesis. Overall, this study provided a new research idea for the surface modification of conventional Ti to enhance osteogenesis and angiogenesis in different bone types for potential biomedical applications.


Assuntos
Diferenciação Celular , Proliferação de Células , Materiais Revestidos Biocompatíveis , Células Endoteliais da Veia Umbilical Humana , Compostos de Magnésio , Neovascularização Fisiológica , Osteogênese , Fosfatos , Titânio , Titânio/química , Titânio/farmacologia , Osteogênese/efeitos dos fármacos , Animais , Camundongos , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Humanos , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Fosfatos/química , Fosfatos/farmacologia , Compostos de Magnésio/química , Compostos de Magnésio/farmacologia , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Neovascularização Fisiológica/efeitos dos fármacos , Osteoblastos/efeitos dos fármacos , Osteoblastos/citologia , Propriedades de Superfície , Linhagem Celular , Angiogênese
12.
Int J Biol Macromol ; 267(Pt 2): 131667, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38636761

RESUMO

A thiolated RGD was incorporated into the threaded allyl-ß-cyclodextrins (Allyl-ß-CDs) of the polyrotaxane (PR) through a thiol-ene click reaction, resulting in the formation of dynamic RGD ligands on the PR surface (dRGD-PR). When maintaining consistent RGD density and other physical properties, endothelial cells (ECs) cultured on dRGD-PR exhibited significantly increased cell proliferation and a larger cell spreading area compared to those on the non-dynamic RGD (nRGD-PCL). Furthermore, ECs on dRGD-PR demonstrated elevated expression levels of FAK, p-FAK, and p-AKT, along with a larger population of cells in the G2/M stage during cell cycle analysis, in contrast to cells on nRGD-PCL. These findings suggest that the movement of the RGD ligands may exert additional beneficial effects in promoting EC spreading and proliferation, beyond their essential adhesion and proliferation-promoting capabilities, possibly mediated by the RGD-integrin-FAK-AKT pathway. Moreover, in vitro vasculogenesis tests were conducted using two methods, revealing that ECs cultured on dRGD-PR exhibited much better vasculogenesis than nRGD-PCL in vitro. In vivo testing further demonstrated an increased presence of CD31-positive tissues on dRGD-PR. In conclusion, the enhanced EC spreading and proliferation resulting from the dynamic RGD ligands may contribute to improved in vitro vasculogenesis and in vivo vascularization.


Assuntos
Proliferação de Células , Ciclodextrinas , Oligopeptídeos , Humanos , Adesão Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Ciclodextrinas/química , Ciclodextrinas/farmacologia , Células Endoteliais/metabolismo , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/citologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Ligantes , Neovascularização Fisiológica/efeitos dos fármacos , Oligopeptídeos/farmacologia , Oligopeptídeos/química , Poloxâmero/química , Poloxâmero/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Rotaxanos
13.
J Colloid Interface Sci ; 667: 624-639, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38663278

RESUMO

Quick scarless healing remains a key issue for diabetic wounds. Here, a stretchable elastomeric hydrogel dressing composed of hydroxyethylcellulose (HEC), silk nano fiber-magnesium ion complex (Mg2+-SNF) and glycerol (Gly) was developed to optimize mechanical niche, anti-inflammatory and angiogenic behavior simultaneously. The composite hydrogel dressing exhibited skin-like elasticity (175.1 ± 23.9 %) and modulus (156.7 ± 2.5 KPa) while Mg2+-SNF complex endowed the dressing with angiogenesis, both favoring quick scarless skin regeneration. In vitro cell studies revealed that the hydrogel dressing stimulated fibroblast proliferation, endothelial cell migration and vessel-like tube formation, and also induced anti-inflammatory behavior of macrophages. In vivo results revealed accelerated healing of diabetic wounds. The improved granulation ingrowth and collagen deposition suggested high quality repair. Both thinner epidermal layer and low collagen I/III ratio of the regenerated skin confirmed scarless tissue formation. This bioactive hydrogel dressing has promising potential to address the multifaceted challenges of diabetic wound management.


Assuntos
Glicerol , Magnésio , Cicatrização , Cicatrização/efeitos dos fármacos , Animais , Glicerol/química , Glicerol/farmacologia , Magnésio/química , Magnésio/farmacologia , Camundongos , Seda/química , Hidrogéis/química , Hidrogéis/farmacologia , Materiais Biomiméticos/química , Materiais Biomiméticos/farmacologia , Diabetes Mellitus Experimental/tratamento farmacológico , Bandagens , Humanos , Ratos , Nanofibras/química , Proliferação de Células/efeitos dos fármacos , Neovascularização Fisiológica/efeitos dos fármacos , Masculino , Células Endoteliais da Veia Umbilical Humana , Celulose/química , Celulose/farmacologia , Celulose/análogos & derivados
14.
ACS Biomater Sci Eng ; 10(5): 2725-2741, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38630965

RESUMO

Amidst the present healthcare issues, diabetes is unique as an emerging class of affliction with chronicity in a majority of the population. To check and control its effects, there have been huge turnover and constant development of management strategies, and though a bigger part of the health care area is involved in achieving its control and the related issues such as the effect of diabetes on wound healing and care and many of the works have reached certain successful outcomes, still there is a huge lack in managing it, with maximum effect yet to be attained. Studying pathophysiology and involvement of various treatment options, such as tissue engineering, application of hydrogels, drug delivery methods, and enhancing angiogenesis, are at constantly developing stages either direct or indirect. In this review, we have gathered a wide field of information and different new therapeutic methods and targets for the scientific community, paving the way toward more settled ideas and research advances to cure diabetic wounds and manage their outcomes.


Assuntos
Materiais Biocompatíveis , Diabetes Mellitus , Hidrogéis , Neovascularização Fisiológica , Cicatrização , Cicatrização/efeitos dos fármacos , Humanos , Materiais Biocompatíveis/uso terapêutico , Materiais Biocompatíveis/química , Neovascularização Fisiológica/efeitos dos fármacos , Hidrogéis/química , Hidrogéis/uso terapêutico , Diabetes Mellitus/tratamento farmacológico , Diabetes Mellitus/fisiopatologia , Animais , Engenharia Tecidual/métodos , Sistemas de Liberação de Medicamentos/métodos , Angiogênese
15.
Int J Mol Sci ; 25(8)2024 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-38673925

RESUMO

The protective effects of hydrogen sulfide (H2S) against ischemic brain injury and its role in promoting angiogenesis have been established. However, the specific mechanism underlying these effects remains unclear. This study is designed to investigate the regulatory impact and mechanism of H2S on VEGFR2 phosphorylation. Following expression and purification, the recombinant His-VEGFR2 protein was subjected to LC-PRM/MS analysis to identify the phosphorylation sites of VEGFR2 upon NaHS treatment. Adenovirus infection was used to transfect primary rat brain artery endothelial cells (BAECs) with the Ad-VEGFR2WT, Ad-VEGFR2Y797F, and Ad-VEGFR2S799A plasmids. The expression of VEGFR2 and recombinant Flag-VEGFR2, along with Akt phosphorylation, cell proliferation, and LDH levels, was assessed. The migratory capacity and tube-forming potential of BAECs were assessed using wound healing, transwell, and tube formation assays. NaHS notably enhanced the phosphorylation of VEGFR2 at Tyr797 and Ser799 sites. These phosphorylation sites were identified as crucial for mediating the protective effects of NaHS against hypoxia-reoxygenation (H/R) injury. NaHS significantly enhanced the Akt phosphorylation, migratory capacity, and tube formation of BAECs and upregulated the expression of VEGFR2 and recombinant proteins. These findings suggest that Tyr797 and Ser799 sites of VEGFR2 serve as crucial mediators of H2S-induced pro-angiogenic effects and protection against H/R injury.


Assuntos
Células Endoteliais , Sulfeto de Hidrogênio , Receptor 2 de Fatores de Crescimento do Endotélio Vascular , Fosforilação/efeitos dos fármacos , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , Sulfeto de Hidrogênio/farmacologia , Sulfeto de Hidrogênio/metabolismo , Animais , Ratos , Células Endoteliais/metabolismo , Células Endoteliais/efeitos dos fármacos , Neovascularização Fisiológica/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Ratos Sprague-Dawley , Hipóxia Celular , Proliferação de Células/efeitos dos fármacos , Tirosina/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/genética , Indutores da Angiogênese/farmacologia , Indutores da Angiogênese/metabolismo , Serina/metabolismo , Hipóxia/metabolismo
16.
ACS Biomater Sci Eng ; 10(5): 3306-3315, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38634810

RESUMO

Tissue engineering primarily aimed to alleviate the insufficiency of organ donations worldwide. Nonetheless, the survival of the engineered tissue is often compromised due to the complexity of the natural organ architectures, especially the vascular system inside the organ, which allows food-waste transfer. Thus, vascularization within the engineered tissue is of paramount importance. A critical aspect of this endeavor is the ability to replicate the intricacies of the extracellular matrix and promote the formation of functional vascular networks within engineered constructs. In this study, human adipose-derived stem cells (hADSCs) and human umbilical vein endothelial cells (HUVECs) were cocultured in different types of gelatin methacrylate (GelMA). In brief, pro-angiogenic signaling growth factors (GFs), vascular endothelial growth factor (VEGF165) and basic fibroblast growth factor (bFGF), were conjugated onto GelMA via an EDC/NHS coupling reaction. The GelMA hydrogels conjugated with VEGF165 (GelMA@VEGF165) and bFGF (GelMA@bFGF) showed marginal changes in the chemical and physical characteristics of the GelMA hydrogels. Moreover, the conjugation of these growth factors demonstrated improved cell viability and cell proliferation within the hydrogel construct. Additionally, vascular-like network formation was observed predominantly on GelMA@GrowthFactor (GelMA@GF) hydrogels, particularly on GelMA@bFGF. This study suggests that growth factor-conjugated GelMA hydrogels would be a promising biomaterial for 3D vascular tissue engineering.


Assuntos
Técnicas de Cocultura , Fator 2 de Crescimento de Fibroblastos , Gelatina , Células Endoteliais da Veia Umbilical Humana , Hidrogéis , Metacrilatos , Engenharia Tecidual , Fator A de Crescimento do Endotélio Vascular , Humanos , Hidrogéis/química , Hidrogéis/farmacologia , Gelatina/química , Gelatina/farmacologia , Fator 2 de Crescimento de Fibroblastos/farmacologia , Fator 2 de Crescimento de Fibroblastos/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/farmacologia , Metacrilatos/química , Metacrilatos/farmacologia , Engenharia Tecidual/métodos , Neovascularização Fisiológica/efeitos dos fármacos , Tecido Adiposo/citologia , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células-Tronco/citologia , Células-Tronco/metabolismo , Células-Tronco/efeitos dos fármacos , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo
17.
Nat Commun ; 15(1): 3435, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38653959

RESUMO

Wound healing is an obvious clinical concern that can be hindered by inadequate angiogenesis, inflammation, and chronic hypoxia. While exosomes derived from adipose tissue-derived stem cells have shown promise in accelerating healing by carrying therapeutic growth factors and microRNAs, intracellular cargo delivery is compromised in hypoxic tissues due to activated hypoxia-induced endocytic recycling. To address this challenge, we have developed a strategy to coat oxygen nanobubbles with exosomes and incorporate them into a polyvinyl alcohol/gelatin hybrid hydrogel. This approach not only alleviates wound hypoxia but also offers an efficient means of delivering exosome-coated nanoparticles in hypoxic conditions. The self-healing properties of the hydrogel, along with its component, gelatin, aids in hemostasis, while its crosslinking bonds facilitate hydrogen peroxide decomposition, to ameliorate wound inflammation. Here, we show the potential of this multifunctional hydrogel for enhanced healing, promoting angiogenesis, facilitating exosome delivery, mitigating hypoxia, and inhibiting inflammation in a male rat full-thickness wound model.


Assuntos
Exossomos , Hidrogéis , Oxigênio , Cicatrização , Exossomos/metabolismo , Cicatrização/efeitos dos fármacos , Animais , Hidrogéis/química , Masculino , Ratos , Oxigênio/metabolismo , Humanos , Ratos Sprague-Dawley , Nanopartículas/química , Álcool de Polivinil/química , Neovascularização Fisiológica/efeitos dos fármacos , Gelatina/química , Hipóxia/metabolismo , Inflamação/metabolismo
18.
Aging (Albany NY) ; 16(7): 6566-6587, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38604164

RESUMO

Traumatic brain injury (TBI) and its resulting complications pose a major challenge to global public health, resulting in increased rates of disability and mortality. Cerebrovascular dysfunction is nearly universal in TBI cases and is closely associated with secondary injury after TBI. Transcranial direct current stimulation (tDCS) shows great potential in the treatment of TBI; however, the exact mechanism remains elusive. In this study, we performed in vivo and in vitro experiments to explore the effects and mechanisms of tDCS in a controlled cortical impact (CCI) rat model simulating TBI. In vivo experiments show that tDCS can effectively reduce brain tissue damage, cerebral edema and neurological deficits. The potential mechanism may be that tDCS improves the neurological function of rats by increasing orexin A (OXA) secretion, upregulating the TF-AKT/ERK signaling pathway, and promoting angiogenesis at the injury site. Cellular experiments showed that OXA promoted HUVEC migration and angiogenesis, and these effects were counteracted by the ERK1/2 inhibitor LY3214996. The results of Matrigel experiment in vivo showed that TNF-a significantly reduced the ability of HUVEC to form blood vessels, but OXA could rescue the effect of TNF-a on the ability of HUVEC to form blood vessels. However, LY3214996 could inhibit the therapeutic effect of OXA. In summary, our preliminary study demonstrates that tDCS can induce angiogenesis through the OXA-TF-AKT/ERK signaling pathway, thereby improving neurological function in rats with TBI.


Assuntos
Lesões Encefálicas Traumáticas , Sistema de Sinalização das MAP Quinases , Neovascularização Fisiológica , Proteínas Proto-Oncogênicas c-akt , Estimulação Transcraniana por Corrente Contínua , Animais , Lesões Encefálicas Traumáticas/metabolismo , Lesões Encefálicas Traumáticas/terapia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Masculino , Neovascularização Fisiológica/efeitos dos fármacos , Ratos Sprague-Dawley , Humanos , Células Endoteliais da Veia Umbilical Humana , Modelos Animais de Doenças , Transdução de Sinais , Angiogênese
19.
BMC Biol ; 22(1): 91, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38654271

RESUMO

BACKGROUND: Elephant seals exhibit extreme hypoxemic tolerance derived from repetitive hypoxia/reoxygenation episodes they experience during diving bouts. Real-time assessment of the molecular changes underlying protection against hypoxic injury in seals remains restricted by their at-sea inaccessibility. Hence, we developed a proliferative arterial endothelial cell culture model from elephant seals and used RNA-seq, functional assays, and confocal microscopy to assess the molecular response to prolonged hypoxia. RESULTS: Seal and human endothelial cells exposed to 1% O2 for up to 6 h respond differently to acute and prolonged hypoxia. Seal cells decouple stabilization of the hypoxia-sensitive transcriptional regulator HIF-1α from angiogenic signaling. Rapid upregulation of genes involved in glutathione (GSH) metabolism supports the maintenance of GSH pools, and intracellular succinate increases in seal but not human cells. High maximal and spare respiratory capacity in seal cells after hypoxia exposure occurs in concert with increasing mitochondrial branch length and independent from major changes in extracellular acidification rate, suggesting that seal cells recover oxidative metabolism without significant glycolytic dependency after hypoxia exposure. CONCLUSIONS: We found that the glutathione antioxidant system is upregulated in seal endothelial cells during hypoxia, while this system remains static in comparable human cells. Furthermore, we found that in contrast to human cells, hypoxia exposure rapidly activates HIF-1 in seal cells, but this response is decoupled from the canonical angiogenesis pathway. These results highlight the unique mechanisms that confer extraordinary tolerance to limited oxygen availability in a champion diving mammal.


Assuntos
Antioxidantes , Células Endoteliais , Focas Verdadeiras , Transdução de Sinais , Regulação para Cima , Animais , Focas Verdadeiras/fisiologia , Focas Verdadeiras/metabolismo , Células Endoteliais/metabolismo , Células Endoteliais/efeitos dos fármacos , Antioxidantes/metabolismo , Humanos , Hipóxia/metabolismo , Hipóxia Celular , Neovascularização Fisiológica/efeitos dos fármacos , Neovascularização Fisiológica/fisiologia , Células Cultivadas , Glutationa/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética
20.
Biochem Biophys Res Commun ; 712-713: 149941, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38643718

RESUMO

While diosgenin has been demonstrated effective in various cardiovascular diseases, its specific impact on treating heart attacks remains unclear. Our research revealed that diosgenin significantly improved cardiac function in a myocardial infarction (MI) mouse model, reducing cardiac fibrosis and cell apoptosis while promoting angiogenesis. Mechanistically, diosgenin upregulated the Hand2 expression, promoting the proliferation and migration of endothelial cells under hypoxic conditions. Acting as a transcription factor, HAND2 activated the angiogenesis-related gene Aggf1. Conversely, silencing Hand2 inhibited the diosgenin-induced migration of hypoxic endothelial cells and angiogenesis. In summary, these findings provide new insights into the protective role of diosgenin in MI, validating its effect on angiogenic activity and providing a theoretical basis for clinical treatment strategies.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos , Diosgenina , Camundongos Endogâmicos C57BL , Infarto do Miocárdio , Neovascularização Fisiológica , Animais , Diosgenina/farmacologia , Diosgenina/uso terapêutico , Infarto do Miocárdio/tratamento farmacológico , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Neovascularização Fisiológica/efeitos dos fármacos , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Masculino , Camundongos , Proliferação de Células/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Humanos , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Angiogênese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA